

HAXPES reference spectra of bulk MoS2 with Cr K_ α excitation

Pierre-Marie Deleuze, Nicolas Gauthier, Kateryna Artyushkova, Eugénie Martinez, Olivier Renault

► To cite this version:

Pierre-Marie Deleuze, Nicolas Gauthier, Kateryna Artyushkova, Eugénie Martinez, Olivier Renault. HAXPES reference spectra of bulk MoS2 with Cr K_ α excitation. Surface Science Spectra, 2024, 31, pp.024018. 10.1116/6.0003120 . cea-04863576

HAL Id: cea-04863576 https://cea.hal.science/cea-04863576v1

Submitted on 3 Jan 2025 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0004033

accepted manuscript. However,

This is the author's peer reviewed,

HAXPES reference spectra of MoS₂ with Cr K_{α}

excitation

Alexandre Boyer¹, Nicolas Gauthier¹, Olivier Renault^{1a}

¹Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France

(Received day Month year; accepted day Month year; published day Month year)

Monochromatic Cr K_{α} radiation (5414.8 eV) was used to acquire high-energy photoelectron spectroscopy (HAXPES) data on pure bulk MoS₂. The reported spectra include a survey scan, high-resolution spectra of Mo 2*s*, Mo 2*p*, Mo 3*s*, Mo 3*p*, Mo 3*d*, Mo 4*s*, Mo 4*p*, S 1*s*, S 2*p*, and S 2*s* core-levels and X-ray excited Auger spectra. The data will be useful for HAXPES studies of Mo compounds.

Keywords: MoS₂, HAXPES, Cr K_{α}

INTRODUCTION

Recently developed laboratory based hard x-ray photoelectron spectrometers (HAXPES) allow to excite deeper core-levels, enabling different depth probing as a function of the studied core-level. In the case of MoS₂, Cr K_{α} radiation (5414.8 eV) allows to ionize all Mo and S core-levels of principal quantum numbers N=2, 3 and 4.

In this work, we report HAXPES spectra recorded on a pure, bulk MoS_2 sample. MoS_2 is widely used in mechanics and wear science, electronics and phototonics, as well as in chemistry and catalysis. In HAXPES this material has already been studied with Ag L_{α} X-rays (2984.2 eV) (Ref 1) and with synchrotron radiation hard X-rays (5.9 keV) (Ref 2) with a focus on the band alignment and the low energy core levels. The present data include a survey scan, high-resolution Mo 2s, Mo 2p, Mo 3s, Mo 3p, Mo 3d, Mo 4s, Mo 4p, S 1s, S 2p, and S 2s core-levels, and X-ray excited Auger spectra.

SPECIMEN DESCRIPTION (ACCESSION # 01987)

Specimen: MoS₂

CAS Registry #: 1317-33-5

Specimen Characteristics: homogeneous; solid; polycrystalline; semiconductor; inorganic compound; other

Chemical Name: Molybdenum disulfide

Source: HQ Graphene

Composition: MoS₂

Form: Polycrystalline solid

Structure: Hexagonal, layered structure

History & Significance: Air exposed thick MoS2 sample

As Received Condition: Bulk MoS₂ crystal

Analyzed Region: Same as specimen

Ex Situ **Preparation/Mounting:** The sample was mounted on the sample holder using double sided conductive tape.

Accession#: 01987

Technique: XPS, XAES

Specimen: MoS₂

Instrument: ULVAC-PHI Quantes

Major Elements in Spectra: Mo, S

Minor Elements in Spectra: O, Cl

Published Spectra: 12

Spectral Category: Reference

In Situ Preparation: None

Charge Control: Low-energy electrons (1 eV, filament 1.1 A) and low-energy Ar^+ ions (100 eV)

Temp. During Analysis: 300 K

Pressure During Analysis: < 2 x 10⁻⁷ Pa

Pre-analysis Beam Exposure: 0 s

INSTRUMENT DESCRIPTION

Manufacturer and Model: ULVAC-PHI Quantes

Analyzer Type: spherical sector

Detector: multichannel plate resistive

Number of Detector Elements: 32

INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA

■ Spectrometer

Analyzer Mode: constant pass energy

Throughput (T=E^N): The energy dependence can be modeled using the following equation: $\frac{A}{E_p} = (\frac{a^2}{a^2 + R^2})^b$, where a and b are constants, E_p is the pass energy, A is the peak area and R is the retard ratio equal to E/E_p, where E is the kinetic energy. Three spectral regions are recorded on a sputter cleaned sample (Cu, Ag, Au) at different pass energies. The values of a and b are then determined by a linear least square fit of the data applying the equation described above.

Excitation Source Window: Al

Excitation Source: Cr K_{α} monochromatic

Source Energy: 5414.8 eV

Source Strength: 45 W

Source Beam Size: $100 \times 100 \ \mu m^2$

Signal Mode: multichannel direct

■Geometry

Incident Angle: 22 °

the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0004033

accepted manuscript. However,

This is the author's peer reviewed,

Source-to-Analyzer Angle: 46 °

Emission Angle: 45

Specimen Azimuthal Angle: 0 °

Acceptance Angle from Analyzer Axis: 0 °

Analyzer Angular Acceptance Width: 20 ° x 20 °

∎lon Gun

Manufacturer and Model: ULVAC-PHI Quantes

Energy: 100 and 2000 eV

Current: 0.001 mA

Current Measurement Method: Faraday cup

Sputtering Species and Charge: $\mathrm{Ar}^{\scriptscriptstyle +}$

Spot Size (unrastered): 100 µm

Raster Size: 3000 x 3000 μm^2

Incident Angle: 45 °

Polar Angle: 45 °

Azimuthal Angle: 45 °

Comment: Differentially pumped ion gun used for presputtering of the sample and to prevent reoxidation during analysis.

DATA ANALYSIS METHOD

Energy Scale Correction: The decrease of photoionization cross-sections in HAXPES (Refs. 3 and 4) leads to a very low C 1*s* intensity. Therefore, the binding energy was referenced to the S 2*p* binding energy position measured with Al K_{α} radiation after shifting the C 1*s* peak to 284.8 eV. Doing so, the S 2*p* binding energy was 162.4 eV. The HAXPES spectra were then rescaled by shifting the S 2*p* to 162.4 eV. This correction sets the Mo 3*d*_{5/2} binding energy to 228.8 eV, in line with a previous study (Ref 5) and in the range of reported values by NIST (Ref 6).

Recommended Energy Scale Shift: -0.4 eV for binding energy

Peak Shape and Background Method: Shirley background was employed for peak area determination. No curve fitting was performed on the spectra. The Auger peaks were identified using previous work on H₂S and PHI Handbook (ref 7 and 8).

Quantitation Method: PHI Multipak software Version 9.9.0.8 was used to perform quantitation of bulk MoS2. An XPS quantification conducted on the same sample, considering Mo 3d and S 2p core-levels, gives a 1:1.97 Mo:S ratio. The determined HAXPES intensities were checked for repeatability by comparing, before and after acquisition, the intensity of the Ag 3d and Ag 2p3/2 line of a sputter-clean, bulk silver sample mounted on the same holder. In all cases the standard deviation in intensity was below 4%. Empirically determined sensitivity factors (RSFs) were provided by Multipak. The RSFs were derived from the pure-element relative sensitivity factor as defined in ISO 18118:2015 (Ref 9) which were measured on pure element samples using a Cr K source. They therefore account for the decrease of cross-section and different escape depths of photoelectrons using higher energy photons. RSFs are reported proportional to the RSF of F 1s equal to 1. Corrected RSFs including the spectrometer transmission function and asymmetry parameter of the considered core-line were used to calculate the concentrations. The area used for the quantification and reported in the Spectral Feature Table was measured over the entire energy

range of presented spectra. For instance, the S 1s area includes the small peak around 2480 eV. As shown in the Spectral Feature Table, the percentage of deviation relative to the nominal 1:2 Mo:S ratio depends on the considered core-levels and is up to -45%, with some combinations providing the expected figure. A more detailed HAXPES study is necessary to improve quantitation results of this material.

ACKNOWLEDGMENTS

This work was performed at the Platform For NanoCharacterization (PFNC) of CEA-Leti with support from the Recherche Technologique de Base (RTB) and "France 2030-ANR-22-PEEL-0014" programs of the French Research Agency (ANR). The authors acknowledge the support of the PHI-Leti TANDEMS collaboration program.

AUTHOR DECLARATIONS

Conflicts of Interest (required)

The authors have no conflict to disclose.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available within the article and its supplementary material.

REFERENCES

1. 4. Jonathan D. P. Counsell, Sarah J. Coultas, Nikki Gerrard; MoS₂ by XPS using monochromatic Ag L_{α} x rays. *Surf. Sci. Spectra* 1 December 2021; 28 (2): 024007. https://doi.org/10.1116/6.0001447

2. L. A. H. Jones, Z. Xing, J. E. N. Swallow, et al., "Band alignments, electronic struc-ture, and core-level spectra of bulk molybdenum dichalcogenides (mos2, mose2, and mote2)," The Journal of Physical Chemistry C, vol. 126, no. 49, pp. 21 022–21 033, 2022.

3. M.B. Trzhaskovskaya and V.G. Yarzhemsky, At. Data Nucl. Data Tables **119**, 99 (2018).

4. M.B. Trzhaskovskaya and V.G. Yarzhemsky, At. Data Nucl. Data Tables **129-130**, 101280 (2019).5. Cadot et al., Nanoscale, 2017, 9, 538–546

6. NIST X-ray Photoelectron Spectroscopy Database, ver 5.0, https://srdata.nist.gov/xps/

7. R. Püttner, D. Céolin, R. Guillemin, et al., Phys. Rev. A93, 042 501 (2016).

8. <u>Physical Electronics</u> Handbook of Auger Electron Spectroscopy: A Reference Book of Standard Data for Identification and Interpretation of Auger Electron Spectroscopy Data

9. International Organization for Standardization 2015, *Surface chemical analysis - Auger electron spectroscopy and X-ray photoelectron spectroscopy - Guide to the use of experimentally*

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0004033

determined relative sensitivity factors for the quantitative analysis of homogeneous materials, ISO 18118:2015.

Spectrum Element ID # Transi 01987-02 S 1 01987-03 S 2 01987-04 S 2 01987-05 Mo 2 01987-06 Mo 2	ienty Peal sition Energ (eV)	Pea	k Peak Are	a sensitivitv	Concentration	reak Assignme
01987-02 S 1 01987-03 S 2 01987-04 S 2 01987-05 Mo 2 01987-06 Mo 2	(eV)	v Widt	h (eV x cts	s) Factor	(at. %)	
01987-02 S 1 01987-03 S 2 01987-04 S 2 01987-05 Mo 2 01987-06 Mo 2	· · · ·	FWH	M (CTX CLC)		(uti 70)	
01987-02 \$ 1 01987-03 \$ 2 01987-04 \$ 2 01987-05 Mo 2 01987-06 Mo 2		(eV))			
01987-03 S 2 01987-04 S 2 01987-05 Mo 2 01987-06 Mo 2	1 <i>s</i> 2469.	8 1.33	89	82 6.068	63.7 (vs Mo 2p½)	MoS ₂
01987-04 S 2 01987-05 Mo 2 01987-06 Mo 2	2s 229.1	1.05	5 5	02 0.601		S
01987-05 Mo 2 01987-06 Mo 2	2 <i>p</i> 162.0) 1.89	3 3	88 0.252 ^b	50.3 (vs Mo 4 <i>p</i>)	S
01987-06 Mo 2	2s 2868.	0 4.10) 42	87 3.805		MoS ₂
	2p _{3/2} 2522.	3 2.19	9 102	95 9.584		Мо
01987-07 Mo 2	2p _{1/2} 2627.	0 2.2	48	95 4.969	36.3 (vs S 1 <i>s</i>)	Мо
01987-08 Mo 3	3s 506.6	7 6.22	2 11	45 0.971		Мо
01987-09 Mo 3	3p _{3/2} 395.0) 2.58	3 21	31 2.063		Мо
01987-09 Mo 3	3p _{1/2} 412.5	5 2.56	6 9	15 1.134		Мо
01987-03 Mo 3	3d _{3/2} 232.3	0 1.21	I 3	34 1.103		Мо
01987-03 Mo 3	3d _{5/2} 226.3	0 1.76	6 4	08 1.103		Мо
01987-10 Mo 4	4s 63.17	7 5.45	5 4	89 0.284		Мо
01987-11 Mo 4	4p 36.70) 3.60) 4	79 0.425 ^b	49.7 (vs S 2 <i>p</i>)	Мо
01987-12 ^a Mo Li	_ <i>MM</i> 2037.	2				
01987-12ª Mo Li	<i>_MM</i> 2142.	0				
01987-12ª Mo Li	<i>_MM</i> 1852.	7				
01987-12ª Mo L	_ <i>MM</i> 1874.	3				
01987-12ª S K	<ll 2044.<="" td=""><td>2</td><td></td><td></td><td></td><td></td></ll>	2				
01987-12ª S K	<i>(LL</i> 2115.	9				
		IA	NALYZER CALI	BRATION TABL	E	
Spectrum ID Ele	ement/ Pea	Al k Energy	NALYZER CALI Peak Width	BRATION TABL Peak Area	E Sensitivity Con	centration Peak
Spectrum ID Ele # Trar	ement/ Pea Insition	Al k Energy (eV)	NALYZER CALI Peak Width FWHM (eV)	BRATION TABL Peak Area (eV x cts/s)	E Sensitivity Con Factor	centration Peak (at. %) Assignm
Spectrum ID Ele # Trar Ag	ement/ Pea insition g 3 <i>d</i> 5/2	Al k Energy (eV) 368.12	NALYZER CALI Peak Width FWHM (eV) 0.63	BRATION TABL Peak Area (eV x cts/s) 114999	E Sensitivity Con Factor	centration Peak (at. %) Assignme
Spectrum ID Ele # Trar Ag Cu	ement/ Pea insition g 3 <i>d</i> _{5/2} ; u 2 <i>p</i> _{3/2} ;	Al k Energy (eV) 368.12 332.61	NALYZER CALI Peak Width FWHM (eV) 0.63 0.96	BRATION TABL Peak Area (eV x cts/s) 114999 40205	E Sensitivity Con Factor	centration Peak (at. %) Assignme

	ANALYZER CALIBRATION TABLE						
Spectrum ID	Element/	Peak Energy	Peak Width	Peak Area	Sensitivity	Concentration	Peak
#	Transition	(eV)	FWHM (eV)	(eV x cts/s)	Factor	(at. %)	Assignment
	Ag 3 <i>d</i> 5/2	368.12	0.63	114999			
	Cu 2 <i>p</i> _{3/2}	932.61	0.96	40205			
	Au 4 <i>f</i> _{7/2}	83.89	0.78	100500			

GUIDE TO FIGURES					
Spectrum ID #	Element/ Transition	Voltage Shift*	Multiplier	Baseline	Comment #
01987-01	Survey	0	1	0	
01987-02	S 1 <i>s</i>	+0.4	1	0	
01987-03	S 2s / Mo 3d	+0.4	1	0	
01987-04	S 2p	+0.4	1	0	
01987-05	Mo 2s	+0.4	1	0	
01987-06	Mo 2p _{3/2}	+0.4	1	0	
01987-07	Mo 2p _{1/2}	+0.4	1	0	
01987-08	Mo 3s	+0.4	1	0	
01987-09	Mo 3p	+0.4	1	0	
01987-10	Mo 4s	+0.4	1	0	
01987-11	Mo 4p	+0.4	1	0	
01987-12	Mo <i>KLL</i> , Mo <i>LMM</i> , S <i>KLL</i> , Mo <i>LMM</i>	0	1	0	

*Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0004033

