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Abstract: In this work, we present OSCAR (Outstanding Self-adjusting Cognitive Autonomous Robot), an agile robotic platform 
that can be reconfigured on the fly and is capable of adapting to variations in the environment. OSCAR incorporates advanced 
perception, planning and action functionalities, coupled with an intuitive task-programming interface, making it a valuable 
asset for cost-effective automation. Its performances are demonstrated on two use cases corresponding respectively to a 
fine manipulation task inspired by the Robothon® Grand Challenge and an industrial application related to the dismantling 
of electric vehicle batteries, where we illustrate the system's ability to automatically detect and locate screws of a cover, to 
unscrew them, change tool and finally remove the cover. 
 

1. Introduction 
The growing customization of products in response to 

the customer’s demand for personalized goods, alongside 
increasingly shorter product development and life cycles, as 
well as global crises, present manufacturing companies with 
the challenge of enhancing the agility and resilience of their 
production processes, without compromising productivity. 
Achieving agility and resilience in production primarily 
requires a high degree of flexibility and adaptability at all 
levels. To address this challenge, we observe the 
development of a new category of intelligent robotic systems, 
also known as autonomous industrial mobile manipulators, 
which integrate perception, planning, action, and adaptation 
capabilities required to perform various tasks in close 
proximity to operators. These robots can be considered strong 
candidates for assisting in the agile automation of manual 
tasks in industrial environments [1]. The Little Helper system 
[2], for instance, is a robot manipulator mounted on a non-
holonomic mobile platform designed for tasks such as 
navigation, pick-and-place, and quality control in semi-
structured industrial settings. This system employs a 
distributed software architecture with servers dedicated to 
each hardware subsystem, and it has been used for machine 
tending and interaction with visitors at trade fairs. An updated 
version of the Little Helper [3] incorporates an intuitive GUI 
and a screwing skill to assist workers in maintaining injection 
molds, though its capabilities are still limited for broader 
industrial applications. Recently, the OMNIVIL mobile 
manipulator [1] was deployed in a factory mock-up, 
performing tasks like transporting goods and preassembled 
parts between workstations. It features autonomous 
navigation, workspace monitoring, and adaptive 
manipulation using visual servoing, managed by a software 
architecture that differentiates between lower-level and 
higher-level tasks. Despite its ability to facilitate robot-
machine collaboration, it is constrained to simple 
manipulation tasks involving augmented reality markers. 
Another noteworthy example is BAZAR, a dual-arm mobile 
manipulator designed for the factory of the future [4], which 
integrates advanced sensing and actuation technologies to 
support efficient navigation, dual-arm manipulation, and 

human interaction. This system's modular design addresses 
the needs of the automotive and aeronautics industries but 
involves a complex, heterogeneous architecture that 
necessitated a bespoke standardization framework, 
complicating further development. 

An industrial sector that particularly emphasizes this 
need for agility is the disassembly of end-of-life products, 
especially the disassembly of Electric Vehicle Batteries 
(EVBs) for repair or recycling. EVBs automatic dismantling 
has been the subject of a growing interest these last years, 
evidenced by a rapidly increasing number of projects and 
publications [5-7]. The current state of the art primarily 
focuses on the validation of partial functions in laboratory 
settings with a still low Technology Readiness Level (TRL) 
as reported in the latest review from 2024 [7]. Among these 
functions, the unscrewing and removal of small fasteners are 
identified as the most feasible and relevant actions to 
automate, while more delicate manipulation tasks generally 
still require human intervention.  

In this work, we present OSCAR (Outstanding Self-
adjusting Cognitive Autonomous Robot), an agile robotic 
platform tailored to industrial settings that can be 
reconfigured on the fly and is capable of adapting to 
variations in the environment. Based on the software 
architecture described in [8], OSCAR incorporates advanced 
perception, planning and action functionalities, coupled with 
an intuitive task-programming interface, making it a valuable 
asset for cost-effective automation. The structure of our paper 
is as follows: we describe the hardware and software 
architecture of the platform in Section 2 and detail the 
different technological bricks in Section 3. Section 4 
illustrates the use of this system for two use cases dedicated 
to fine manipulation (UC1) and automatic unscrewing and 
EVB cover removing (UC2). 

2. OSCAR platform description 

2.1. Hardware architecture 

Featuring an UR10e robotic arm mounted on a 
MiR200 mobile base, the OSCAR platform combines 
mobility and precision for efficient handling of various parts 
in a large workplace (see Figure 1). For an increased 
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versatility, the platform is equipped with a tool changer 
comprising a range of essential items, such as: 
- a Hand-E gripper for grasping small objects,  
- a Robotiq 2F-140 gripper with enlarged jaws for grabbing 
larger objects (from 10 to 20 cm width), 
- an e-Pick vacuum gripper offering an effective solution for 
catching flat parts,  
- a screwdriver with a bit changer for unscrewing different 
types of screws and nuts, coupled with a recovery box for 
efficient management of spare parts.  

In addition to these end effectors, the system is 
equipped with force and visual sensors. Thanks to a Photoneo 
Phoxi M camera (not visible in the picture), mounted on a 
dedicated pole, fast and accurate 3D scanning of the whole 
surrounding scene can be performed while a wrist mounted 
Intel RealSense D435 RGB-D camera provides advanced 
visual perception for detecting and locating small objects. 

 

    
Figure 1: Display of the OSCAR platform equipped with a tool changer 
allowing the use of a screwdriver (left) or gripper (right). 

 
2.2. Software architecture 

The software architecture is based on the ROS2 
middleware. It ensures the communication between an 
intuitive programming interface, the components (computer 
vision and robot actions) and the task planning tools. The 
instantiation of the general software architecture is based on 
a Model-Based Software Engineering platform called 
Papyrus for Robotic [9]. The software system uses a modular, 
components-based and skills-oriented architecture. Its 
structure comprises robotic algorithms encapsulated in 
modules which range from simple software blocks to more 
complex components, they all interact via publish/subscribe 
and action/client mechanisms thanks to the robotic 
middleware. The functionalities provided by these algorithms, 
called skills, are exposed to higher-level software for task and 
mission specifications. The Task Plan Sequencer is a critical 
component at the core of our architecture (see Figure 2). It 
takes a high-level comprehensive plan produced by the user 
and orchestrates it by activating the required skills in the 
specified sequence (see Figure 3). 

Skills within our system are divided into two types: 
'atomic' and 'composite'. Atomic skills bind directly to the 
algorithmic modules while composite skills implement a 
sequence of lower-level skills, which can be composite and/or 
atomic as well.  

 

 
Figure 2: Simplified view of the components integrated in the software 
architecture. 

 

 
Figure 3: Behaviour tree (BT) of a trajectory-following skill. 

3. Main components  
In this section we present three of the technological 

bricks integrated in the software architecture as depicted in 
Figure 2, namely the user interface, the vision modules and 
the digital twin. 

3.1. Cognitive Programming Interface 

To allow for a fast adaptation to novel tasks, we have 
developed an intelligent task scripting tool also called 
Cognitive Programming Interface (CPI) [10], capable of 
reasoning about objects by taking into account their 
properties, affordances and afferences (ontologies and 
Semantic Web Rule Language). The tool proposes a list of 
available actions based on the objects and robots present in 
the workspace (scene), enabling the user to easily construct a 
sequence of actions to be carried out. The list of actions is 
updated after each selection, and management of the scene 
ontology guarantees the feasibility of the scenario. This 
reasoning layer is integrated into an intuitive graphical user 
interface (GUI), which relies on the digital twin of the scene. 

This scenario writing functionality (see Figure 4) 
exploits the semantic representation of the scene. When the 
user selects an object from the 3D view or the Scene tab (top), 
the GUI automatically provides the available skills associated 
with the selected object, allowing for easy scenario building. 
The Scenario tab (bottom) allows the user to view and edit 
the complete sequence. 
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Figure 4: Display of the GUI allowing the user to define the sequence of 
actions and ensuring the consistency of the final sequence. 

3.2. Visual Perception 

The Photoneo sensor provides a 3D point cloud of the 
scanned area (see Figure 5), which is used to compute the pose 
of objects whose CAD models are known, relative to a fixed 
reference frame. The 6D registration algorithm is a point cloud 
descriptor-based registration pipeline [11] with special 
emphasis on ambiguous and symmetrical industrial objects. 
This approach does not use deep learning and does not require 
a prior dataset or training. Pose hypotheses are selected in 
Hough space, refined using a point-to-point iterative closest 
point approach, and scored using the proximity between a 
render of the registered object and the observed scene point 
cloud. This whole process is GPU-accelerated and requires 
less than 0.5s to localize a given object in the point cloud with 
a submillimetric precision. 

 
Figure 5: Illustration of a Photoneo scan used to locate objects whose 
CAD models are known. 

Visual perception is also used in a dedicated skill for 
the detection and localization of small objects using a RGB-
D camera mounted on the robot arm and whose extrinsic and 
intrinsic parameters have been calibrated. This visual skill has 
been deployed in our case more specifically for screw 
detection, where we fine-tuned a YOLOv5 model [12], pre-
trained on the COCO dataset, to extract screw locations in an 
image. Triangulation is then performed using multiple 2D 

detections in frames acquired from different points of view. 
A database of 3D positions of screws together with their type 
(hex, torx, Philips, etc.) is maintained and shared with the 
digital twin for robot movement planning. 

 

 
Figure 6: YOLOv5 network consists of three parts: backbone part for 
feature extraction, neck part for feature fusion and output part for 
object detection [12]. 

3.3. Digital twin 

The Digital Twin uses Unity3D as graphics engine and 
XDE (eXtended Dynamics Engine [13]) as physics engine. 
XDE is computationally efficient in the physically realistic 
simulation of the dynamics of rigid multibody mechanical 
systems, such as robot arms, in interaction with their 
environment (e.g. gravity, contact, friction forces…). It 
allows computing the evolution of the system in interactive 
time, with access to a large range of data relative to the robots 
(velocities, torques, forces, and swept volumes). The models 
are imported from Solidworks with CAD plugins such as 
PiXYZ or CAD Exchanger, allowing to use them easily for 
graphical rendering as well as collision computation. The 
physical properties of the robots can be extracted from these 
CAD data, or from URDF (Unified Robot Description Format) 
files. XDE can also work with point clouds, allowing to 
update the world model at each step with the data provided 
by the 3D camera. 

Beyond allowing dynamical simulation of the 
behaviour of the robot using numerical models, our Digital 
Twin makes it possible to directly link the robot model with 
its real controller. This functionality is used to run 
concurrently the robot and its model for monitoring purposes. 
The path planning is computed through this Digital Twin, 
using a RRT (i.e. Rapidly-Exploring Random Tree) algorithm 
with collision avoidance in the simulator, based on the Open 
Motion Planning Library [14]. The computations are made in 
the joint space and XDE is used to compute the pose of the 
robot for each configuration proposed and detect potential 
interferences with its environment. 

4. Results  
In this Section, we illustrate the use of OSCAR on two 

use cases. In the first example (UC1), we show how the 
graphical interface is used to write a task sequence and how 
this sequence is carried out with the real robot. In a second 
industrial use case (UC2), we illustrate the system's ability to 
handle a complex disassembly task involving automatic 
detection and recognition of screws, unscrewing and 
removing a cover. 
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4.1. Application to a fine manipulation task (UC1) 

The robotic system was first deployed to address a 
use-case inspired from the Robothon® Grand Challenge, an 
international competition and benchmarking event for 
measuring state-of-the-art performance in robot manipulation 
on tasks representative of electronics waste management [15]. 
The challenge consisted in carrying out a series of robotic 
tasks on a board provided by the organisers [16]. After 
randomly positioning this board in the robot's workspace, the 
robotic system had to act autonomously to perform a set of 
six different tasks.  

In the 2022 edition of the challenge, that supported the 
development of our interface, the proposed tasks were: locate 
the board and press a button (T1), pick up a key on the task 
board and activate a keyswitch (T2), move an Ethernet plug 
from one port to another (T3), open a battery box, remove 2 
AA batteries and place them in dedicated holes (T4), remove 
a CR2032 battery from its receptacle (T5), press a red button 
on the board to stop the chronometer (T6). 

 

4.2. Implementation and results of UC1 

Unlike the traditional approach to the challenge, 
which involves performing actions as quickly as possible in a 
given order, we aim to provide the operator with a graphical 
interface that allows the definition of the sequence of actions. 
Once this sequence is defined, it is transmitted to the Task 
Plan Sequencer, which will then request the digital twin of 
the scene to determine the robotic trajectories needed to 
perform the various actions without collision. Since all tasks 
are physically linked to the board, an initial step of locating 
the board using the Photoneo sensor is sufficient to register 
the reference frame of the board in the digital twin. 

 
4.2.1. Sequence definition: Based on the scene ontology, 

the graphical interface displays all the objects with which the 
robot can interact, such as the key, the Ethernet cable, the 
batteries, and the buttons on the board. By clicking on these 
various objects, the user can see the possible actions (see 
Figure 7) and thereby select the appropriate one to create the 
sequence.  
 

  
Figure 7: Illustration of the GUI integrating the ontology to guide the 
user in the definition of the sequence and ensure its feasibility. 

The reasoning module integrated into the CPI ensures the 
coherence of the sequence defined by the user, which can be 
visualized in the simulation environment before being 
transferred to the orchestrator, for execution with the real 
robot (see Figure 8). 

  
Figure 8: Display of the sequence in the GUI (left) and extract of one 
part of the corresponding BT (right). 

4.2.2. Sequence realization: To compute the trajectories 
using the system's digital twin, it is first necessary to locate 
the various elements of the scene relative to the robot's 
reference frame. This localization step is systematically 
carried out at the start of the sequence using a scan from the 
Photoneo sensor, which has been previously calibrated with 
respect to the robotic end-effector through an eye-to-hand 
calibration procedure. In our case, only the base frame of the 
board is located, from which the positions of all interaction 
elements are inferred. Finally, the sequence is smoothly 
realized by the robot (see Figure 9). 

 

   
Figure 9: Illustration of the system performing the defined tasks: 
inserting the key (left), grasping the Ethernet cable (centre) and pushing 
the red button (right). 

4.3. Application to a disassembly task (UC2) 

As mentioned in the introduction, one emblematic 
use case we target is the repair or recycling of EVBs, where 
the versatility of the OSCAR platform allows it to cope with 
the diversity of products and disassembly operations. The 
strategy we consider is twofold. When the battery pack is still 
closed, the system automatically detects, recognizes, and 
locates the screws positioned on the cover. Then, it computes 
the robot's positioning relative to the pack and autonomously 
performs the unscrewing tasks under the supervision of an 
operator. After the cover is removed, the operator will be able 
to load a standard battery scene into the intuitive 
programming interface and load or create the disassembly 
sequence. 

In the current work, we focus only on the first part 
of the disassembly scenario and illustrate the behaviour of the 
robotic platform on a box with a screwed lid (see Figure 11, 
left). The results are presented for the following three steps: 

1) the detection and localization of screws, 
2) the unscrewing, and  
3) the lid removal. 
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4.4. Implementation and results of UC2 

In this section we present the dataset we have constituted to 
fine tune the YOLO architecture described in the 
methodology section, and the general strategy we consider to 
achieve the unscrewing and lid removal tasks. 
 
4.4.1. Visual detection: The custom dataset consists of 
178 images of hexagonal screws, which underwent several 
post-processing steps to enhance diversity. These steps 
include horizontal flipping, rotation, 5% zoom, and lighting 
adjustments of ±15%. As a result of these augmentations, the 
dataset was expanded to include 744 images for training, 71 
images for validation, and 35 images for testing (see Figure 
10). The fine-tuned YOLOv5 model achieved a precision of 
98.4% and recall of 99.3% on the validation set. 

 
Figure 10: Illustration of the labelled dataset used for train / test and 
validation of the YOLO neural network. 

4.4.2. Unscrewing task: For performing the unscrewing 
task, the robot begins by moving to a safe home position. 
Then, screws are detected via the embedded camera, 
calibrated in eye-in-hand configuration, and the trained 
YOLOv5 network (see Figure 11). 
 

  
Figure 11: Left: overview of the robotic system with the box. Right: 
automatic screw detection in the embedded camera frame. The type of 
screw is also detected (‘hexagonal’), allowing for the automatic selection 
of the corresponding bit for the screwdriver.  

Detected screw centre positions are projected in the base 
frame of the robot and saved in a database. The BT of the 
unscrewing sequence is given in Figure 12. For each detected 
screw, the “unscrew” and “deposit screw” skill sequences are 
executed. These are composite skills that are in turn defined 
through specific BT. In the unscrew skill (see Figure 13), the 
3D centre position of the screw is used to plan a Cartesian 
trajectory to place the screwdriver at a given offset above the 
screw. Force control along the z axis in the Cartesian space is 
then applied to engage with the screw head.    

 
Figure 12: Behaviour Tree for the global unscrewing task.  

 
Figure 13: Behaviour Tree for the composite unscrewing skill. For 
display purpose we do not show the last atomic skill (on the right of the 
BT), which is another MoveTo skill allowing to reach the disengage 
position after unscrewing the screw. 

To ensure the screw remains in the effector after unscrewing, 
we have integrated a magnet into the electric screwdriver. 
Consequently, it is necessary to remove the screw manually 
from the screwdriver before unscrewing a new screw. For this 
purpose, an actuated box has been made with a removable lid 
that clamps the screw and holds it when the tool is lifted, thus 
freeing it (see Figure 14). 

4.4.3. Lid removal task: When all the detected screws 
have been unscrewed and removed, the robot changes tool for 
the adequate gripper, to grasp the box lid. The centre of the 
lid, used to define the gripping area, is estimated based on the 
location of the four screws in the initial image of the box 
(Figure 11). Figure 14 presents two views of the robotic 
system performing the task autonomously. In the left view, 
the electric screwdriver integrated into the robot is shown 
with an interchangeable bit allowing adaptation to different 
categories of screws. A spring mechanism provides 
additional compliance to the force control strategy, allowing 
the compensation of localization inaccuracies resulting from 
visual perception. This compliance ensures the efficiency of 
the unscrewing process (100% success rate over 
approximately 20 trials), with the bit clipping onto the screw 
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when the tool is rotated. In the right view, the robot is shown 
after the unscrewing and tool-changing phase, removing the 
lid from the box to place it beside the box. 

  
Figure 14: View of the robotic setup during the unscrewing task (left) 
and removing the cover of the box (right). 

5. Conclusion 
The potential benefits of automating EVBs 

disassembly are manifold. Automation can significantly 
reduce the time and cost associated with battery maintenance 
and recycling, improving overall efficiency. Moreover, it can 
enhance workers’ safety by minimizing direct human 
interaction with potentially hazardous materials. However, 
the complexity of EVBs’ designs, with their varied 
architectures and fastener types, presents a substantial 
challenge for developing a universally adaptable robotic 
solution. Recent advancements in robotics, artificial 
intelligence, and sensor technologies offer promising avenues 
to address this type of tasks. In this work, we have presented 
OSCAR, a robotic platform dedicated to these challenges, 
which integrates different tools and sensors, a user-friendly 
interface as well as perception, simulation and planning 
capabilities. OSCAR has already been used to address two 
different use cases of fine manipulation and dismantling and 
will be deployed in the future in industrial environments to 
address real cases, such as EVBs disassembly. 
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