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Abstract—In this paper, we address the challenge of opti-
mizing task scheduling in cloud environments by systemati-
cally evaluating and comparing various methodologies, namely
heuristics, meta-heuristics, and deep reinforcement learning
(DeepRL). The context of our study is driven by the need
for efficient resource allocation and management in dynamic
and large-scale cloud systems to minimize servers’ power
consumption. We employ the framework of Hegelian dialectics
to dissect the strengths, weaknesses, and practical limitations
of each approach. Our experiments, conducted using Alibaba
Trace Data, provide empirical evidence that underscores the
effectiveness of different methods in specific cloud scenarios.
The key contributions of this study include a comprehensive
analysis of each methodology’s performance, findings regarding
their scalability, and new perspectives for optimizing both
energy consumption and maximum processing time while
scheduling tasks in a cloud system.

Index Terms—Task Scheduling, Cloud Computing, Heuris-
tics, Meta-Heuristics, Deep Reinforcement Learning

I. INTRODUCTION

The fourth industrial revolution, characterized by the
rapid advancement and integration of digital technologies,
has transformed industries and societies worldwide. In this
new era, the proliferation of digital activities has led to
an exponential increase in data generation and processing
needs, placing high demands on data centers. As a result,
the energy consumption of these facilities has become a
critical concern. The environmental impact associated with
the operation of data centers has surged, contributing signif-
icantly to global greenhouse gas emissions, by representing
between 2.5% and 3.7% of all worldwide greenhouse gas
emissions. This surpasses the emissions from commercial
flights (approximately 2.4%) and other essential activities
that power our global economy [1]. Addressing the critical
issue of enhancing the energy efficiency of data centers
and aligning with sustainability goals demands innovative
approaches. To do so, researchers have actively intervened

in cloud resource allocation using a variety of algorithms to
tackle these challenges.

Our study critically examines these methodologies by se-
lecting representative algorithms from each category: heuris-
tic, meta-heuristic, and deep reinforcement learning. We an-
alyze their strengths, weaknesses, and performance metrics.
Specifically, we evaluate their effectiveness in optimizing
energy consumption, minimizing task processing times, and
consider their execution time.

The structure of the paper is organized as follows: Section
II defines the problem and presents its mathematical formu-
lation. Section III reviews existing literature on heuristic,
meta-heuristic, and deep reinforcement learning approaches
for task-resource allocation in cloud environments. Section
IV outlines our dialectical methodology for investigating
these approaches, including algorithmic modeling. Subse-
quently, in section V we provide implementation details
and experimental results across various cloud environment
scenarios. Finally, we conclude with a summary of our
findings and suggest avenues for future research.

II. PRELIMINARIES

A. Problem statement

The task scheduling process in cloud systems is illustrated
in Fig. 1 and can be summarized in three steps:

1) Resource discovery, where a data broker acting as an
intermediary between users and the cloud infrastructure
identifies available resources and gathers information
on their capacity, processing cost, and current load;

2) Resource selection, where the scheduler chooses a
suitable resource based on task requirements, resource
characteristics and cloud objectives; and

3) Task submission, where the task is assigned to the
selected resource, which may be a Virtual Machine



(VM) or a physical machine, depending on the cloud
architecture used.

Fig. 1: Task scheduling framework in cloud.

In a concrete manner, when a user uses a cloud service and
submits a task, the cloud broker, which includes a scheduling
algorithm, will allocate cloud resources to tasks based on the
task requirements (CPU, Memory...) and resource availabil-
ity, following the logic and objective of the algorithm.

What makes this problem a complicated one, are the
constraints and expectations of both the service provider
and the user. Service providers want to minimize oper-
ational costs while maximizing resource utilization and
hopefully minimize energy consumption. On the other hand,
users expect reliable, timely, and cost-effective services that
meet their specific Quality of Service (QoS) requirements.
This situation clearly presents a multi-objective optimiza-
tion problem under multiple constraints, with a very large
combinatorial solution space, making the problem NP-hard.
Among the crucial issues in cloud computing, our focus will
be on energy consumption and makespan, which refers to the
maximum processing time of scheduled tasks. Therefore, we
must be able to achieve the near-optimal schedule in time
and energy usage by balancing the desired goals.

B. Problem Formulation

Formulating the problem, we assume that each task can
be allocated to any machine and must be scheduled on only
one machine. Additionally, we assume that all resources

are available at the beginning of the scheduling process.
Moreover, all tasks are considered independent.

Let T = {t1, t2, . . . , tn} represent a list of tasks that must
be executed and M = {m1,m2, . . . ,mk} represents a list of
machines , where each machine is capable of processing and
executing the task assigned to it. The machines are located
in cloud environments in different areas and have different
processing capabilities and different power consumption
rates. Thus, the process of task scheduling can be represented
by F : T →M .

The main objective is to build a task scheduler algorithm
that achieves low energy consumption while also minimizing
processing time. To address this multi-objective problem, we
have chosen to use weighting between the following two
objectives.

1) Energy Consumption (EC) The energy consumption EC
is defined as:

EC =
∑

i∈machines

energyi

where energyi is the energy consumed by machine i.
2) Makespan (MS) The makespan MS is defined as:

MS = max
i∈machines

processing timei

where processing timei is the processing time of tasks
on machine i.
The processing time of tasks on a machine is defined
as the sum of the processing times of different tasks
scheduled on that machine. Each task’s processing time
processing timeji is calculated as :

processing timeji =
∑
j

(end timeji − start timeji )

where j denotes the tasks assigned to machine i.

The objective function combining energy consumption and
makespan is:

ObjectiveFunction = α× EC + β ×MS (1)

where α and β are weights (between 0 and 1) that
balance the importance of minimizing energy consumption
and makespan, respectively.

III. RELATED WORK

Since the matching problem to find the choice of the best
pairs of tasks and resources is an NP-complete problem [2],
many approximate methods have been investigated in the
literature to address the task scheduling challenge. In the
section below, we will explore a few of these methods.



A. Heuristics

Heuristics are methods employed in complex problems
where exact methods cannot be used. They encompass
simple instructions or rules to guide algorithm decisions
more quickly without the need to exhaustively search every
possible solution. To solve resource allocation problems in
the cloud, various heuristics have been used [3, 4].

Syed et al. used the Min-Min heuristic [5] to select the
task with the shortest execution time and assign it to the
available resource with the shortest processing time. More-
over, authors in [6] proposed a Max-Min heuristic-based
algorithm for task scheduling in the heterogeneous grid
computing environment with the objective of minimizing
makespan. Other works have used the Suffrage heuristic,
which assigns a host to the task that would ”suffer” the most
if not assigned to that host [7]. For each task, its suffrage
value is defined as the difference between its best Mean
processing Time (MPT) and its second-best MPT. Tasks with
high suffrage values take precedence. Among the most often
cited, we also find the Heterogeneous Earliest Finish Time
(HEFT) heuristic [8]. Additionally, other heuristics, such as
Shortest Job First (SJF) [9], First Come First Serve (FCFS)
[10], Tetris [11] have been widely used in the literature.
Fewer works have concentrated on energy efficiency in the
cloud using heuristics. For example, authors in [12] adopted
the Modified Best Fit Decreasing (MBFD) heuristic for the
Virtual Machines (VM) placement problem. The logic is to
allocate each VM to a host that provides the least increase
in power consumption due to this allocation.

Even though heuristics are usually adapted for one single
objective, [2] designed a heuristic to minimize both energy
consumption and task utility. While these methods can
be extended to multi-objective scenarios, doing so often
introduces additional complexity that these heuristics are
designed to avoid.

B. Meta-heuristics

Meta-heuristic algorithms have gained significant popu-
larity in task scheduling and multi-objective dynamic op-
timization due to their ability to efficiently explore search
spaces and find solutions that are sub-optimal or near-
optimal within reasonable time limits. In the context of cloud
scheduling, researchers commonly utilize particle swarm
optimization, a bio-inspired algorithm, to schedule tasks on
servers while optimizing various cloud objectives [13].

Drawing inspiration from the intelligent behavior of honey
bees, Jain et al. [14] employed an artificial bee colony
(ABC)-based energy-aware resource allocation algorithm to
assign jobs to resources in cloud environments. Genetic
Algorithms (GA) [15], based on Darwin’s natural selection
theory, also play a significant role among promising meta-
heuristics. To tackle the multi-objective nature of resource

allocation problems in the cloud, the literature often employs
NSGA-II, a modified genetic algorithm known for its effi-
cient non-dominated sorting algorithm, which has become
a standard approach [16]. Hybrid algorithms combining the
advantages of multiple meta-heuristics have also been used
to schedule tasks in cloud and fog environments [17].

C. Machine learning based methods

In light of these challenges, there has been a growing
interest in applying machine learning techniques, particularly
deep reinforcement learning, to task scheduling problems in
cloud computing.

While some studies employ deep learning techniques [18],
most research focuses on reinforcement learning to optimize
various cloud objectives. Li and Hu introduced DeepJS
[11], a policy gradient deep reinforcement learning method
designed to schedule jobs while minimizing the makespan.

Focusing on energy efficiency, Liu et al. [19] proposed a
novel deep reinforcement learning hierarchical framework to
address overall resource allocation and power management
in cloud computing systems. Recently, Sudhee et al. [20]
employed a Deep Q-learning network model to optimize
resource allocation by considering task priorities, aiming to
minimize makespan, Service-level agreement (SLA) viola-
tions and energy consumption.

D. Comparative Analysis of Task Scheduling Methods

As we mentioned, the problem of cloud task scheduling
has seen extensive research, with a significant focus on
heuristics and meta-heuristics. Traditional heuristic methods
are known for their simplicity and efficiency in certain sce-
narios. Meta-heuristics have been employed to address more
complex scheduling problems, offering better optimization at
the cost of increased computational effort. With the advent
of deep learning, Deep Reinforcement Learning has emerged
as a promising approach for task scheduling.

Several studies have compared these different methods,
analyzing their performance and applicability in various
contexts [21, 22]. However, to the best of our knowledge, our
experiments are unique in comparing algorithms from three
different categories of methods using data from the Alibaba
Trace Data. This approach contrasts with many studies that
overlook certain methods or rely solely on synthetic data,
which may not accurately reflect real-world conditions.

Furthermore, our research distinguishes itself through a
structured methodology for investigating, evaluating, and
comparing task scheduling techniques.

IV. METHODOLOGY

A. Dialectical Framework

To investigate the most effective task scheduling meth-
ods in cloud computing, we employ a dialectical approach



inspired by Hegelian philosophy [23]. This philosophy, as
outlined in Hegel’s works such as The Phenomenology of
Spirit and Science of Logic, posits that the development
of ideas follows a dialectical process, where each idea
(thesis) inevitably generates its opposite (antithesis), and
the conflict between these ideas is resolved by a higher-
level synthesis. By extending this concept into scientific
research methodology, we begin with a thesis, then present
its antithesis, highlighting the various limitations of the
initial thesis. Through this tension, we synthesize the two,
proposing a more refined method. This synthesis may be
either a combination of the thesis and antithesis or an entirely
new idea, enriched and fortified by the dialectical process.
As Hegel suggests, this is a temporal and iterative process,
continually evolving until we approach the ”truth”. Here, we
define truth as a new method yielding superior results.

In a pedagogical methodology, and in order to study and
enlighten the various strengths and weaknesses of each type
of method used in the literature for resource allocation in
the cloud, we have chosen to follow the Hegelian dialectical
approach. We proceed as follows:

1) Thesis: We begin with a particular method for task
scheduling, assuming initially that it is the most ef-
fective solution. For instance, we start with a heuristic-
based scheduling method widely cited in the literature
for its efficiency.

2) Antithesis: Next, we study this method by identifying
and highlighting its limitations and scenarios where
it falls short. This is done by testing the method
under various conditions and workloads to observe its
performance issues.

3) Synthesis: Based on the insights gained from the an-
tithesis, we propose a new method from literature. This
new method is a synthesis that aims to overcome the
identified limitations.

4) Iterative Process: The synthesis itself becomes the new
thesis, and the process is repeated. We put this new
method to the test, identifying new limitations and
proposing further refinements. This iterative approach
continues, with each cycle bringing us closer to a more
robust and effective task scheduling method.

B. Selected scheduling methods

To conduct a rigorous analysis, we selected a representa-
tive algorithm from each category of methods used in cloud
task scheduling literature. In this section, we discuss the
choice of the selected methods and the modeling employed
for implementation.

1) Heuristics: We select three different heuristics with
varying levels of sophistication. The simplest among them
is Tetris implemented in [11]. Tetris translates task require-
ments and available machine resources into Euclidean space,

then chooses the ⟨task,machine⟩ pair with the maximum dot
product. Only tasks with requirements that can be met are
considered.

To prioritize our primary objective of minimizing power
consumption, we adopt the logic of the Modified Best
Fit Decreasing (MBFD) heuristic proposed in [12]. This
heuristic prioritizes tasks based on their CPU consumption
and assigns them to machines that have the lowest energy
consumption.

Adding another layer of complexity, we design a heuristic
to address our multi-objective problem using a weighted
strategy. Algorithm 1 outlines the approach.

2) Meta-heuristics: As a prominent meta-heuristic
method, we opt for the Genetic Algorithm (GA), specifically
the NSGA-II version, due to its robust exploration capability
of the solution space, which is well-documented in the
literature [24].

• Encoding: In the genetic algorithm, an individual repre-
sents a potential solution, i.e., an assignment of tasks to
machines. The chromosome of an individual is a matrix
of one-hot encoded vectors with shape (n, k), where n
is the number of tasks and k is the number of machines.
Each row corresponds to a task, and the column with a
’1’ indicates the machine to which the task is assigned.
Table I provides an example of a solution represented
as a one-hot encoded matrix.

TABLE I: Example of One Chromosome (GA Solution) with
3 Tasks and 4 Machines

Task M1 M2 M3 M4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0

• Fitness Function: The fitness function assesses the
quality of each individual solution based on two main
criteria: power consumption and maximum processing
time. We follow the approach outlined by [14] to
estimate both values, as illustrated in Algorithm 2.

• Crossover and Mutation: Crossover combines the chro-
mosomes of two parents to create offspring. For each
gene (task assignment), a random probability deter-
mines whether the gene is inherited from the first
parent, the second parent, or randomly reinitialized.
Mutation introduces diversity by randomly altering
some genes in the offspring.

• Non-dominated Sorting: NSGA-II employs non-
dominated sorting to classify individuals into different
fronts based on their Pareto dominance relationship.
Pareto dominance ensures that one solution is not worse
than another across multiple objectives without being
worse in any. Specifically: a solution A dominates



Algorithm 1 Weighted Multi-Objective Heuristic (WMOH)

1: Input: Cluster of machines C, Current time t
2: Output: Selected machine m and task T allocation
3: repeat
4: Initialization:
5: Mactive ← List of active machines in cluster C
6: Tpending ← List of pending tasks in cluster C
7: if Tpending is empty then
8: Wait for one timestamp
9: Continue to the next iteration

10: end if
11: mselected ← None
12: minScore← Large number
13: found← False
14: for each task T in Tpending do
15: for each machine m in Mactive do
16: if m can accommodate T then
17: Calculate Expected processing Time of task T

on machine m
18: Calculate power consumption of machine m
19: Calculate weighted fitness score:

S = α× power consumption + β× Expected
processing Time

20: if S < minScore then
21: mselected ← m
22: minScore← S
23: found← True
24: end if
25: end if
26: end for
27: if found then
28: return m, T
29: end if
30: end for
31: if mselected is None then
32: Wait for one timestamp
33: Continue to the next iteration
34: end if
35: until All tasks are finished and the broker no longer

submits tasks

solution B if A is at least as good as B in all objectives
and strictly better in at least one objective.

• Crowding Distance: After non-dominated sorting,
NSGA-II calculates the crowding distance for individ-
uals within each front. Crowding distance measures
the density of solutions around each individual in the
objective space ; The space defined by the objectives
(e.g., power consumption and makespan) where each
solution is represented as a point.

• Restart & Stop Condition: The algorithm continues for

Algorithm 2 Calculate Fitness Function

1: Initialize Ptotal = 0 and Makespan = 0
2: for each machine mj in the solution do
3: Compute total resource utilization:

CPUtotal(mj) =
∑

ti∈Tj
CPU(ti);

Memorytotal(mj) =
∑

ti∈Tj
Mem(ti)

4: Calculate utilization ratios:
CPUratio(mj) =

CPUtotal(mj)
CPUcap(mj)

Memoryratio(mj) =
Memorytotal(mj)

Memcap(mj)

5: Calculate power consumption P (mj):
P (mj) = CPUratio(mj)×Memoryratio(mj)

6: Normalize power consumption:
P (mj)norm =

P (mj)−P (mj)min
P (mj)max−P (mj)min

7: Add normalized power consumption to Ptotal:
Ptotal = Ptotal + P (mj)norm

8: Calculate processing time :

processing time =

∑
ti∈Tj

length(ti)

Processing Capacity(mj)

9: Update Makespan if processing time is greater
10: end for
11: Calculate fitness F :
12: F = (α× Ptotal, β ×Makespan)
13: return F

a maximum number of generations after which the best
individual based on Pareto dominance is retrieved as
the optimal solution.

3) Deep Reinforcement Learning: As Deep Reinforce-
ment Learning algorithm, we chooses for our work to design
an Actor-Critic architecture. The Actor-Critic method has
demonstrated proven performance in solving a variety of
complex problems, including task scheduling [25], which
makes it an ideal choice for our study. It combines the
advantages of both policy-based and value-based methods
in reinforcement learning.

• State Representation: The state is represented by the
current status of both machines and tasks in the system.
For each machine, we consider the track available
CPU and memory. Task features include required CPU,
memory and duration.

• Action Space: The action space consists of all valid
task-machine pairs where a task can be scheduled on a
machine without exceeding its resource capacities.

• Reward Function: The reward function is designed to
ensure efficient utilization of resources reducing energy
and makespan of allocating resources to tasks.

• Model Architecture: We use an actor-critic architecture,
where:
- The Actor (Policy Network) is a neural network
which takes the current state representation as input and
outputs logits, which are converted into a probability



distribution over actions (task-machine pairs) using the
softmax function.
- The Critic (Value Network) is responsible of calculat-
ing advantages (Ât) which estimate the value of taking
a specific action compared to the average action taken
under the current policy.

Ât = Qt − V (st)

where Qt is the estimated return and V (st) is the state-
value function.

• Training the Agent: The agent incrementally learns
by collecting trajectories, estimating advantages, and
updating its Actor and Critic networks for each batch
of observations.

• Inference: Each time, given a batch of pending tasks
and available machines, we use the trained agent to
select the best machine-task mapping decisions. We
continue this process until all tasks are finished and
the broker is no longer submitting tasks.

V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation details

The algorithms used in this work were tested and put
into place using the CloudSimPy simulator developed by Li
and Hu [11] with Python. To generate workloads, we rely
on real task allocation traces from the cloud precisely from
Alibaba cluster trace data [26]. As for machines, we use
heterogeneous servers with real characteristics sourced from
the Standard Performance Evaluation Corporation dataset
[27].

Regarding the tests conducted with the genetic algorithm,
we set the parameters as follows: a maximum number
of generations equal to 10, a population size of 50, a
crossover probability of 0.7, and a mutation probability of
0.1. Following the training strategy outlined in [11], we train
our DeepRL agent with 15 iterations and 12 episodes per
batch. The learning rate is set to 1e-3, and the discount
factor is 0.9. In our studies, we used a weighting strategy
for the objective function to balance energy consumption
and makespan. We chose α = 0.7 and β = 0.3 to give
higher priority to reducing energy consumption while still
considering makespan.

B. Evaluation Metrics

• Energy consumption (Wh): We calculate energy con-
sumption by summing the usage of each machine in
the simulation environment after the execution of a
batch of jobs. The energy consumption of a single
machine is determined based on its CPU utilization
over time. To accomplish this, we use real energy mod-
els sourced from [27]. These models provide detailed

power measurements of various machines, quantifying
them according to the CPU load.

• Makespan (s) : Maximum processing time across ma-
chines or resources.

• Execution Time (s) : The time needed by each algorithm
to return its decisions.

C. Experiments

Given the substantial body of literature employing heuris-
tics for task scheduling in cloud environments, we start
with the thesis that heuristic methods, such as the one we
selected, are optimally suited for our problem. By ”optimally
suited” , we mean that these methods demonstrate superior
performance in accommodating the dynamic nature of cloud
environments, including variations in the number and char-
acteristics of tasks submitted, as well as the number and
specifications of machines available.

Initial Thesis: Heuristics for Task Scheduling

To critically evaluate heuristics, we implement several
scenarios designed to test their effectiveness and highlight
their limitations. We begin our investigation with a first
setup including five different lightweight workloads, all
characterized by a relatively small number (50) of sub-
mitted tasks. Fig. 2 compares energy consumption across
different scheduling methods, highlighting the efficiency
of each algorithm in terms of power usage. We observe
here that all algorithms show stable energy consumption
across workloads. Fig. 3 shows that makespans increase with
workload for all algorithms, with heuristic algorithms, par-
ticularly the Weighted Multi-Objective Heuristic (WMOH),
consistently exhibiting lower makespans, indicating faster
task processing times. Additionally, heuristics consistently
exhibit lower execution times due to their low algorithmic
complexity. These experimental results reinforce the initial
hypothesis that heuristics are not only comparable in perfor-
mance to more advanced algorithms but also offer significant
advantages in execution time and energy efficiency. These
characteristics make heuristics suitable for task scheduling
in a cloud environment, especially in scenarios with small
workloads.

Antithesis: Identifying Limitations of Heuristics

The limitations of heuristic methods become evident in
more complex cloud environments. Fig. 4 and Fig. 5 illus-
trate the energy consumption and makespan performances
of different selected methods in a second setup with sce-
narios with higher task density. Specifically, we generated
5 different workloads, each consisting of 1500 tasks with
varying CPU and memory requirements, as well as differing
lengths. The results clearly demonstrate that heuristic ap-
proaches often lead to sub-optimal performance, particularly
in terms of energy consumption. This second setup reveal



Fig. 2: Energy Consumption Comparison for Selected
Scheduling Methods Applied to Initial Setup Workloads.

Fig. 3: Makespan Comparison for Selected Scheduling
Methods Applied to Initial Setup Workloads.

Fig. 4: Energy Consumption Comparison for Selected
Scheduling Methods Applied to Second Setup Workloads.

Fig. 5: Makespan Comparison for Selected Scheduling
Methods Applied to Second Setup Workloads.

the shortcomings of heuristic methods, indicating that they
may not be the optimal solution for complex cloud envi-
ronments or particularly challenging scenarios. Therefore, it
is worthwhile to explore alternative methods, such as meta-
heuristics, which are well-regarded in the literature for their
ability to efficiently explore search spaces and find sub- or
near-optimal solutions for NP-complete problems.

Synthesis: Proposing Meta-Heuristics as an Alternative

To address these limitations, we investigate the Genetic
Algorithm (GA), specifically using the NSGA-II version.
We generated three more complex scenarios and observed
the performance of different algorithms in terms of energy
consumption, makespan and execution time.

a) First Scenario: In the first scenario, the objective
is to evaluate the algorithm’s performance in a resource-
constrained environment with tasks of varying computational
needs, simulating a real-world cloud setting with limited
resources. To achieve this, we generated five different work-
loads, each consisting of a fixed load of 500 tasks distributed
across 10 machines. The tasks exhibit high variability in
CPU and memory requirements as well as differing lengths.
We then analyze the mean values of energy consumption,

makespan, and execution time for each algorithm across
these five workloads to assess their performance compre-
hensively.

b) Second Scenario: In the second scenario, the ob-
jective is to test the algorithm’s ability to efficiently allo-
cate a very high volume of tasks across a relatively small
number of machines, reflecting the challenges of balancing
task distribution and resource utilization in such conditions.
Specifically, we evaluated the algorithm’s performance with
1,000 tasks distributed across 10 machines.

c) Third Scenario: In the third scenario, the objective
is to examine the algorithm’s capability to manage a high-
density task load across a larger number of machines.
Specifically, we distributed 1,000 tasks among 50 machines,
with tasks varying widely in their requirements and duration.
This scenario tests the limits of the algorithm’s scalability
and efficiency under heavy load conditions, evaluating how
well it performs when both the task volume and the resource
pool are substantial.

Tables II and III show the average energy consumption
and makespan for different algorithms across the three sce-
narios, respectively. From the obtained results, we observe



that the Genetic Algorithm (GA) performs competitively in
terms of energy consumption and makespan, often showing
slightly better or similar performance compared to other
algorithms (MBFD, WMOH, Tetris, and DeepRL).

TABLE II: Average Energy Consumption of Selected Algo-
rithms Across Generated Scenarios

Scenarios Average Energy Consumption (Wh)
GA MBFD WMOH Tetris DeepRL

1 193.26 195.19 196.27 198.15 193.59
2 352.12 357.13 357.24 357.05 355.01
3 1757.55 1798.24 1807.88 1799.83 1801.95

TABLE III: Average Makespan of Selected Algorithms
Across Generated Scenarios

Scenarios Average Makespan (s)
GA MBFD WMOH Tetris DeepRL

1 12.02 12.05 12.05 12.07 12.00
2 25.10 25.12 25.00 25.11 25.03
3 23.25 23.31 23.20 23.23 23.06

Perhaps this leads us to determine that GA is the best so-
lution for achieving a balance between energy consumption
and makespan.

Antithesis 2: Limitations of Meta-Heuristics

When visualising results from table IV, we can see that
for Scenario 1, GA has an execution time of 3.78 seconds,
significantly higher than the other algorithms. As scenarios
become more complex, this disparity increases. In Scenario
2, GA’s execution time rises sharply, while the other algo-
rithms experience only minor increases. By Scenario 3, GA’s
execution time grows even more dramatically, highlighting
its impracticality for complex scenarios. In contrast, other
algorithms remain relatively efficient. Note that for DeepRL,
the execution time reflects inference time rather than training
time.

TABLE IV: Average Execution Time of Selected Algorithms
Across Generated Scenarios

Scenarios
Average Execution Time (s)

GA MBFD WMOH Tetris DeepRL
1 3.78 0.006 0.023 0.011 0.065
2 23.54 0.012 0.029 0.027 0.16
3 71.40 0.05 0.13 0.12 0.5

We can conclude from these results that GA becomes
increasingly computationally expensive as the solution space
expands, making it impractical for time-sensitive environ-
ments such as cloud systems.

Synthesis 2: Deep Reinforcement Learning (DeepRL)

Having a more reasonable execution time compared to
the genetic algorithm and very encouraging performance
in multiple problems, including ours, we might consider
that deep reinforcement learning can be the best solution
in this context. To investigate this, we fix the number of
machines and generate diverse workloads, varying this time
the number of tasks, their CPU consumption, and their
lengths. This procedure is applied to heterogeneous machine
configurations, ranging from 5 to 30 machines.

Our analysis reveals a significant disparity in execution
times (see Table V) between Genetic Algorithms (GA) ,
Heuristics and Deep Reinforcement Learning (DeepRL). For
example, with 5 machines, the GA takes 6.11 seconds to
execute, whereas DeepRL completes the same task in just
0.07 seconds. As the number of machines increases, this
disparity grows even more pronounced. With 30 machines,
the GA’s execution time balloons to 18.91 seconds, while
DeepRL’s time increases to only 0.28 seconds. This trend
underscores that, deep RL maintains relatively stable exe-
cution times even with more machines comparatively to the
genetic algorithm.

TABLE V: Average Execution Time for Selected Algorithms
Across Various Setups

No. Machines Average Execution Time (s)
DeepRL GA WMOH Tetris MBFD

5 0.07 6.11 0.02 0.01 0.01
10 0.12 8.82 0.04 0.03 0.01
15 0.15 11.44 0.07 0.04 0.02
20 0.19 13.96 0.06 0.05 0.02
25 0.24 16.57 0.08 0.06 0.04
30 0.28 18.91 0.09 0.08 0.03

The results in Tables VI and VII reveal that DeepRL
consistently delivers stable and balanced performance across
various machine configurations; In terms of energy con-
sumption, DeepRL is competitive across different setups.
For example, while the energy consumption varies slightly
with the number of machines, DeepRL generally shows
efficiency similar to or slightly better than other algorithms,
such as GA and Tetris. Similarly, in terms of makespan,
DeepRL maintains a slight edge over other algorithms. The
differences in makespan, while modest, suggest that DeepRL
is capable of reducing processing time more effectively
across a range of machine configurations.

This suggests that DeepRL offers a good trade-off be-
tween energy consumption, makespan, and execution time.
Its performance is stable and reliable, making it a practical
choice for environments with varying demands.



TABLE VI: Average Energy Consumption for Selected Al-
gorithms Across Various Setups

No. Machines Average Energy Consumption (Wh)
DeepRL GA WMOH Tetris MBFD

5 137.89 142.49 143.74 129.77 146.37
10 246.65 225.17 244.86 244.72 243.66
15 327.76 342.14 342.44 364.55 359.32
20 421.26 439.44 447.44 456.40 439.38
25 533.95 526.75 535.66 548.02 547.45
30 635.70 635.41 653.99 657.39 645.62

TABLE VII: Average Makespan for Selected Algorithms
Across Various Setups

No. Machines Average Makespan (Slowdown)
DeepRL GA WMOH Tetris MBFD

5 21.94 22.33 22.59 23.74 23.53
10 22.66 23.40 24.23 24.50 24.63
15 22.55 24.06 23.58 25.23 24.79
20 22.72 23.83 23.04 25.16 24.86
25 22.97 23.72 23.10 24.96 25.27
30 23.03 24.71 22.76 24.46 25.21

Antithesis 3: Limitations of DeepRL

Nevertheless, DeepRL faces several notable limitations.
First, the training process for DeepRL is both time-
consuming and computationally intensive. This extensive
training requirement leads to high energy consumption.
Secondly, DeepRL can encounter significant transferabil-
ity issues. When the characteristics of a workload differ
substantially from those used during training, the model’s
performance may degrade. This poses a particular challenge
in dynamic or evolving environments where workload char-
acteristics can change frequently. Without adequate train-
ing on diverse and representative workloads, DeepRL may
produce sub-optimal results. Conversely, excessive training
to cover a wider range of scenarios can, as we mentioned,
exacerbate the problem of high energy consumption, as the
computational demand and associated energy usage increase.

Thirdly, DeepRL models often suffer from a lack of
interpretability. The complexity of these models can make it
challenging to understand their decision-making processes.
This lack of transparency is particularly problematic in a
cloud system because it hinders users from trusting the
model’s decisions and makes it difficult to diagnose and
address issues when the model’s performance is subpar.

Final Synthesis

The dialectical process we undertook systematically led us
through a series of insights regarding different algorithmic
approaches in cloud computing task scheduling. Initially,
our investigation revealed that heuristics, while effective
for certain tasks with limited complexity, struggle when
confronted with large-scale resource allocation problems

involving numerous tasks. Transitioning to meta-heuristics,
such as genetic algorithms, we found that while they offer
promising performance improvements over heuristics, they
introduce new challenges. Meta-heuristics often require ex-
tensive computational resources and time to converge on
optimal solutions, which can be impractical in environ-
ments demanding rapid decision-making and responsiveness.
Similarly, deep RL, known for its ability to learn com-
plex decision-making policies, raises concerns about the
interpretability and transferability of learned models across
different operational contexts. Considering these result, it
becomes clear that no single algorithmic approach emerges
as universally superior in all cloud computing scenarios.
Instead, the effectiveness of each method depends heavily
on the specific characteristics of the workload, the dynamics
of the cloud environment, and the performance metrics pri-
oritized (such as energy efficiency, makespan and execution
time).

VI. CONCLUSION AND FUTURE WORKS

Our investigation into the Hegelian dialectical frame-
work for evaluating green cloud task scheduling techniques
has highlighted the complexity and contextuality of opti-
mizing such systems. The research shows that no single
method—heuristic, meta-heuristic, or deep reinforcement
learning is always ideal to optimize resource allocation
in the cloud. Each approach has distinct advantages and
limitations dependent on specific workload characteristics,
cloud environment dynamics, and prioritized performance
metrics such as energy efficiency, makespan, and execution
time.

To address this multifaceted challenge, future work should
focus on developing adaptive hybrid models that leverage the
strengths of each method while mitigating their weaknesses.
One promising direction is the creation of an intelligent
algorithm selector that dynamically chooses the most suit-
able scheduling strategy based on real-time analysis of task
and resource conditions. This selector would function by
continuously monitoring cloud resources and task metrics
to gather data on CPU usage, memory consumption, task
arrival rates, and execution times. It would process this data
to extract relevant features that inform the decision-making
process, such as average task duration, peak load times,
and energy consumption patterns. The prediction model
would analyze historical and real-time data to predict which
scheduling approach will yield the best results under the
given conditions. The selector would dynamically choose
and deploy the optimal scheduling algorithm, continuously
learning and updating its decision-making criteria to improve
over time. Integrating a feedback mechanism to evaluate
the performance of the chosen algorithm and refine the



prediction model could be useful for ensuring continuous
improvement and adaptability to changing conditions.

In the end, our dialectical analysis not only gave us
a clear picture of current methods but also opened up
new possibilities for innovative solutions in green cloud
computing task scheduling. This helps us move towards both
greater technical efficiency and ecological sustainability.
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