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Abstract

Finite element computations offer ways to study the behavior of ultrasonic
waves in polycrystals. In particular, the simulation of plane waves propaga-
tion through small representative elementary volumes of a microstructure al-
lows estimating velocities and scattering-induced attenuation for an effective
homogenenous material. Existing works on this topic have focused mainly
on longitudinal waves. The approach presented here relies on generating pe-
riodic samples of microstructures in order to accommodate both longitudinal
and shear waves. After some discussion on the parametrization of the sim-
ulations and the numerical errors, results are shown for several materials.
These results are compared to an established theoretical attenuation model
that has been adapted to use a fully analytical expression of the two-point
correlation function for the polycrystals of interest, and to use velocities cor-
responding to different reference media. Promising comparisons are obtained
for both longitudinal and shear waves when using more representative media,
obtained through Hill averaging or a self-consistent approach. This illustrates
how the numerical method can assist in developing and validating analytical
models for elastic wave propagation in heterogeneous media.
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1. Introduction

Ultrasonic waves that propagate through metals undergo attenuation,
which is determined by the properties of both the wave and the metal. In
certain ultrasonic inspection scenarios, attenuation poses a limitation. In
others, it serves as a valuable tool for characterizing material properties. In
both cases there is a keen interest in developing models for the purpose of
understanding and predicting attenuation. Scattering due to the differences
in elastic properties between grains has been identified as the primary cause
of ultrasonic attenuation [1, 2] in metals. These differences are caused by
the heterogeneity of orientations of anisotropic grains, and also to hetero-
geneity of phase in the case of multiphase metals. Many analytical models
have been developed over several decades in order to predict attenuation
[1, 2, 3, 4, 5, 6]. Due to the complexity of scattering mechanisms, these ap-
proaches rely on physical approximations. Experimental comparisons have
been performed to validate these models [7, 8]. However, these comparisons
suffer from significant uncertainty because the models depend on parameters
that can be difficult to quantify experimentally, such as single crystal elastic
constants and distributions of grain sizes and orientations. Advancements
in computational performances have progressively made it possible to apply
Finite Element Methods (FEM) to this problem, first in two and then in
three dimensions [9, 10, 11]. FEM simulations allow for model validations
with perfectly controlled microstructures. In cases where the approximate
models prove inaccurate, FEM results can also be used to introduce cor-
rections [12]. FEM-based characterization has largely been applied to lon-
gitudinal waves in studies by various authors [9, 11, 13, 14, 15]. Rayleigh
waves have also been considered [16]. The focus of most of these works is
on the determination of velocities and attenuation coefficient, although there
has also been investigations into the quantification of structural noise [17].
The present communication demonstrates how periodic FEM domains can
accommodate both longitudinal (L) and shear (S) waves for the evaluation
of their ultrasonic velocities and attenuation. The approach employed relies
on generating Representative Elementary Volumes (REV) of a virtual mi-
crostructure through Voronoi tessellations. Periodic tessellations matching
periodic FEM conditions are generated, making the REV suitable for shear
plane wave propagation. Results are compared with Weaver’s attenuation
model [6], to which a modification is proposed: replacing the Voigt-averaged
reference medium with a more representative one, such as a Hill-averaged or
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a self-consistent medium, shows promising results. An analytical formulation
of the spatial correlation function of the Voronoi tessellation is also included
in the model. The content of this communication is structured into two main
sections. The first section describes methods: it details the different steps of
the numerical computation method, as well as the analytical modeling. The
second section presents results, and includes analyses of the effect of certain
FEM parameters, as well as comparisons between numerical and analytical
results.

2. Methods

The three steps of the numerical method are detailed in this section: gen-
eration of synthetic microstructures, FEM computations of the propagation
of ultrasonic waves, and estimation of the velocities and attenuations. An
analytical model which is used for comparisons is also presented. Several
aspects of the numerical methods stem from the choice of periodic bound-
ary conditions on the lateral faces. Similar studies have relied on symmetric
[13, 18], or periodic [19] boundary conditions to mimic the propagation of
plane waves in an infinite volume. Periodic boundary conditions are used here
primarily because they can accommodate plane S waves with displacements
normal to the propagation direction. They also have other advantages: even
for an incident L wave, quasi-L waves travel through the anisotropic grains.
Their polarization is not strictly along their propagation direction and could
be affected by symmetric boundary conditions [19]. Additionally, symmetric
boundary conditions have the drawback of effectively doubling the volume
of boundary grains by mirroring them [14], locally changing the grain size
distribution. Overall, periodic boundary conditions make it easier to guaran-
tee that the microstructure and the elastodynamic behavior are not skewed
at the boundaries. A possible drawback of periodic boundary conditions is
that the periodicity induced in the microstructure may affect the simulation
results [19]. Such an effect would depend on the width of the domain: sec-
tion 3.2.2 of this communication shows results obtained for varying domain
width, in order to verify that it can be ruled out.

2.1. Synthetic volumes of polycrystalline microstructures
Rectangular cuboids samples are considered as Representative Elemen-

tary Volumes (REV) of microstructures. Their dimensions in a Cartesian
coordinate system defined by axes (x,y, z) are noted (Lx, Ly, Lz). Virtual
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Figure 1: Two-dimensional representation of the periodic microstructure generation pro-
cedure. The additions for periodicity are translated copies of the original nuclei. Grain
colors indicate crystallographic orientations, showing periodicity in the horizontal direc-
tion.

polycrystalline-like microstructures are generated using random Voronoi tes-
selations. This commonly used method involves randomly placing Voronoi
nuclei in the domain [20]. In the present study, the coordinates of Voronoi
were independently drawn from uniform distributions. Nuclei are also placed
above and below the computation domain in order to ensure that grain statis-
tics are not skewed at the top and bottom boundaries: if these additional
nuclei were not added, grains located at these boundaries would tend to oc-
cupy a larger volume than others. The entire set of nuclei is duplicated and
translated by −Lx and Lx along the x direction, and the result of this oper-
ation is duplicated and translated by −Ly and Ly in the y direction. This
creates periodicity in the x and y directions. The procedure is illustrated
Figure 1, in two dimensions for better readability.

The crystallographic orientations of each Voronoi region are defined by
Euler-Bunge angles (ϕ1,Φ, ϕ2). In order to produce an isotropic distribution
of orientations, these angles are obtained using the following formula:

(ϕ1,Φ, ϕ2) = (2πU0, arccos(2U1 − 1), 2πU2) (1)
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where (U0, U1, U2) are three independant random variables following uniform
distributions between 0 and 1. Voronoi regions that correspond to duplicated
nuclei receive the same orientations as the original ones. This ensures that
the elastic properties at the x and y boundaries are periodic, as illustrated
Figure 1. The nuclei of the full Voronoi tesselation occupy a 3Lx × 3Ly ×
3Lz volume, 27 times larger than the computation domain. The procedure
could certainly be optimized in order to provide equivalent results using fewer
nuclei. It has also been proposed to save on geometry-related computation
costs by reusing grain geometries and only re-randomising crystallographic
orientations [19]. However, such optimizations would only yield negligible
computation time gains, since the microstructure generation procedure is a
relatively fast step of the entire process. The most computationally intensive
step is by far the FEM computation itself.

The full computation of the Voronoi tessellation is not actually necessary
in the process. Its purpose is to delimit grains in a computation domain. The
FEM approach used here only requires the knowledge of elastic properties
at a list of points. These properties are determined by the Voronoi regions
they belong to. By definition of Voronoi tesselations, a given point is in the
Voronoi region of its nearest nuclei. This information can be determined
directly from the list of nuclei using a nearest neighbor search, which can be
implemented efficiently through a kd-tree algorithm.

2.2. Finite element computations
FEM simulation of ultrasonic propagation through polycrystalline mate-

rials can be addressed using structured or unstructured meshes [11]. Struc-
tured meshes have the advantage of simplicity, and completely eliminate
difficulties that may arise when creating unstructured meshes for potentially
problematic geometric features. A structured grid with a regular step in
the (x,y, z) directions was used in the present study. Let us denote by
Ω =]0;Lx|×]0;Ly[×]0;Lz[ the domain of interest, and by ϱ and C the mass
density and the elastic constants of the material. Both are space dependent
functions, representing the material properties at the scale of the microstruc-
ture. Denoting by V the space of admissible displacement fields (typically
square integrable fields with square integrable space derivatives), the princi-
ple of virtual work satisfied by the exact solution reads: for any time t > 0
find u(t) ∈ V such that ∀v ∈ V we have

d2

dt2

∫
Ω

ϱu · v dΩ +

∫
Ω

Cε(u) : ε(v) dΩ =

∫
Γ+
z

f(t) · v dΓ, (2)
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where Γ+
z is the boundary z = 0 of the domain. This formulation is

completed with null initial conditions. Note that v is a spatially uniform
stress generating a plane wave propagating within the material. This stress
is either in the z or x direction, depending on whether a L or S wave is to
be generated. Traction-free boundary conditions are set on the face z = Lz.
Periodic boundary conditions are used in the x and y directions, matching
the periodicity of the Voronoi tessellation described in the previous section.
The principle of virtual works can also be expressed as:

d2

dt2
m(u,v) + k(u,v) = ℓ(t;v), (3)

where the mass m(·, ·) and stiffness k(·, ·) bilinear forms clearly appear, while
the source term is embedded within the time-dependent linear form ℓ(t; ·).
Denoting by h = (hx, hy, hz) the steps in each direction, we can construct a
structured mesh as a regular grid Gh occupying the domain Ω and made of
elements with volume hxhyhz. We define ϱπ and Cπ the mass density and
the elastic constants approximated as element-wise constant functions. The
elastic properties of each element of the grid are set to be those of the grain
that the element center falls in. Applying this process leads us to a first
approximated problem consisting in finding uπ(t) ∈ V such that ∀v ∈ V we
have

d2

dt2
mπ(uπ,v) + kπ(uπ,v) = ℓ(t;v), (4)

where mπ(·, ·) and kπ(·, ·) are the mass and stiffness bilinear forms defined
using the projected material parameters on the grid, ϱπ and Cπ respectively.
As far as space discretization is concerned, we consider the following conform
finite element space:

Vh = {vh ∈ C0(Ω) | ∀K ∈ Gh, vh|K ∈ Q1(K)}, (5)

with Q1(K) the space of polynomial of maximal order one within each el-
ement K – note that this actually corresponds to standard basis functions
defined at the summits of the grid. We also construct the vectorial counter
part of this finite element space V h = Vh × Vh × Vh thus forming a Galerkin
approximation of the space V . We then seek the (discrete in space) solution
uπ,h ∈ V h such that ∀vh ∈ V h we have

d2

dt2
mπ(uπ,h,vh) + kπ(uπ,h,vh) = ℓ(t;vh). (6)

6



Finally, we perform a last approximation step, which essentially consists in
applying a quadrature formula to evaluate the integrals appearing in the
definition of the bilinear forms. We choose an order one formula defined at
each summits {SK

i }8i=1 of an element K. More precisely, for any function
f ∈ C0(Ω), we approximate integrals in the following manner:∫

Ω

f dΩ =
∑
K∈Gh

∫
K

f dK ≈
∑
K∈Gh

hxhyhz

8

8∑
i=1

f(SK
i ). (7)

Denoting by mπ,h(·, ·) and kπ,h(·, ·) the resulting approximated bilinear forms,
we obtain the space discrete problem:

d2

dt2
mπ,h(uπ,h,vh) + kπ,h(uπ,h,vh) = ℓ(t;vh). (8)

As far as time-discretization is concerned, we apply a second-order explicit
time scheme, a.k.a. the “leap-frog” scheme. Denoting by ∆t the time step,
and by tn = n∆t any discrete time value such that un

π,h corresponds to an
approximation of uπ,h(t

n), the fully-discrete scheme reads:

1

∆t2
mπ,h(u

n+1
π,h − 2un

π,h + un−1
π,h ,vh) + kπ,h(u

n
π,h,vh) = ℓ(tn;vh), ∀vh ∈ V h.

(9)
The time step of the computation is determined by a power iteration method,
in order compute the largest eigenvalue appearing in the following expression
of the CFL condition:

∆t ≤ 2
(

sup
vh∈V h

kπ,h(vπ,h,vh)

mπ,h(vπ,h,vh)

)1
2
. (10)

Note that the stiffness term is explicit since it depends on the solution
of the previous step. Furthermore, using a quadrature formula whose points
match the point of the basis function leads to a diagonal mass matrix – a
technique referred to as “mass lumping” in the literature [21, 22]. Thus, the
time-marching algorithm only requires to efficiently compute the multiplica-
tion of the stiffness matrix times an input vector. In order to increase the
performances of this operation, we apply local (i.e. at the element level)
stiffness matrices in parallel. In terms of memory occupation, the global
stiffness matrix is never assembled, and the entries of the diagonal mass ma-
trix are reconstructed “on-the-fly” during the computation. Therefore the
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memory load of our computations comes solely from storing the three steps
un+1
π,h , un

π,h and un−1
π,h and the material characteristics ϱπ and Cπ at each grid

elements.

2.3. Evaluation of phase velocity and attenuation
The use of plane wave conditions simplifies the evaluation of phase veloc-

ity and attenuation. Other approaches use sources with limited dimensions
resembling real-life ultrasonic emitters. This adds a need for corrective fac-
tors, based on results for the same source in a reference sample [23] for exam-
ple. In the case of plane waves, two methods have been used to estimate phase
velocity and attenuation: a comparison of the field at the upper and lower
boundaries [11], or a fit to a series of planes throughout the medium [13].
Only slight differences between the outputs of the two methods have been
observed. They were attributed to wave behaviors at the boundaries in the
first method [14]. A fit to a series of plane was applied in the present study.
It is similar to a method used in a study of ultrasonic propagation through
concrete-like microstructures [24]. Its principle is to average the displacement
field in a series of horizontal (x,y) planes, the incident wave propagating ver-
tically along the z axis. These planes are located at all the z coordinates of
the computation nodes, starting just below the upper boundaries and stop-
ping at a distance from the lower boundary. This buffer distance lets incident
wave pass the planes of interest while preventing them from being reflected
back. The FEM computation is stopped when the incident wave reaches the
lower boundary. The averaged displacement A is given by:

A(z, t) =
1

LxLy

∫ Lx

0

∫ Ly

0

u(x, y, z, t) dxdy, (11)

u being the displacement field of the FEM solution. In the following, we are
particularly interested in the Fourier transform Â(z, ω) of the amplitude in
the polarization direction of interest (Az for L waves, Ax for S waves). The
attenuation is then estimated as the slope in a linear regression according
to the variable z of the quantity − log |Â(z, ω)|. The phase velocity v(ω) is
estimated by maximizing the following quantity:∣∣∣∣∣∑

i

Â(z, ω) exp

(
iωzi
v(ω)

)∣∣∣∣∣ . (12)

The averaging of u over (x,y) aims at approaching the coherent wave, i.e. the
theoretical average of a wave over all possible realizations of the medium. The
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limited dimensions of the domain can cause some error. Making the domain
larger or averaging Â over multiple random generations of microstructure
would tend to reduce this error. The results presented in this communication
are obtained by calculating attenuations and velocities for single realizations
of the microstructure in a limited domain, and then averaging them over
realizations. This approach has the advantage of easily producing error bars
for the velocities and attenuation, based on the variability of estimated values
over different realizations. However, averaging Â over multiple realizations
before calculating velocities and attenuation would be more consistent with
the theoretical definition of coherent waves. In our experience, performing
the average before or after evaluating velocities and attenuation usually yield
very similar results. There can be some noticeable differences in specific cases
where the variability is very high in the computation domain, for example
where they contain very few grains. Such cases are not presented here.

Other authors used time windows around the coherent wave in order to
crop out portions of the signal that only consist of incoherent noise [19,
14]. We opted not to apply windowing in this study, in order to avoid the
risk of the windows altering the frequency content of the coherent signal.
Instead, we aimed at averaging over a sufficient number of realizations to
sufficiently reduce the incoherent part of the signal. This approach, while
computationally demanding, has the added benefit of reducing incoherent
noise even within the time window of the coherent signal, and also simplifying
the method and making it more easily reproducible. Illustrative examples of
averaging are presented in section 3.1.

2.4. Analytical modeling
We use the Voigt, Reuss, and Hill averages of the medium to provide

estimations of the velocities of the coherent waves, and compare them to
velocities obtained numerically. Their principles are outlined below. We also
apply a more intricate model for obtaining an effective velocity, based on
an Eshelby inclusion problem and referred to as the self-consistent approach
[25, 26], without discussing its principles in this communication. Numeri-
cal attenuation coefficients are compared with those of the analytical model
proposed by Weaver [6]. The model consists in solving an equation for the
ensemble-averaged Green function, using a first-order smoothing approxi-
mation and a Born approximation. The Born approximation causes the
model to fail in the geometrical regime, which corresponds to high frequen-
cies where the wavelengths are smaller than grain dimensions. It has however
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the advantage of yielding a closed form for attenuation coefficients. Other
approaches such as the one proposed by Stanke and Kino [5] do not make
a Born approximation, and require solving equations numerically to obtain
attenuation coefficients. This extends the validity domain of the model to
higher frequencies, at the cost of significantly complicating its use and its
generalization to other microstructures. Since the frequencies examined in
the presented work fall below the geometric domain, the Born-approximated
Weaver model is deemed adequate and is applied. The expressions of the at-
tenuation coefficients are summarized later in this section. They assume that
the microstructure is statistically isotropic and equiaxed, which is the case of
the randomly generated Voronoi tessellations considered in the FEM simu-
lations. This model originally uses the Voigt average as a reference medium,
and the effect of replacing some of its parameters by those corresponding to
other approaches is evaluated in this communication. The model requires
a suitable expression of the two-point correlation function W (r), defined as
the probability that two points separated by r are located in the same grain.
A convenient exponential form is often assumed in theoretical developments.
However, the exponential form does not describe accurately Voronoi tessella-
tions. A possible solution is to measure empirically the adequate function on
generated tessellations. The measured function may optionally be approx-
imated as a sum of exponential functions for convenience [19]. The results
presented in this communication rely on an analytical expression of this func-
tion, given at the end of this section. Contrarily to the use of velocities from
alternative effective media, the use of that correlation function is not a mod-
ification of Weaver’s models but simply an application to the microstructure
geometry considered here.

2.4.1. Voigt, Reuss, and Hill averages of elastic constants for cubic symmetry
The reference effective medium used in attenuation models such as the

ones proposed by Weaver and by Stanke and Kino is the Voigt averaged
medium. It is obtained under an assumption of uniform strain [27]. An
assumption of uniform stress yields another average [28], known as the Reuss
average. Hill [29] has shown that the Voigt and Reuss averages provide
respectively upper and lower limits for the elastic parameters of a polycrystal,
and that the measured values tend to fall close to the middle of the interval.
The average of the Voigt and Reuss elastic constants is often referred to as
the Hill average. Since the averaged material is isotropic in the untextured
case considered here, the elastic constants in the three averages (noted V , R,
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and H for Voigt, Reuss and Hill) are entirely defined by their terms C0
11 and

C0
44. C0

12 is equal to C0
11 − 2C0

44. For a polycrystal with cubic single crystal
elastic constants noted C11, C12 and C44, the averaged values are given by
the following expressions:

C0V
11 =

3C11 + 2C12 + 4C44

5
,

C0V
44 =

C11 − C12 + 3C44

5
. (13)

C0R
11 =

C11
2 + C11C12 + 8C11C44 − 2C11

2 − 4C12C44

3C11 − 3C12 + 4C44

,

C0R
44 =

5(C11 − C12)C44

3C11 − 3C12 + 4C44

. (14)

C0H
11 =

C0V
11 + C0V

11

2
,

C0H
44 =

C0V
44 + C0V

44

2
. (15)

The associated velocities can be obtained based on the averaged elastic con-
stants and the mass density ρ:

vL =

√
C0

11

ρ
,

vS =

√
C0

44

ρ
. (16)

2.4.2. Attenuation model
Expressions necessary to compute the attenuation are reproduced here,

with small changes in notation compared to the original work from Weaver
[6]. The attenuation coefficients for L and S waves αL and αS are each
decomposed as scattering into L and S waves:

αL = αLL + αLS,

αS = αSL + αSS. (17)
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They are given by:

αLL =
π2ω4

2vL8
ν2

∫ 1

−1

ηLL(θ)L(θ) dcos(θ),

αLS =
π2ω4

2vL3vS5
ν2

∫ 1

−1

ηLS(θ) [M(θ)− L(θ)] dcos(θ),

αSL =
1

2

(
vS
vL

)2

αLS,

αSS =
π2ω4

4vS8
ν2

∫ 1

−1

ηSS(θ) [N(θ)− 2L(θ) +M(θ)] dcos(θ). (18)

ν is the anisotropy factor of the single crystal elastic constants, that are
assumed to have a cubic form, normalized by the mass density ρ:

ν =
C11 − C12 − 2C44

ρ
(19)

L, M , and N correspond to integrals over elastic orientations and scattering
directions and are function of the scattering angle θ:

L(θ) =
9

525
+

6

525
cos2(θ) +

1

525
cos4(θ),

M(θ) =
24

525
+

12

525
cos2(θ),

N(θ) =
63

525
+

21

525
cos2(θ). (20)

It should be noted that ν, L, M , and N in these expressions stem from the
computation of the covariance of elastic properties in a Voigt average frame-
work for cubic crystals. The geometrical properties of the microstructure
are described by the two-point correlation function W (r). Its spatial Fourier
transform is noted η̃ and defined for any vector q as follows:

η̃(q) =
1

2π

3 ∫
W (r) exp(−iq · r)dr. (21)

It is evaluated for several combinations of modes and for unit vectors p and
s, defined as the directions of propagation and scattering. The results only
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depends of the angle θ between these two vectors.

ηLL(θ) = η̃

(
ω

vL
p− ω

vL
s

)
,

ηLS(θ) = η̃

(
ω

vL
p− ω

vS
s

)
,

ηSS(θ) = η̃

(
ω

vS
p− ω

vS
s

)
. (22)

The evaluation of these equations may require numerical integrations if
the two-point correlation function W does not have a simple analytical form.
The expression for W used in this study is given in the next section. The
first-order smoothing approximation made by Weaver is similar to the Keller
approximation made by Stanke and Kino: they assume weak heterogeneity
of the medium. In the case of untextured single phase polycrystalline me-
dia, this translates to assuming a low single-grain anisotropy. An error can
therefore be expected in the case of highly anisotropic materials. Huang et
al. studied this error and suggested correcting it in two ways: first by fit-
ting it to FEM results [12], and later by using an analytical model based
on quasi-static velocities [30]. This communication explores another way
to address this issue, based on reference media, that also seems to improve
model results. The Weaver and the Stanke and Kino models treat polycrys-
talline materials as a perturbation of a reference homogeneous medium. In
both cases, the Voigt-averaged medium is taken as the reference. Kube and
Turner [25] proposed an adaptation of the Weaver model to Reuss-averaged,
Hill-averaged, and self-consistent reference media. They modified both the
velocities and the elastic covariance tensors in the Weaver equation based
on these different reference media. The results shown in this communication
are obtained by only adjusting the velocities vL and vS in equations (18) and
(22). This aims at proposing a model that is relatively easy to evaluate and
to extend to more intricate microstructures.

2.4.3. Analytical two-point correlation function
The expression of the two-point correlation used here has been developed

from the definition of Voronoi tesselations: the probability that two points
are located in the same Voronoi region is equal to the probability that the
nucleus closest to one point is also the nucleus closest to the other point.
This can be expressed as integrals of conditional probabilities [31], based on
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the distance L from one point to the nucleus and on the cosine x of the
angle formed by the two points and the nucleus. The following expression is
obtained, with n being the number of Voronoi regions per unit volume:

W (R) = 2πn

∫ ∞

L=0

∫ 1

x=−1

L2 exp
(
−πn

3
F (R,L, x)

)
dLdx, with

F (R,L, x) = 2(L2+R2−2LRx)
3
2 +2L3+3(x2+1)RL2 − 6xR2L+ 2R3.

(23)

In statistically isotropic cases such as the ones considered here, W only de-
pends on R = |r|. A dimensionless expression can be obtained by using
Rn

1
3 as the argument. This expression can be pre-computed and stored, to

be used for Voronoi tesselations of any density. The expression has been
verified by comparing it to the correlation function measured on generated
Voronoi tessellations. Figure 2 shows that the results are in agreement. An
exponential function is also included to illustrate how it differs.

Figure 2: Comparison of the analytical expression of the Voronoi spatial autocorrelation
to its empirical measurement on 1000 random locations and directions in 1000 randomly
generated Voronoi tessellation, and to an exponential correlation function exp

(
−2Rn

1
3

)
.

For practical purposes, using either the analytical or measured function yields
equivalent results. However, the analytical form has the advantage of elim-
inating concerns about measurement accuracy. It could be generalized to
other virtual microstructures.
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3. Results

3.1. Input parameters
Results are presented for three different materials. Steel, being of particu-

lar interest for ultrasonic non-destructive evaluation applications, is the main
focus of the study. In order to investigate trends depending on anisotropy,
aluminium and lithium are also considered. They have respectively lower
and higher anisotropies, and both share similar velocities with steel. The
material properties and their source are summarized in Table 1. The Zener
ratio Z is a measure of anisotropy in cubic single crystal elastic constants and
is given by Z = 2C44

C11−C12
. The velocities that can be derived using the Voigt,

Reuss, and Hill averages (noted V, R, and H) and the self-consistent (SC)
approach are given in Tables 2 and 3. For all materials, microstructures with
n=1000 grains per cubic mm were generated. The cubic root of the average
grain volume n− 1

3=0.1 mm is used here as characteristic grain dimension.
Other authors may define grain dimensions in other ways, as there is no un-
ambiguous definition of a single dimension for a distribution of grains with
various shapes and sizes.

ρ (g cm−3) C11 (GPa) C12 (GPa) C44 (GPa) Z
316L steel [32] 7.958 207 133 117 3.16
Aluminum [5] 2.7 103.4 57.1 28.6 1.24
Lithium [12] 0.534 13.4 11.3 9.6 9.14

Table 1: Input material properties of single crystals.

vVL (ms−1) vRL (ms−1) vHL (ms−1) vSLC (ms−1)
316L steel 5836 5507 5674 5688
Aluminum 6318 6307 6312 6313
Lithium 6157 5301 5745 5768

Table 2: Longitudinal wave velocities for the Voigt, Reuss, and Hill averages, and for the
self-consistent approach.

The dependency with time t for the loads applied at the z = 0 boundary
is a Ricker wavelet with a characteristic frequency f0 of 10MHz. It is defined
as follows: (

2π2f 2
0 t

2 − 1
)
exp

(
−π2f 2

0 t
2
)
. (24)
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vVS (ms−1) vRS (ms−1) vHS (ms−1) vSSC (ms−1)
316L steel 3268 2808 3047 3066
Aluminum 3128 3111 3120 3121
Lithium 3402 2055 2810 2845

Table 3: Shear wave velocities for for the Voigt, Reuss, and Hill averages, and for the
self-consistent approach.

This time dependency has the advantage of having a sufficiently wide band-
width to generate results across a range of frequencies around f0, but it is
not essential to the method.

Results will be presented in a frequency band going from 5MHz to up to
20MHz. This corresponds to dimensionless wavenumbers k · n− 1

3 of approx-
imately 0.5 to 2 for L waves and 1 to 4 for S waves. In terms of frequency
regimes (or regions) of scattering [5], these ranges should include the transi-
tion for the Rayleigh to the stochastic regimes. Attenuation is expected to
be proportional to the fourth power of the frequency in the Rayleigh regime
and to its square in the stochastic regime. Its behavior in the transition
between them is not described by a simple power law, making it interesting
for a numerical study.

Slightly different configurations are used for L and S waves. In both cases,
the width Lx and Ly are set to 1 mm. The height Lz is 3.5 mm for L waves
and 1.75 mm for S waves. This corresponds to similar propagation times for
the two waves, as the latter travels at roughly half the speed. The choice of
the Lx, Ly and Lz parameters is elaborated upon in sections 3.2.2 and 3.2.3.
The calculated field is processed at each of the z coordinates corresponding
to nodes in the computation grid, up to z=2.5 mm and z=1.25 mm for L and
S waves respectively. Computation domains with examples of microstructure
realizations are shown Figure 3. The averages over x and y of the computed
displacement as a function of t and z, defined in equation (11) is recorded and
stored for post-processing and determination of velocities and attenuations.
An example of a cross-section of the computed field and of the averaged
displacements is shown Figure 4.

Figure 5 illustrates how the averaging of displacement reduces incoherent
noise. In this example, the signal to noise ratio is 12 dB for the local dis-
placement, 34 dB for its average over x and y in a REV, and 44 dB for the
average over x and y in 100 REVs.

As explained in section 2.3, results presented below correspond to the
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Figure 3: Examples of computation domains for L (1×1×3.5 mm, left) and S (1×1×1.75
mm, right) waves. The loaded surface (top) is indicated in yellow, and the lower limit of
the post-processing zone is indicated by the red line.

averages of velocities and attenuations obtained for signals averaged over
individual REVs. In some of them, 95% confidence intervals over a number of
microstructure realizations are plotted. Their half-width is given by 1.960std√

N
,

where std is the standard deviation over the realizations of the quantity
considered (velocity or attenuation), and N the number of realizations.

3.2. Discussion of numerical errors
3.2.1. Grid step

The accuracy of a computation is expected to depend on the number of
element compared to relevant scales of the problem. Two scales are to be
considered: the ultrasonic wavelengths, and the grain sizes. We performed
computations for a homogeneous isotropic material in order to investigate
only the relation to wavelength, without involving grains. Figure 6 shows
results for a L wave in a material whose velocities were based on the Hill
average for steel (see Table 2), with various grid steps. Velocity tends to be
underestimated, particularly with increased grid steps and frequency. This
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Figure 4: Computed field in a (x, z) plane, and displacements averaged over (x,y) planes
used in post-processing for a L wave propagating through a steel sample.

Figure 5: Displacement in the z direction for an incident L wave in steel: measured locally
(··), averaged overx and y for an individual REV (−−), and averaged over x and y for 100
REVs (−).
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Figure 6: Velocity and attenuation of L waves as a function of frequency in homogeneous
Hill-averaged steel with different grid steps.

can attributed to numerical dispersion. The error compared to the actual
velocity for the 5 µm grid step is at most 0.02%, and was deemed acceptable.
Attenuation is more stable, and the errors observed in its case are small
compared to attenuations in polycrystalline metals.

To examine the effect of grid step variations in heterogeneous microstruc-
tures, we utilized a consistent set of 20 randomly generated realizations of
steel microstructures. For each realization, computations were performed us-
ing varying grid steps. The grid step affects not only the FEM scheme, but
also the accuracy of the geometrical description of grain boundaries. Large
grid steps induce a representation of grains into large voxels. Velocities and
attenuations for L waves, averaged over the 20 realizations, are plotted Fig-
ure 7.

The behavior observed in the presence of a microstructure differs signif-
icantly from that of homogeneous materials: errors are larger, and larger
grid steps cause velocity overestimation rather than underestimation. The
frequency dependency of the error in velocity is also different. Attenuation
also behaves differently compared to the homogenenous case: errors tend
to increase in absolute value with frequency, though they remain relatively
stable in comparison to the attenuation value itself.

The velocity oscillations as a function of frequency are due to incoher-
ent effects that our approach does not average out for this limited number
of realizations. Numerical convergence can still be studied on this set of
realizations.

In order to illustrate how numerical errors depend on particular realiza-
tions of the microstructure, Figure 8 plots velocities and attenuation at the
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Figure 7: Velocity and attenuation of L waves as a function of frequency for steel mi-
crostructures, evaluated numerically and averaged over 20 realizations, with different grid
steps.

10MHz frequency for each of the 20 realizations, with grid steps ranging
from 2 to 20 µm. Due to computation times costs, the smallest grid step con-
sidered was 2 µm for only two of these realizations, and 4 µm for the others.
The number of grid steps is displayed both per Hill-average wavelength λ0L

at 10MHz and per characteristic grain size n− 1
3 = 0.1mm.

Figure 8: Estimated velocity and attenuation of L waves at 10MHz as a function of grid
resolution for 20 random realizations of steel REVs.

A similar behavior is observed for all realizations: velocity decreases regu-
larly and attenuation increases regularly with grid refinement. This suggests
the possibility of estimating errors consistently across numerous realizations
based on partial convergence studies, and even correcting for these errors.
The convergence observed here does not occur exactly in the same manner
as in other studies on similar cases [11]: it could be a consequence of differ-
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ences in the FEM codes, processing methods, or wavelengths to grain size
ratios.

For the computations presented in the following sections, the grid step
was set to 5 µm, i.e 5% of n− 1

3 or approximately 20 steps per characteristic
grain size. This corresponds to a compromise between computation times
and accuracy. With the parameters detailed in the previous subsection, one
computation for L waves takes approximately 25 minutes on a computer with
a Intel Xeon W-2295 processor and uses at most 8 GB of RAM. The grid
step impacts the number of nodes both in space and time, since the time
step depends on grid spacing. As a consequence, refining the grid step by
a factor 2 multiplies the number of operations in the FEM computations
by approximately 16. As Figure 8 illustrates, using more than 20 steps per
characteristic grain size would only produce a small change compared to the
variability between different random realizations. It is therefore preferable to
keep computation times per realization short enough to allow for a significant
number of realizations to be processed. For the 5 µm grid step, the time step
corresponding to the CFL condition of equation 10 is approximately 0.6 ns.

3.2.2. Width of the domain
The computation method for determining attenuation and velocity re-

quires the computational domain to be representative of the medium. On an
intuitive level, it seems that the domain should be wide enough to include
a significant number of grains. However, establishing a sufficient width is
not straightforward. We performed tests to examine the effect of domain
widths. These tests also serve to verify that the periodicity introduced in the
sample do not skew results, as such an effect would be expected to depend
on width. Figure 9 shows results obtained for three different domain widths.
The number of realizations per width was adjusted so that the total volume
considered is constant. The grid step is kept at 5 µm in all three cases.

The results obtained for the 1.0 mm and 2.0 mm width are in agreement,
with differences falling within their confidence intervals. However, the results
for the 0.5 mm width noticeably deviate from them and exhibits significant
fluctuations as a function of frequency. We verified that these fluctuations
were related to coherent components of the signal that do not average out
with additional microstructure realizations. This behavior might be due the
domain’s width being only 5 typical grain dimensions, skewing the periodic
Voronoi tessellations compared to larger domains. This case can therefore
not be considered representative of an infinite medium. The results presented
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Figure 9: Velocity and attenuation as a function of frequency with 95% confidence inter-
vals, for different domain widths. Results for L waves in steel. 400, 100, and 25 realizations
were considered for domain widths 0.5 mm, 1.0 mm and 2.0 mm, respectively.

in the other sections correspond to a 1 mm width with 100 realizations. A
2 mm width with 25 realizations could have been used to produce equiva-
lent results, as the total considered volume would have been the same and
the total computation time would have been similar. A potential benefit of
using smaller domains with a greater number of realizations is the produc-
tion of more data for statistical analysis. Additionally, smaller computations
have lower requirements in computer memory and are suitable for parallel
computing.

3.2.3. Height of the domain
Like the width of the domain, the height affects the number of grains

present in the domain and the representativeness of the microstructure. But
the estimation of the attenuation poses additional constraints for the choice
of this height. A larger height tends to be necessary when attenuation is
weak, in order to measure it accurately. Conversely, taller heights may lead
to the coherent wave becoming excessively attenuated and falling under the
noise, rendering it unusable in post-processing. The choice of the height
is therefore heavily dependent on the attenuation, which itself depends on
material properties and frequency. The heights employed for the results
presented here were chosen empirically as they yielded satisfactory results for
the three materials considered. Adjusting this parameter in a more deliberate
and optimal manner remains a challenge yet to be addressed.
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Figure 10: Comparison between Voigt (−−), Reuss (··), and Hill (·−) averages, self-
consistent medium (· · −), and numerical results (+−) for the velocity as a function of
frequency of L and S waves in steel.

3.3. Comparison to an approached analytical model
FEM results are compared to the attenuation model based on Weaver’s

model [6] with modifications of effective media velocity, detailed in section
2.4. The effective media considered were the Voigt, Reuss, and Hill averages,
as well as a self-consistent medium. 100 simulations were performed for
each of the three materials (steel, aluminum, and lithium) and each of the
two modes (L and S). The velocities for the four effective media and the
numerically estimated velocities are shown Figure 10 in the case of steel.
Dimensionless wave numbers are indicated for the horizontal axes of figures 10
and 11 in the form k0Mn− 1

3 . In this expression, k0M is the wave number for
mode M corresponding to the velocity in the Hill average of the material.

The numerically estimated velocities are close to the Hill average and self-
consistent velocities. Similar results (not reproduced here) were obtained for
aluminum and lithium: the most noticeable difference between materials is
the gap between the Voigt and Reuss average velocities compared to the
others, as presented in Tables 2 and 3.

Attenuations for aluminum, steel, and lithium (ordered by increasing
anisotropy) are shown Figure 11. In most cases, the attenuation is plot-
ted from 5MHz to 20MHz. These frequencies correspond to half and twice
the main frequency of the emitted 10MHz Ricker wavelet, and were set as
arbitrary boundaries within which usable information was expected to be
found. In cases where attenuation is highest, particularly for S waves and for
lithium, unexploitable results were obtained at high frequencies and are not
included in the plot. This is explained by the amplitude of the coherent wave
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dropping below the noise threshold over the propagation distance considered
here, which prevents from observing its exponential decrease and evaluating
its attenuation.

The 95% confidence intervals corresponding to figures 10 and 11 are too
narrow to be visible on these plots, and their half-widths at 10 MHz are given
in table 4.

Longitudinal Shear
Velocities, steel 1.58 ms−1 3.22 ms−1

Attenuations, aluminium 0.0014 dBmm−1 0.0069 dBmm−1

Attenuations, steel 0.019 dBmm−1 0.095 dBmm−1

Attenuations, lithium 0.039 dBmm−1 0.55 dBmm−1

Table 4: Half-widths of 95% confidence intervals at 10 MHz for the results of figures 10
and 11

These confidence intervals, and numerical errors such as those evaluated
Figures 7 and 8, are not expected to significantly affect the comparisons to
analytical models. In the case of aluminum, all four versions of the analyti-
cal model and the numerical results are in close agreement. The confidence
intervals appear to be larger compared to absolute values for this material
than for the others. This could be due to the attenuation being weaker in
this material, which makes it more difficult to estimate it precisely over the
REVs considered here. The differences between the four reference media in-
crease with anisotropy. They are clearly visible for steel, and even more so
for lithium. In both cases, and for both L and S waves, the original (Voigt)
version of the model seems to underestimate attenuation. An error increasing
with anisotropy was expected, as the mathematical development of the model
relies on a weak anisotropy approximation. A similar trend has been observed
for other models and materials and has been investigated in detail in the case
of L waves [30]. Both the Hill and self-consistent versions of the modified
attenuation models presented here demonstrate improved agreement with nu-
merical results for the three materials and for both L and S waves. As shown
Figure 10, the Hill and self-consistent velocities are also in closer agreement
with the numerically observed velocity than Voigt and Reuss. Hence, it would
seem logical that substituting the Voigt-averaged velocity with more accurate
ones in the attenuation model improves results. But this explanation lacks a
rigorous theoretical justification in the framework of Weaver’s model. Such
theoretical works in this direction would be beyond the scope of the work
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Figure 11: Comparison between numerical (+−) and analytical results for the attenuation
as a function of frequency of L and S waves in aluminium, steel, and lithium. Analytical
results correspond to the unmodified Weaver model based the Voigt average (−−) and to
modifications of the model that use effective velocities from the Reuss average (··), the
Hill average (·−), and a self-consistent model (· · −).

presented here. A modification of both the velocities and the elastic covari-
ances has been already suggested [25]. In cases we studied, the modification
of the elastic covariance had a small effect compared to the modification of
velocities and is not presented here. An alternative self-consistent approach
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proposed and detailed by the same authors [26] tends to yield an attenua-
tion lower than the one of the unmodified Weaver model and would disagree
with our numerical results. Our comparisons do not conclusively determine
which of the Hill or self-consistent approach produces the more accurate re-
sults. However, given that the more sophisticated self-consistent approach
has been demonstrated to be more accurate in velocity measurements [33],
it may also be expected to yield a more accurate attenuation model. The
main advantage of the Hill average is its ease of calculation, especially for
microstructures more complex than the ones studied here. Other ways of
obtaining representative values for effective velocities, such as quasi-static
analytical models or numerical calculations, could also be considered. And
in practical cases, the effective wave velocities in the material of interest are
often known through experimental measurements.

The frequency range considered here corresponds to the transition from
the Rayleigh to the stochastic regime, which should occur around k0n

− 1
3 = 1

[5]. Attenuation has been described as power laws of frequency with an ex-
ponent of four in the Rayleigh regime and two in the stochastic regime. Ex-
ponents evaluated in the case of aluminum, where the exploitable frequency
range for shear wave is the largest, are plotted figure 12.

Figure 12: Comparison between the exponent of the numerical results (+−) and of the
Hill-modified Weaver model (·−) in the case of L and S waves for aluminum. The exponent
is obtained by assuming that the attenuation behaves locally as a power function of the
frequency and, in the case of the numerical results, performing a moving average.

Interestingly, the exponents behave differently for longitudinal and shear
waves. In both cases it decreases with frequency, but it drops below two for
longitudinal waves and not for shear waves. In the results of 11, it translates
as a steeper increase at high frequencies for shear waves. The exponent drop-
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ping below two for longitudinal waves could appear to contradict expectations
for the stochastic regime, but is actually in agreement with modeling results
presented by Stanke and Kino [5]. For both aluminum and iron, they shown
results where the transition between the Rayleigh and stochastic regimes ex-
hibits a milder slope for longitudinal waves, but not for shear waves. This
difference in behavior between longitudinal and shear waves therefore ap-
pears to hold across different materials and modeling approaches. Since the
transition between the Rayleigh and stochastic regime depends on grain sizes,
investigating its relation to grain size distributions could open up possibilities
for material characterization.

4. Summary and conclusion

This work contributes to a growing body of research on FEM charac-
terization of ultrasonic wave propagation through polycrystals. The use
of periodic boundary conditions associated with the generation of periodic
Voronoi tesselations produces virtual polycrystal samples that can accom-
modate both longitudinal and shear plane waves. After some considerations
on the parametrization of the simulations, estimated attenuations for virtual
samples of aluminium, steel, and lithium are presented. They are compared
to a well-established analytical model, adapted to Voronoi tessellations us-
ing a dedicated analytical correlation function, and where the velocities of
the reference media are modified. Comparisons to numerical results show
a significant improvement in model prediction when its reference velocities
are replaced by those of a Hill-averaged or self-consistent medium. These
findings apply to both longitudinal and shear waves. The methods outlined
in this communication could pave the way for additional research in the nu-
merical characterization of elastic waves, including the frequently overlooked
shear waves. The stability of the trends of numerical errors that were ob-
served over multiple microstructure realizations suggest that a multi-fidelity
approach could be developed, combining large numbers of low-fidelity FEM
simulations to evaluate random variability and a few high-fidelity ones to
adjust outcomes. On the topic of analytical models, a more detailed analy-
sis over a wider range of materials would allow determining how robust the
improvement provided by the Hill and self consistent approaches are, and
whether one produces consistently better results. Alternative effective me-
dia and the possible benefits of adjustments to the elastic covariance could
also be explored. Such comparisons would be interesting not only for atten-

27



uation models but also for velocity dispersion models [34], where effect of
modifying the velocity of the reference medium could also be investigated.
Although the polycrystalline materials examined in this study had simplis-
tic descriptions as Voronoi tesselations, the same methods can be applied to
more intricate and realistic virtual microstructures such as multiphase poly-
crystals with specific crystallographic orientations. The case of statistically
anisotropic textured media requires an adaptation, in order to account for
the quasi-longitudinal and quasi-shear natures of the coherent waves. This
adaptation is currently being investigated and will be the focus of a future
communication.
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