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Abstract
The WEST (W Environment in Steady-state Tokamak) divertor serves as the primary element for heat exhaust and contributes 
critically to plasma control. The divertor receives intense heat fluxes, potentially leading to damage to the plasma facing 
units. Hence, it is of major interest for the safety of divertor operation to detect and characterize the hot spots appearing on 
the divertor surface. This is done through the use of infrared (IR) cameras, which provide a thermal mapping of the divertor 
surface. In this work, a knowledge-informed divertor hot spot detector is demonstrated, that explicitly accounts for hot 
spot structure and temperature repartition. A novel neural network, termed as Constrained U-Net, is proposed, which uses 
as input the bounding boxes of hot spots from prior automatic detection. The Constrained U-Net addresses jointly image 
segmentation and regression of physical parameters, while remaining compatible with the practical constraints of real-time 
use. The detector is trained on simulated data and applied to real-world infrared images. On simulated images, it yields a 
precision of 0.98, outperforming a classical U-Net, and Max-Tree. Visual results obtained on real-world acquisitions from 
the WEST Tokamak illustrate the reliability of the proposed method for safety studies on hot spots.

Keywords Nuclear fusion · Deep learning · WEST Tokamak · Divertor · Hot spots · Constrained U-Net · Infrared videos · 
Physical features

Introduction

The pursuit of harnessing fusion energy has led to the devel-
opment of Tokamak fusion plasmas, which fuse Deuterium 
(D) and Tritium (T) atoms. This process holds immense 
promise as a future energy source. The power capabilities 
of Tokamaks have been steadily increasing, with the JET 
Tokamak achieving fusion outputs between 5 and 20 MW 
[1] and the International Thermonuclear Experimental Reac-
tor (ITER) projected to reach up to 500 MW [2].

Magnetic fusion devices are trending towards continu-
ous plasma operation, lasting several minutes, resulting in 
energy throughputs comparable to significant power plants. 
For example, the W Environment in Steady-state Tokamak 
(WEST) [3] routinely operates with 4 MW of power for a 
plasma duration exceeding a minute.

The substantial power and energy involved are dissipated 
through the walls, which function as thermal shields. These 
walls operate in a stationary manner with surface tempera-
tures ranging from 500 to 1000 ◦ C. In addition to regular 
power evacuation, which must be monitored, parasitic phe-
nomena such as magnetic instabilities and additional heat-
ing power losses direct occasionally hot plasma to unde-
sirable locations. This can result in potentially damaging 
thermal events, as the plasma discharge duration extends 
and surpasses the thermal stabilization time. Monitoring and 
counter-reaction are tools for optimal machine operation, 
and are becoming increasingly prevalent among tokamaks/
fusion machines.

As the plasma discharge duration extends and surpasses 
the thermal stabilization time, active temperature control 
of Plasma facing components during plasma operation is 
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becoming increasingly prevalent among tokamaks/fusion 
machines.

Relation to Prior Work in the Field

Active temperature feedback control is implemented in 
various tokamaks and can be based on sevral types od 
input data. Several research groups associated with the 
Experimental Advanced Superconducting Tokamak (EAST) 
are currently engaged in the task of plasma-wall divertor 
control. This endeavor involves the utilization of a multitude 
of instrument measurements [4].

Analog CCD cameras operating in the near infrared 
wavelength are used to measure surface temperature of the 
plasma facing components in JET Tokamak [5].

Numerous tokamak facilities have opted to incorporate 
infrared diagnostics for real-time surveillance. This strategic 
decision is also aimed at preparing for the forthcoming 
operation of ITER, which will similarly rely on infrared 
diagnostics. Different research teams from all over the 
world such as the WEST tokamak in southern France, EAST 
tokamak in China [6], or Wendelstein 7-X (W7-X) stellarator 
in Germany [7] are working on automating infrared (IR) 
image analysis to address machine safety concerns.

Regarding the use of this diverse input data, a broad 
spectrum of methods for real-time control is developed. 
For instance, certain teams implement fixed thresholds on 
infrared images to provide feedback on plasma conditions 
[8]. Neural networks have been a naturally explored method 
for plasma control since the early 1990 s [9]. Within this 
category of neural networks, their application is diverse. A 
recent example is the reinforcement learning method tested 
on the Swiss TCV tokamak [10]. Use of neural network 
methodologies for computing heat fluxes deposition on 
W7-X divertor have been demonstrated [11, 12]. These 
applications, while yielding encouraging outcomes, also 
pave the way for potential real-time implementations. This 
signifies a substantial advancement in the field. The work 
presented in this article is a part of the application of neural 
networks on the infrared images of the WEST tokamak, as 
described in [13].

Main Contribution

The control of the plasma-wall interaction in the divertor 
presents a significant challenge due to the difficulty of 
detecting and analysing all hot spots. On the divertor, most 
of these hots spots are the so-called ”strikelines”, which 
are the main contact point for the plasma to the divertor. 
The automatic detection of a region of interest (ROI) that 
contains a single strikeline is considered state-of-the-art. The 
focus is here placed on the analysis of a specific strikeline, 
toward analysing it using prior physical knowledge. A 

novel implementation of a network from the U-Net family 
is introduced for the first time in this paper. This network is 
specifically designed for the joint estimation of two scalars 
features to the strikeline, and a 2D map of hot point locations 
from a single ROI image containing a strikeline. The 
modified UNet, which is trained to minimize a specific loss 
value, is utilized to predict the shape of strikelines through 
curvature and angle, as well as the location of all contained 
hottest points, regardless of their quantity.

Outline

This paper is structured as follows: Sect. Overview of the 
WEST Tokamak and Hot Spot Issues introduces the WEST 
tokamak and discusses the challenge of wall protection. The 
various objectives and contributions of this study are detailed 
in Sect. Objectives and Contributions. The creation of the 
synthetic dataset is the focus of Sect. Dataset Generation. 
Section Implemented Structure outlines the structure that 
has been developed and implemented to tackle the identified 
issues. Lastly, Sect. Evaluation list the results and explores 
the potential application of the method to real-time analysis.

Notations

Throughout this paper, the following notations are used: 
ℙ is a probability distribution, while � and � correspond 
respectively to the mean and standard deviation of the 
distribution. Y denotes an image label (and Ŷ  the associated 
predictions) and y a scalar label (and ŷ the associated 
prediction).

In the context of this study, a terminological convention 
is adopted when discussing the Tversky loss. The 
term "Tversky loss" is used, but it actually refers to its 
complement, 1 − T  . This modification allows for the 
interpretation of the value as decreasing with enhanced 
performance of the model in the segmentation task.

All the IR images use the ”coolwarm” linear colormap. 
The interval given for the colormap extends from the 
temperature of the darkest point to that of the brightest point.

Notation [a:b] stands for an interval of real values 
between scalars a and b; {a,b,c} denotes a discrete set of 
three scalar values a, b, c.

Overview of the WEST Tokamak and Hot 
Spot Issues

WEST Tokamak

WEST, or Tungsten (chemical symbol “W”) Environment in 
Steady-state Tokamak, is a French tokamak that began origi-
nally operating as Tore Supra in Cadarache, South of France. 
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This device underwent a major upgrade to install tungsten 
walls and a divertor, and the machine was transformed from 
a French national experiment to a European user facility in 
the decade 2010. Tore Supra was renamed WEST to better 
affirm the change of machine and status. WEST validates 
and fatigue-tests the ITER actively cooled tungsten divertor 
components (called Plasma Facing Units PFUs) during the 
ITER construction phase and prepares their safe operation.

Plasma Facing Components Monitoring

Monitoring the tokamak internal wall and divertor is cru-
cial to obtain long-duration plasma. These hot spots can 
take various forms, including “strikelines”, “electron type 
1”, “ripples loss” or “Unidentified Flying Objects” (UFOs), 
which may result from the pulverization of wall armour 
and subsequent detachment of metal dust. A local WEST-
related reduced taxonomy is currently in use at WEST and 
has proven effective for development activities (a full tax-
onomy of hot spots is still being developed in the framework 
of a cross-machine activity).

Optical measuring instruments are used to oversee the 
internal wall and divertor, which play the role of thermal 
shields. They provide the armour surface temperatures dur-
ing operation. They are made of fixed optical endoscopes, 
which provide a field of view of a section of the machine 
internal wall. The detector is an Infrared camera. These 
systems allow for the observation of approximately 50% 
of the entire internal wall, while the remaining portion is 
monitored either passively or indirectly. Specific viewing 
systems are present at WEST, including a high-resolution 
view of the divertor with 0.1 mm spatial resolution; and two 
complementary views of the divertor (direct view through a 

window, scheme on Fig. 1). This Infrared viewing diagnostic 
is described by Courtois et al. in [14].

The “Strikelines” are the most prevalent hot spots. They 
result from the normal power deposition on the divertor (top 
or bottom). The strikelines are located at the contact zone 
between the divertor and the plasma.

Figure 2 illustrates an infrared image of the lower divertor 
during a pulse. The lower half of the image is an extension 
of its upper region: due to the divertor’s large aspect ratio 
along the entire length of the tokamak, capturing a 60◦ sec-
tor within a single field of view results in inefficient usage 
of the detector. Two separated lines of sight and a recom-
bination prism are employed to better fit the FoV of a 60◦ 
divertor sector within the detector.

As shown in Fig. 2, these strikelines are discontinuous 
and exhibit a cosinusoidal modulation, with the peak value 

Fig. 1  Photo of the interior of the WEST Tokamak including the description of areas (a). Simplified 3D reproduction of the tokamak with a 
divertor sight-of-view IR camera (b)

Fig. 2  Divertor camera (DIVQ2B) for pulse 57396. ’Coolwarm’ 
colormap [100;300 ◦C]
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situated at the strikeline’s centre. This is caused by the dis-
crete arrangement of the 18 toroidal magnetic coils on the 
WEST tokamak which results in a toroidal modulation of 
the toroidal magnetic field (the so-called “ripple effect”). 
Strikelines display a characteristic "croissant" shape, with a 
series of local hotter spots resulting from the series arrange-
ment of plasma facing units.

Abnormal divertor temperatures arise from several 
potential causes: the most frequent causes are a deteriorating 
thermal contact to the cooling circuit, growth of a resistive 
thermal deposit at the surface of the armour tile, or possible 
tile or PFU misalignment, either pre-existing or occurring 
following deterioration of the fixture of the PFU.

Additional temperature anomalies do occur due to erosion 
or dust deposition on the divertor, or other causes. When 
tungsten blocks are damaged to an extent that their outer 
layers are altered, the emissivity of the armour material 
changes, thereby altering the apparent temperature obtained 
by the IR camera. Similarly, dust deposits on a machine in 
the field of view can accumulate on the divertor at ground 
level and modify the emissivity of certain zones, resulting in 
abnormal strikelines (see Fig. 10). These phenomena can be 
observed when studying the divertor after an experimental 
campaign.

Existing Pipeline for Thermal Events Analysis 
on WEST

A measurement and acquisition chain is in place. It 
encompasses the conversion from raw digital levels to 
temperature, acquisition, storage, and data access [15]. The 
expert analysis of hot spots by human operators considers 
numerous parameters and factors, such as their shape, 
extent, potential structure, temperature value, and temporal 
correspondence with other machine events. Besides data 
accessible by direct or indirect measurements, the analysis 
of hot spots relies on prior knowledge of past thermal events 
and synthetic images produced from first principle physical 
models (digital twins).

Automated infrared data processing has been a focus 
at the IRFM Infrared laboratory for over a decade, 
complementing human expertise. Real-time monitoring 
is used based on images from infrared cameras in the 
Wall Monitoring System (WMS). Feedback control uses 
temperature thresholds defined upon Regions of Interest 
(ROI) according to components allowable. Control laws are 
implemented to monitor and feed back on actuators if control 
thresholds are exceeded. These basic controls are currently 
in use but are rudimentary and subject to false positives [8].

Investigations into more advanced controls using artificial 
intelligence and deep learning are underway. An end-to-end 
pipeline is being developed to detect and classify hot spots 

[13, 16] based on recognisable features like hot spot shape, 
position, and temperature distribution, possibly combined.

The novel model introduced in this article is integrated 
into this hot spot processing pipeline. The existing pipe-
line provides bounding boxes around the detected hot spots, 
along with a class associated with each hot spot. These 
bounding boxes are used as input, for an objective that is 
described in the Sect. Objectives and Contributions.

Objectives and Contributions

The research team is currently focused on the development 
of a pipeline for the detection and classification of hot spots, 
which has proven to be both functional and efficient. The 
aim of this work is to extract new information from infrared 
images, with an emphasis on acquiring knowledge that 
closely mirrors the insights of a human expert. This approach 
is particularly relevant in the field of wall protection and 
non-destructive control, where experience from previous 
operations plays a crucial role. Therefore, incorporating 
such prior knowledge into the development of new models 
is considered beneficial. This general objective is applied, in 
this article, to the extraction of novel information pertaining 
to strikelines, which are significant hot spots in the WEST 
tokamak and, more broadly, in fusion reactors equipped with 
a divertor.

Strikeline hotspots present a rich source of information. 
The data chosen for analysis closely mirrors what a human 
infrared expert would extract when examining a strikeline. 
The infrared expert, tasked with inner wall protection 
between each discharge during the experimental campaigns, 
often automatically and subconsciously analyses the 
structure and temperature distribution within the strikeline. 
Experts were willing to have access automatically to novel 
physical data from the strikelines, using the pipeline’s 
detections as inputs.

The strikelines are a good hot spot class for investigating 
possible technique toward injecting a priori knowledge in 
detection/classification, because they are numerous and the 
a priori knowledge is widely shared, and can be formalised 
into numbers. In addition to the data already produced by 
the existing pipeline, in the form of bounding boxes, the 
research axe was selected to extract two novel physical 
features from the strikeline, using the pipeline’s detections 
as inputs. These are the curvature of the strikeline and its 
angle relative to the horizontal. The term “curvature” in 
the context of the strikeline is associated with its visual 
manifestation on infrared camera. This is due to the 
diagnostic setup, which results in the strikelines exhibiting 
a curvature that imparts a “croissant” shape following the 
divertor disposition. While it is challenging to accurately 
compute a curvature index on the hot zones of this shape, it 
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remains feasible to assign a “score”. This could potentially 
facilitate the classification of strikeline curvatures into, for 
instance, four distinct categories. The strikeline’s angle is 
another characteristic associated with the image derived 
from the infrared diagnosis. This measures the angle 
between the horizontal and the tangent to the strikeline. It 
is understood that a typical strikeline, observed on WEST 
tokamak IR diagnostics, possesses a non-zero curvature 
and an angle that can vary from 0 to approximately thirty 
degrees. For example, a human expert would immediately 
label a strikeline with extreme curvature as being abnormal 
(that means, further human expertise would be required 
to better understand the cause of such extreme curvature. 
Or discard the strikeline as being a rare artefact, not worth 
further investigation).

The method presented in ths article aim to answer to a 
multi-task learning problem. On the one hand, it encom-
passes a regression part aimed at obtaining the actual physi-
cal values of the curvature and angle. On the other hand, a 
segmentation component is involved, which seeks to identify 
the hottest zone (one pixel) of each PFU for the purpose of 
counting them and analysing the temperature.

Neural networks are an effective approach to multi-
task problems. Certain network designs can indeed learn 
both regression and segmentation elements. In contrast, a 
standard method of image processing necessitates running 
two separate pipelines to perform the required calculations 
independently. Given the nature of the problem, the 
segmentation task could potentially be the most challenging. 
As a result, it is selected to design a network that has 
demonstrated its effectiveness for segmentation, and then 
enhance it to also yield the desired regression outcome.

U-Net, a type of convolutional neural network, was 
originally developed for biomedical image segmentation in 
2015 in [17]. It is an architecture with a contracting path 
and an expansive path, with the aim of performing semantic 
segmentation. Today, U-Net and its variants are widely used 
in various fields. In medical image segmentation, U-Net is 
the most widespread image segmentation architecture due 
to its flexibility, optimized modular design, and success in 
all medical image modalities. It has been used in CT scans, 
MRI, X-rays, and microscopy... Thus, U-Net has proven to 
be a versatile tool in the field of deep learning, with its use 
extending beyond its original purpose of biomedical image 
segmentation [18]. As highlighted in [19], U-Net are mainly 
used for segmentation tasks. However, this network structure 
possesses the potential to execute a multitude of other tasks 
such as classification or regression.

Section  Implemented Structure proposes a novel 
architecture, referred as “Constrained U-Net”. This 
architecture is designed to deliver multiple types of outputs: 
a segmented mask and scalars, using a strikeline thumbnail 
as input. The method introduced in this article serves 

multiple purposes. It aims to address the challenge of multi 
output types while maintaining a network that incorporates 
physical knowledge and offers an inference speed suitable 
for potential real-time requirements.

To date, no literature has been identified that addresses 
both segmentation issues and ’global’ regression at the 
image scale (i.e predict a vector of scalars from the entire 
image in output) within a single network. While UNETs 
have been employed for pixel-scale regression [20] and 
image-scale regression [21], these applications do not 
incorporate any segmentation tasks.

Dataset Generation

The decision to associate this work with the generation 
of simulated data was made for multiple reasons. Firstly, 
defining a universal method for calculating the angle 
and curvature of each strikeline presents a significant 
challenge. Additionally, the process of labelling the hottest 
pixels is extremely time-consuming, as it necessitates the 
identification of approximately fifteen pixels (to the nearest 
pixel) per image. Considering the substantial number of 
images required for annotation in training, the creation of a 
dataset of pixels annotated by a human expert is impractical 
as each experimental campaign generates terabytes of 
uncompressed infrared video data.

An additional significant factor that influenced this 
decision was the limited diversity in the real-world images. 
Given that the majority of real strikelines images have a 
strong resemblance to each other, estimating a network’s 
ability to generalise based on low diversity becomes quite 
complex. The generation of a synthetic dataset introduces 
more variability in the physical parameters, even if it results 
in the creation of ’improbable’ hotspots. The objective of 
this dataset generation, nonetheless, is to maintain the 
strikeline structures in close resemblance to the actual 
images such that it is conceivable that training on simulated 
data and application on real-world images could be possible.

Generation of the Strikelines

The neural network structure proposed in Sect. 5 requires 
a fixed input image size. This dimension is determined by 
computing the median of the lengths and widths of over 
45,000 boxes identified by the existing pipeline. Conse-
quently, generated images produced by the method described 
here have a dimension of 120x50 pixels. This ensures an 
equal number of "zoomed" and "de-zoomed" images when 
the method is integrated into the existing pipeline. This bal-
ance is key to prevent any learning bias that could potentially 
degrade performance on real-world images. The generation 
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process adheres to some of the principles delineated in [22], 
but it exhibits greater sophistication in terms of the diversity 
of images produced.

Stage of the Creation Process

The process involves several steps: 

1. A 1D profile of heat flux and temperature distribution 
on the surface of a PFU monoblock is generated using 
CAST3M [23] thermal calculation code from physical 
input parameters from the WEST tokamak.

2. Monoblocks and their temperature distribution are 
multiplicated horizontally to generate a 1D line with 
N monoblocks. The physical gap present on the WEST 
divertor is added between each monoblock by artificially 
inserting points at 70◦ C (machine base temperature). 
This horizontal direction serves later as “toroidal” direc-
tion.

3. The 1D line is developed vertically to create a 2D image 
of N PFUs with identical distribution along the entire 
vertical and repeated patterns between all monoblocks. 
The vertical axis serves later as poloidal direction.

4. In the toroidal direction, a cosine filter is employed to 
simulate the Ripple effect (see Sect. Plasma Facing 
Components Monitoring).

5. Eich flux distribution laws [24] are applied on toroidal 
and poloidal axes respectively to impose toroidal field 
ripple modulation around tokamak and flux intensity 
at plasma-PFU contact. In order to closely mimic the 
infrared images obtained during the tokamak campaigns, 
it might be useful to avoid applying the Eich filter to the 
same vertical point of each PFU. This approach would 
result in entirely ’straight’ strikelines, which do not 
accurately represent the circular nature of the divertor. 
Therefore, during this phase, it is feasible to introduce 
what is termed as the “curvature” of strikelines. To 
establish this curvature, the lowest point of application 
on the left of the image and the highest point of 
application situated at the centre of the strikeline are 
required. A circle is then drawn through these two 
points to identify the location where the Eich filter will 
be applied vertically. Four states of curvature are then 
defined, ranging from state 0, where the stripe is straight, 
to state 3, where the stripe exhibits abnormal curvature. 
In appendix A, an example of different curvatures of a 
same base strikeline is provided.

6. A pixel/cm filter matching the resolution of IR cameras 
defined in [14] is applied.

7. At this point, a synthetic image of the desired size, 
120x50px, is generated. To increase the diversity of the 
images and to match as closely as possible the images 

obtained during campaigns, it could be beneficial to 
rotate the image. Indeed, infrared cameras have a fairly 
wide angle of view. For example, the strikeline visible 
on the left of the image is not angled in the same way as 
the one right in the centre of the image. This discrepancy 
is attributed to distortion, as the pixels visible in the final 
image are have a variable distance to the optics pupils. 
Consequently, the image undergoes a rotation ranging 
from 0 to 90 degrees. The interval is reduced between 0 
and 90 because for the other zones of the divertor sight, 
a simple axial or central symmetry permits reference to 
an angle of 90◦ . This rotation is implemented using a 
rotation matrix and linear interpolation.

The entire process results in a total of 32,400 strikeline 
images divided randomly into 3 sets (train, validation and 
test with respectively 22680, 6480 and 3240 images). Each 
image is 120x50 pixels.

Physical Parameter Variations

This technique of strikeline generation allows for direct 
integration of varying degrees of a priori physical/structural 
knowledge, namely strikeline curvature, angle, number of 
PFUs and temperature. Other calculation codes are available 
for the purpose of obtaining thermal patterns (PFC Flux 
[25], Smither), offering both greater physics accuracy in 
generating strikelines and being more recognised in the 
science community, but they lack the ability to conveniently 
include or exclude certain physical parameters (curvature, 
angle) being needed for this work.

The selection of these parameters is designed to strike 
a balance between producing strikelines that closely 
resemble real images and maintaining physical relevance. 
Consequently, four physical parameters have been chosen, 
which are varied across broad value intervals to generate a 
diverse set of strikelines (see Table 1).

Adding Noise

The image ‘background’ of experimental tends to be 
somewhat noisy at the lower end of the measurement 
range. Noise is introduced into the simulated images, to 
better replicate these images and to avoid learning of overly 
‘perfect’ images.

Noise addition is done using an additive Gaussian white 
noise. It has a normal distribution N(0;0.05 �training set) , 
where �training set represents the standard deviation of all the 
pixels of the training dataset. An example of the application 
of this noise is provided in Fig. 3.
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Pre‑processing

According the methodology exposed in [13], uniformity 
shall be maintained in the normalization process applied to 
the images. This is in accordance with the project’s nested 
structure. Consequently, the following approach is adopted 
for normalizing the entire dataset:

With px , the pixel to normalize and �training & �training 
respectively the mean and standard deviation of all the pixels 
of the training dataset.

For the regression labels, normalization between 0 and 
1 is implemented to enhance the stability and convergence 
speed of the network.

Implemented Structure

Constrained U‑Net

This novel architecture, termed as “Constrained U-Net”, 
has been designed to tackle the dual challenge of segmenta-
tion and regression within a single network. This network is 
structured in the form of a traditional U-Net, comprising a 
descending segment, a bottleneck, and an ascending segment 
with skip connections. Regarding the U-Net’s structure, four 
downsampling stages are implemented to maintain the net-
work’s efficiency. This level of downsampling is deemed 
adequate for the segmentation, considering the relatively 
minor variations present in the infrared images obtained 
from the tokamak. ReLu activation function is used in the 
network’s layers. In the output section related to the mask, 
a sigmoid function is implemented, which provides a value 
for each pixel within the range of 0 to 1, thereby aiding in 
the segmentation process (Fig. 4). 

The innovative aspect of this architecture lies in the 
constraint applied to the information within the bottleneck. 
The extraction of the physical parameters is executed through 
a conventional “dense” neural network. This dense network 
takes as its input the extraction of the input image (1024 

(1)pxnorm =
px − �training set

�training set

values), and outputs two floating values, which represent 
the targeted physical features. The benefit of this network 
architecture lies in the interchangeability of the physical 
features extracted from the bottleneck. By retraining the 
network with appropriate labels corresponding to a new 
feature, it becomes feasible to change the output type of the 
dense network. This extracted features are used for regression 
analysis, thereby providing physical insights into the image 
structure, such as the angle and curvature of the hot spot.

The output of the network comprises three components: 
an image shaped mask that indicates the location of the most 
intense pixels within each hot sub-region, the value of the 
angle in degrees, and a curvature index.

The feature extraction at the bottleneck level, coupled 
with the integration of regression into the overall loss 
function (discussed in Sect. Loss Function), enables the 
U-Net to be “constrained” to preserve information that holds 
physical significance during its downsampling process.

Loss Function

In this study, a composite loss function L (Eq.  2) is 
employed to optimize the model. This loss function is a 
weighted sum of Tversky loss (Eq. 3) and Mean Squared 
Error (MSE) loss (Eq. 4). The Tversky loss is a gener-
alization of the Dice coefficient and Jaccard index, and is 
particularly useful for handling imbalanced datasets [26].1 
The Tversky loss function addresses image-level imbal-
ance, a common issue where the count of positive pixels 
significantly outweighs that of negative pixels (or vice 
versa) in a image. In this work, the Tversky loss function 
is employed in a batch-wise configuration. The batch-wise 
method tackles batch-level imbalance, a situation where 
only a few pixels in the batch are positive. By taking the 
loss over the entire batch, it ensures that even if there are 
only a few positive pixels in the whole batch, an all-zero 
prediction - which can easily become a local minimum in 
the case of imbalanced data - will be significantly distanced 
from the optimum. Moreover, the utility of this function in 
the given context is underscored by the flexibility it offers 

Table 1  Range of values of physical features for strikelines genera-
tion

Physical feature Range of values

Max temperature [400:2000] ◦C
Number of PFUs {6,8,10,12,14}
Curvature {0,1,2,3}
Angle [0:90]◦

Fig. 3  Example of noise addition on a synthetic image

1 For a full explication of Tversky loss, see [27]
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in adjusting the ’ � ’ and ’ � ’ coefficients. These adjust-
ments can effectively influence the ’importance’ attrib-
uted to false positives and false negatives. Section 6.2 will 
elaborate more on the machine operation benefits that can 
be achieved through these coefficient modifications. This 
Tversky loss is a part of the global loss L and is multiplied 
by a coefficient ‘ � ‘ to control its contribution to L.

On the other hand, the MSE losses measures the average 
squared differences between estimates and actual values, 
providing a measure of regression performance. It is scaled 
by a factor ‘ � ‘. By combining these two losses, the loss func-
tion can effectively balance the trade-off between image seg-
mentation performance (via Tversky loss) and regression 
accuracy (via MSE loss).

where Ŷ1 ∈ [0:1]6000 corresponds to the segmented output 
image of the U-Net. This image of size 120 × 50 is composed 
of 6000 values between 0 and 1. The closer the value is to 
1, the more the network is "confident" that the pixel is the 
hottest pixel in the PFU.

ŷ2 ∈ [0:3] is a scalar corresponding to the prediction of 
the curvature.

(2)L = 𝜏(1 − T𝛼,𝛽(Y1, Ŷ1)) + 𝜖(MSE(y2, ŷ2) +MSE(y3, ŷ3))

(3)

with T𝛼,𝛽(Y1, Ŷ1) =
Y1Ŷ1 + 𝛿

Y1Ŷ1 + 𝛼(1 − Y1)Ŷ1 + 𝛽Y1(1 − Ŷ1) + 𝛿

(4)and MSE(y, ŷ) = (y − ŷ)2

ŷ3 ∈ [0:90] is a scalar corresponding to the prediction of 
the angle of inclination of the strikeline. This angle is in ◦.

In the training process of the network, both loss functions 
are incorporated during back-propagation. The objective is 
to ensure that the initial convolutional layers do accentu-
ate the main features for segmentation while also facilitat-
ing the prediction of specific physical values. The U-Net is 
consequently “constrained” to preserve physical/structural 
information in the initial convolution layers to facilitate a 
decrease in the regression loss which influences the gradient 
descent of the overall loss function.

Investigation into the Determination of Optimal 
Network Dimensions

This section addresses the determination of the best 
network dimensions. Constant values are maintained in 
this investigation for all parameters that influence learning, 
such as the learning rate, epochs, batch size, loss function 
coefficient, and others. The only variable being changed 
is the sizes of the 2D convolution layers, specifically the 
number of filters. This approach results in networks of 
varying sizes, each with a different number of parameters 
to learn. Larger networks have the potential for increased 
efficiency but may also experience a significant increase in 
inference time. Therefore, the objective is to find an optimal 
balance between performance and speed. The results are 
summarised in Table 2.

A suitable network structure is selected based on the eval-
uation of the loss functions for various models. The most 
extensive network (1) demonstrates proficiency in learning 
the regression component, yet it fails to generalize effec-
tively for mask segmentation. This limitation is attributed 

Fig. 4  Constrained U-Net architecture
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to insufficient learning time. Network 5 is also unsuitable, 
as evidenced by its relatively high segmentation and regres-
sion values. The size of this network may be too small to 
extract all the necessary features for effective segmentation 
and prediction of physical quantities.

Networks 3 and 4 exhibit similar results, which are 
relatively good, yet they are significantly outperformed 
by Network 2. Despite the substantial size difference 
between Networks 2 and 3, their inference times are quite 
comparable. Therefore, for this project, Network 2, with its 
34 M parameters, emerges as the preferred choice due to its 
superior performance and sufficiently rapid inference time 
for the requirements (see Sect. 6.4).

Evaluation

Network 2 has been selected for the evaluation of the 
proposed constrained U-Net. Subsequently, two versions of 
Network 2, termed as Networks A and B, will be compared. 
These networks correspond to two versions of the Tversky 
loss. Additionally, a comparison will be made between 
Networks A and B, the "Classical U-Net", and a max-tree 
[28] based segmentation method.

Comparative Methods

Two comparative analogous methods are employed for the 
purpose of evaluating the model presented in this article. 
These methods, provide a basis for comparative analysis 
and bear similarities to the model. The two methods are 
”segmentation only” techniques. The comparative analysis is 
conducted based on the segmentation outcomes derived from 
the hot spot images of the test dataset. They are the following:

• ”Classical U-Net” The U-NET architecture has been 
specifically developed for the purpose of image seg-
mentation. So comparing the segmentation results of 

the Constrained U-NET with a ’classic’ U-NET makes 
sense. The question arises whether this addition on the 
Constrained U-Net impacts segmentation positively or 
negatively. In an effort to assess the influence of the 
regression module, the overall U-NET architecture was 
retained as a benchmark. The only change implemented 
was the exclusion of the dense network tied to regression, 
along with the corresponding term in the loss function. 
This strategy facilitated a concentrated examination of 
the regression module’s impact. New physical features 
are deducted from the image, but it is important to ascer-
tain whether this is correlated with a reduction in seg-
mentation performance.

• Max-tree for segmentation Max-tree is used as 
a comparative method that does not rely on neural 
networks. The max-tree method is a technique frequently 
employed in medical image segmentation. It is proposed 
by Dr. Salembier in [28] towards the end of the 90 s. 
The basic concept aligns with the one described in [22], 
where the apex of each ”branch” surpassing a certain 
threshold is identified. Rather than analysing these 
branches globally to infer a potential anomaly, here, only 
the hottest pixel of each branch is recovered, which will 
become the segmentation prediction for this method. The 
primary drawback of this method is its reliance on the 
branch splitting threshold value. Indeed, if the threshold 
is set too high, there is a risk of overlooking hot zones 
situated at the extremities of the strikeline, as these areas 
are considerably cooler than the central zones. On the 
other hand, if the threshold is set too low, an excessive 
number of branches may be selected, potentially 
leading to a high incidence of false positives. A direct 
correlation is observed between the threshold of branch 
cutting and the quantity of points segmented via the 
employed methodology. A comprehensive study could 
be conducted to devise a method for implementing an 
adaptive threshold. The reasoning could also be based on 
a fixed number of cut branches. This approach, however, 

Table 2  Results comparison on validation dataset of 5 networks with different number of trainable parameters

Networks 5 4 3 2 1
Number of trainable parameters 33,997 540,331 2,158,931 34,514,243 138,037,891

Epochs 250 250 250 250 250
� 1 1 1 1 1
� 0.9 0.9 0.9 0.9 0.9
� 1 1 1 1 1
� 0.5 0.5 0.5 0.5 0.5
1 − T�,� 5.3 10−1 2.7 10−1 2.2 10−1 �.� ��−� 9.9 10−1

MSE(y2, ŷ2) +MSE(y3, ŷ3) 1.0 10−2 3.0 10−3 2.0 10−3 4.0 10−4 �.� ��−�

Av. time to process 1 image (s) 4.4 10−3 4.5 10−3 5.2 10−3 5.3 10−3 8.5 10−3

Inference capacity (fps) 226 219 190 188 116
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would consistently yield the same number of segmented 
points, which could be seen as a disadvantage. In fact, 
a priori knowledge of the number of PFUs that will be 
activated by the plasma on the divertor is not available. 
This advantages neural network methods, which do not 
necessitate a threshold. Therefore, the same threshold as 
the one used in [22] (Sect. III.D) is adopted here.

Results on Test Dataset

In the results section, two similar Constrained U-Net are 
examined. These networks share identical characteristics. 
They have been selected based on specific hyper-parameter 
tests. The distinction between the two lies in the coefficients 
used in the Tversky loss function. Network A uses an � 
value of 1 and a � value of 0.9, indicating a slightly higher 
emphasis on false positives. Conversely, network B operates 
with an � value of 0.9 and a � value of 1, thereby placing a 
slightly greater emphasis on false negatives. The objective is 
to evaluate the effect of these minor coefficient adjustments 
on the recall and precision outcomes derived from the test 
dataset. While it is feasible to extend this study by drastically 
unbalancing the two coefficients, the relevance for hotspot 
monitoring is limited. However, providing an option for a 
slight ’direction’ for the network is logical. From a security 
perspective, false negatives pose a risk as they indicate 
missed PFUs, which could potentially become anomalously 
hot. Conversely, in the context of physics research, false 
positives can be problematic as they may skew studies of a 
PFU’s cooling time, for instance. The Tversky loss function 
facilitates a degree of modularity in the segmentation 
component of the U-Net, proving beneficial in a field where 
security and physical studies intersect.

The characteristics of the chosen network, which will be 
used for all results in the following sections, are outlined in 
the Table 3:

From a quantitative perspective, the results of the two 
loss functions associated with regression and segmentation 
are presented. For the segmentation, the Accuracy metric 
may not be particularly meaningful due to the class imbal-
ance. Indeed, a network that does not predict any hotspots 

on an image with 8 PFUs would have an accuracy of 99.8%, 
which could appear very good from an external perspec-
tive, even though the network predicts an image without 
PFUs. To obtain more meaningful metrics, it is necessary 
to use Precision, Recall, and the F1-score. For regression, 
the Mean Absolute Error (MAE) for the two physical quanti-
ties can be added to provide a more physically meaningful 
interpretation. These are summarized in Table 4

The model’s performance on the simulated data is 
highly satisfactory. Metrics such as precision, recall, and 
F1 score hover around the 99% mark, a critical factor in 
the context of operational safety. As for regression, the 
predicted values exhibit remarkable accuracy, with an 
average error of less than 1 ◦ for the angle and less than 
0.05 for the curvature index. A more graphical represen-
tation (see Fig. 5) of the different predictions for both 
physical features on the test set can be provided. This is 
achieved by plotting the prediction as a function of the 
actual value, which allows for a visualisation of the distri-
bution and spread of the predicted values.

The predictions of the physical features exhibit no outli-
ers. This is a significant and positive observation, con-
firmed by the computation of Pearson coefficient R2 for 
both distributions: R2

(a)
= 0.998 and R2

(b)
= 0.995 . Having 

no outliers is particularly crucial for a method designed to 
inform machine safety decisions, where outliers could 
potentially result in erroneous conclusions. The distribu-
tion of error in angle estimations is relatively uniform, 
although there is a minor tendency to underestimate the 
actual angle between 60 and 80 degrees.

Regarding curvature, it is noteworthy that there are no 
data points around 0.5, 1.5, and 2.5. These regions do not 
permit a swift determination of the strikeline’s curvature. 
Despite this, it is beneficial to retain the predictions as 
floating-point numbers. The values at.5 could potentially 
signify an intermediate point detected by the network, thus 
providing valuable insights.

Comparative analyses for the segmentation task favour 
the constrained U-Net over the comparative methods. This 
outcome could be expected as the max-tree method would 
necessitate adaptive thresholding (which could be chal-
lenging to achieve), to maintain a consistent number of 
predicted pixels. The U-Net method without regression 
yields results that are closely aligned with models A and 
B, albeit slightly inferior. This gap could potentially be 
bridged with additional hyper-parameter tuning on the 
non-regression network. As discussed in subection 6.1, 
this U-Net has not been reconfigured to be optimized for 
segmentation. The key takeaway from this study is that the 
regression component does not significantly impede seg-
mentation, while concurrently enriching the model with 
new information from the regression.

Table 3  Networks hyperparameters

Network A Network B

Number of parameters 34514243 34514243
Number of epochs 1000 1000
Learning rate 0.001 0.001
Batch size 256 256
� 1 0.9
� 0.9 1
� 1 1
� 0.5 0.5
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Fig. 5  Distribution of angle (a) and curvature (b) predictions as a function of the true value

From a qualitative perspective, Appendix C presents the 
outcomes of all these models on a test set image. This image 
closely resembles the potential output from the hot-spot 
detection pipeline, with the curvature, angle, and number of 
PFUs falling within the ’normal’ value ranges.

Both Models A and B exhibit remarkable accuracy, inclu-
sive of their ability to predict the values of curvature and 
angle. Model A holds a slight edge as Model B fails to detect 
the 4 th PFU from the left. For the comparative methods, 
the conventional UNET demonstrates satisfactorily perfor-
mance, albeit with two potentially dangerous false negatives. 
Interestingly, no false positives are predicted, which could 
be beneficial for potential supplementary physics studies. 
Max-tree based method is interesting, but the noisy nature of 
the images results in several sub-branches originating from 
the same hot zone. Consequently, it is not feasible to obtain 
a single pixel predicted by PFU with a single threshold at 
the image scale. This leads to the presence of potentially 
serious false positives, as well as false negatives on lower 
temperature values.

Qualitatively, it could prove insightful to present some 
results derived from the model A’s performance on the test set:

The two results shown here (Figs. 6 and 7) are extracted 
from the test dataset and are highly accurate. The predicted 

physical values for both images are extremely close, if not 
identical, to the values used to generate the image. Regard-
ing segmentation, the first image is flawless with all detected 

Table 4  Network results on Test 
dataset

Metric Network A Network B Classical U-Net Max-tree

1 − T�,� (�, � = 1) 0.025 0.034 0.241 0.755
MSE(y2, ŷ2) +MSE(y3, ŷ3) 1.006 0.699 – –
Precision (threshold 0.5) 0.993 0.985 0.883 0.396
Recall (threshold 0.5) 0.982 0.980 0.851 0.392
F1-Score (threshold 0.5) 0.987 0.983 0.863 0.394
MAE Angle (in◦) 0.787 0.667 – –
MAE Curvature 0.050 0.023 – –

Fig. 6  Top - Input image visualized with coolwarm colormap; Bot-
tom - segmentation result with dark pixels indicating segmented 
regions. Titles contain regression labels (top) and predictions (bot-
tom)
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pixels being accurate. However, in the image of Fig. 7, a 
discrepancy is observed in the fourth PFU (from the right) 
where the network predicts two pixels on the same PFU. In 
this example, the two predicted pixels have similar tempera-
tures (745 and 747 ◦C), it can be hypothesized that this could 
leads to the network’s inability to make a distinct "choice".

These qualitative and quantitative results on the test 
dataset provide a level of confidence in the network’s per-
formance across various types of simulated images. This 
substantiates the concept of employing a physics-constrained 
multi output method to address the challenge at hand.

An key question that arises is whether this same network 
would be capable of predicting the desired outputs on real 
images. This supposition entails two significant considera-
tions: the simulated image dataset must closely resemble 
real images, and the network should not have over fitted the 
simulated images, thereby retaining its ability to general-
ize to images that exhibit slight differences in structure and 
temperature distribution.

Usage of the Constrained U‑Net on WEST Tokamak 
Real Images

The constrained U-net is applied to real images. Real images 
undergo the same transformations, including normalization 
and resizing, before being fed in the network A. The gener-
ated prediction are given in Figs. 8, 9 and 10.

Beginning with an analysis of Figs. 8 and 9, it is observed 
that the predicted regression values are consistent. The two 
strikelines originate from different areas of the sight. The 
strikeline in Fig. 8 is derived from the centre of the sight, 
resulting in a less angulated and less curved strikeline due 

to the angle of sight. Conversely, the strikeline in Fig. 9 is 
extracted from the upper left part of a divertor sight, leading 
to a more angular and curved strikeline.

Precise values for the curvature and angle of the strike-
lines are not available on real images. However, by apply-
ing the same principles used for the curvature of synthetic 
images, the curvature of these two strikelines can be esti-
mated to be slightly below the value 1. The angles can be 
estimated using trigonometric principles directly applied to 
the image. Specifically, the angle of strikeline 8 is estimated 
to be 9 ◦ , while the one of strikeline 9 is estimated to be 28◦.

In the regression analysis, manual labelling can be 
accomplished by retrieving the values for each pixel and 

Fig. 7  Top - Input image visualized with coolwarm colormap; Bot-
tom - segmentation result with dark pixels indicating segmented 
regions. Titles contain regression labels (top) and predictions (bot-
tom)

Fig. 8  Example on a real strikeline extracted from C7 campaign in 
January 2023 (57396 - DIVQ1B)

Fig. 9  Example on a real strikeline extracted from C7 campaign in 
January 2023 (57438 - DIVQ2B)
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marking the hottest pixel in each PFU. This process is nota-
bly time-consuming, prompting the exploration of an alter-
native method that eliminates the need for real image label-
ling. For both examples, the labelling work was conducted 
and the results are described in the Table 5.

These quantitative outcomes prompt a discussion on what 
constitutes an acceptable result for the method’s usage and 
application field. In terms of true positives, the scores on real 
images are relatively low, albeit encouraging, given that the 
network has not encountered any real infrared image dur-
ing training. However, the ’large’ false negative errors hold 
significant importance in this context. The method was not 
intended to serve as one of the power control factors dur-
ing a discharge, but it is crucial not to overlook any PFUs. 
These errors could potentially lead to a misinterpretation of 
the resultant physical work. Indeed, it is observed that on 
real images (this can be confirmed on other examples not 
shown here), the network tends to make incorrect predictions, 
albeit within a perimeter of one pixel. It would be insight-
ful to understand why this error is more prevalent on real 
images in order to rectify it. However, this error does not 
significantly impact the studies based on these results. For 
instance, it is still feasible to analyse the normality of the 
strikeline despite this error. In the context of enhancing the 

first wall protection aspect of this work, it may be benefi-
cial to consider the development of an evaluation metric that 
incorporates these elements. It becomes crucial to impose 
a more stringent penalty on ’missed’ PFUs compared to 
those predictions that are within a one-pixel radius of the 
actual value. Due to these factors, establishing an acceptable 
threshold for TP, FN, FP, Precision, and Recall on real-time 
results presents a significant challenge. The emphasis may 
shift between these aspects based on specific requirements. 
From a security perspective, the preference leans towards 
identifying all potential hot PFUs, even if the segmentation 
yields multiple pixels on the same PFU. On the other hand, 
for the physical examination of temperature distribution 
along the strikeline, the ideal scenario would be the absence 
of false positives, ensuring a one-to-one correspondence of 
pixels to PFUs. Regardless, this method was not conceived to 
serve as a singular information source for providing control-
feedback on plasma. This Constrained U-Net is integrated 
into a dynamic, pre-established by the detection/classification 
pipeline, to assist in decision-making for experts.

Nonetheless, it is deemed important to maintain the 
Tversky loss as a training loss function for the segmenta-
tion component of the model. This is aimed at reinforcing 
the objective of identifying the hottest zone/pixel within 
a broader hot area, an operation that could be repeated an 
indeterminate number of times on a single strikeline. The 
goal is not to learn to enumerate PFUs, but rather to pinpoint 
the most intense heat zone within each unit, a process that 
subsequently facilitates their enumeration.

The strikeline in Fig. 10 deviates from the typical pattern. 
This anomaly is attributed to a shock event that occurred 
towards the end of the experimental campaign, which led 
to the accumulation of a noticeable material deposit on 
the divertor in the strikelines’ zone. The deposit, found to 
contain tungsten among other elements, is currently under 
investigation by other research team. It poses a significant 
challenge for infrared analysis, because it is a major pertur-
bation to usual temperature patterns. Such perturbed tem-
perature pattern makes it challenging for an expert human 
eye to differentiate between the hot zones associated with 
the deposit and the hot zones that result from flux deposition 
on the divertor.

The regression outcomes for this strikeline, while remain-
ing within a plausible range, are less precise. The computed 
curvature value is a bit high, considering that the expected 
curvature in this region ranges between 1 and 1.5. The angle 
prediction is also marginally overestimated, with substantial 
measurement uncertainties yielding an approximate value of 
12◦ for this strikeline. Following consultations with experts 
in the field, it is inferred that the conclusions derived from 
these angle and curvature measurements are not down to 
the last degree. A tolerance of approximately 10◦ and 0.5 
curvature value may be deemed acceptable, as it does not 

Table 5  Quantitative results on 2 real-world images

Fig. 8 Fig. 9

True positives (TP) 4 7
False negatives (FN) 12 8
False positives (FP) 9 7
Pairs of FP/FN located at less than 

1px apart
9 6

Fig. 10  Example on a real strikeline extracted from C7 campaign in 
April 2023 (58502 - DIVQ1B)
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significantly impact subsequent physical and safety analy-
ses. So, despite these discrepancies, the values obtained on 
Fig. 10 are still within acceptable limits, demonstrating a 
degree of robustness in the network.

In order to address the issue of potentially exaggerated pre-
dictive values, which may arise from a substantial discrepancy 
between simulated and real world images (like the atypical 
shape of the resistive deposits visible on Fig. 10), future 
enhancements could consider the incorporation of annotated 
real images into the training set. This approach may provide 
a more robust and realistic training environment, thereby 
improving the accuracy of the predictions.

Potential Application in Real Time

One of the major challenges of tokamak wall hot spot detec-
tion relies in real-time detection/identification. Fast detec-
tion is crucial as it enables the implementation of preventive 
measures to avoid substantial damage to the reactor. Cur-
rently, real-time detection operates with pre-programmed 
temperature thresholds. They serve as control mechanisms 
for the machine. The objective of this section is to introduce 
options for a real-time application of the constrained U-Net.

The temperature security server used by the institute is 
equipped with an NVIDIA A30 GPU, hence allowing AI 
model inference. It has a substantial memory capacity of 
24GB, which allows it to handle complex tasks efficiently. In 
terms of performance, it delivers a peak FP64 performance 
of 5.2 TFLOPS (trillion floating-point operations per sec-
ond) and a peak FP32 performance of 10.3 TFLOPS.

Given their specifications, the two optimal models 
(referred as A and B in Sect. 6.2) operate at an average of 
170 frames per second (fps). To put this into perspective, 
WEST’s infrared cameras capture images at a rate of 50 fps. 
Furthermore, the hot spot detection and classification model 
(detailed in [13]) is inherently a larger model compared to 
the one discussed in this article. Consequently, it operates 
inevitably below 170 fps. Therefore, the constrained U-Net 
is compatible with on-line usage for the real-time analysis of 
hot spots. This could be used to write the real time strikeline 
temperature on the shared memory network, playing the role 
of an “intelligent” ROI. Such an “intelligent” ROI has the 
potential of being much less sensitive to detection errors and 
artefacts than a prescribed and fixed ROI.

Conclusion

In recent years, strides have been made towards the auto-
matic detection of a series of WEST divertor hot spots, 
known as strikelines, for safety monitoring. The useful-
ness of a Faster R-CNN algorithm for extracting a specific 
strikeline from the divertor camera’s field of view has been 
demonstrated. But until now, strikeline detection from neu-
ral network was good but presented some false detections, 
all too easily discarded by human experts based on a-priori 
knowledge from strikeline curvature and angle. The strike-
line detector was to be improved by mimicking the human 
expert analyse, which includes prior knowledge about strike-
line pattern, expressed in the form of its curvature and angle.

This paper presents an AI algorithm dedicated to the 
analysis of a specific strikeline. This novel U-Net-like algo-
rithm, without loss of generality, provides two categories of 
outputs: one image and two scalars, which characterize the 
strikelines, taking into account angle and curvature, being 
representative of prior knowledge.

The novelty of this work, achieved with the constrained 
U-Net, lies in the estimation of the location of the hotspots, 
regardless of their number, and the curvature and angle of 
the strikeline. Another innovative aspect of this work is the 
use of a ’Tversky’ loss function to introduce some modular-
ity in the segmentation capacities for security purpose.

On a test dataset of synthetic images, the precision, recall, 
and F1-Score exceed 0.98, outperforming a comparative 
’classical’ U-Net without regression, which yields values 
between 0.85 and 0.89, and an automatic max-tree based 
segmentation algorithm, which yields values around 0.4.

Given the results obtained on real-world acquisitions 
from the WEST Tokamak, there is confidence in the pro-
posed methodology. It can easily be transposed to similar 
data obtained in other fusion devices such as W7-X, EAST, 
and later on, ITER. Results obtained on strikelines, recog-
nized as typical hotspots by fusion specialists, are merely 
one facet of a larger objective. The overarching goal is to 
illustrate the benefits of integrating diverse forms of physical 
knowledge into neural networks.

Appendix A: Curvature Examples

See Fig. 11.
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Fig. 12  Examples of 4 possible angles for a 0 curvature strikeline

Fig. 11  Examples of the 4 possible curvatures for a 0 ◦ angular strikeline

Appendix B: Angle Examples

See Fig. 12.
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Appendix C: Comparative Table 
of the Models

See Table 6.
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Model Output
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Model B
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Max-tree based method
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