

Highly Selective Optical Filtering Technology on 300 mm **Glass Wafer for Advanced Spectroscopy Applications**

S. Villenave ^{1,2,3}, S. Monfray¹, Q. Abadie³, S. Audran¹, S. Guillaumet¹, D. Ristoiu¹, H. Benisty²

¹STMicroelectronics, 38920, Crolles, France

²Laboratoire Charles Fabry, Institut d'Optique Graduate School, Université Paris Saclay, CNRS, Palaiseau, France ³Université Grenoble Alpes, CEA Leti, Grenoble, France *Contact email : sandrine.villenave1@st.com*

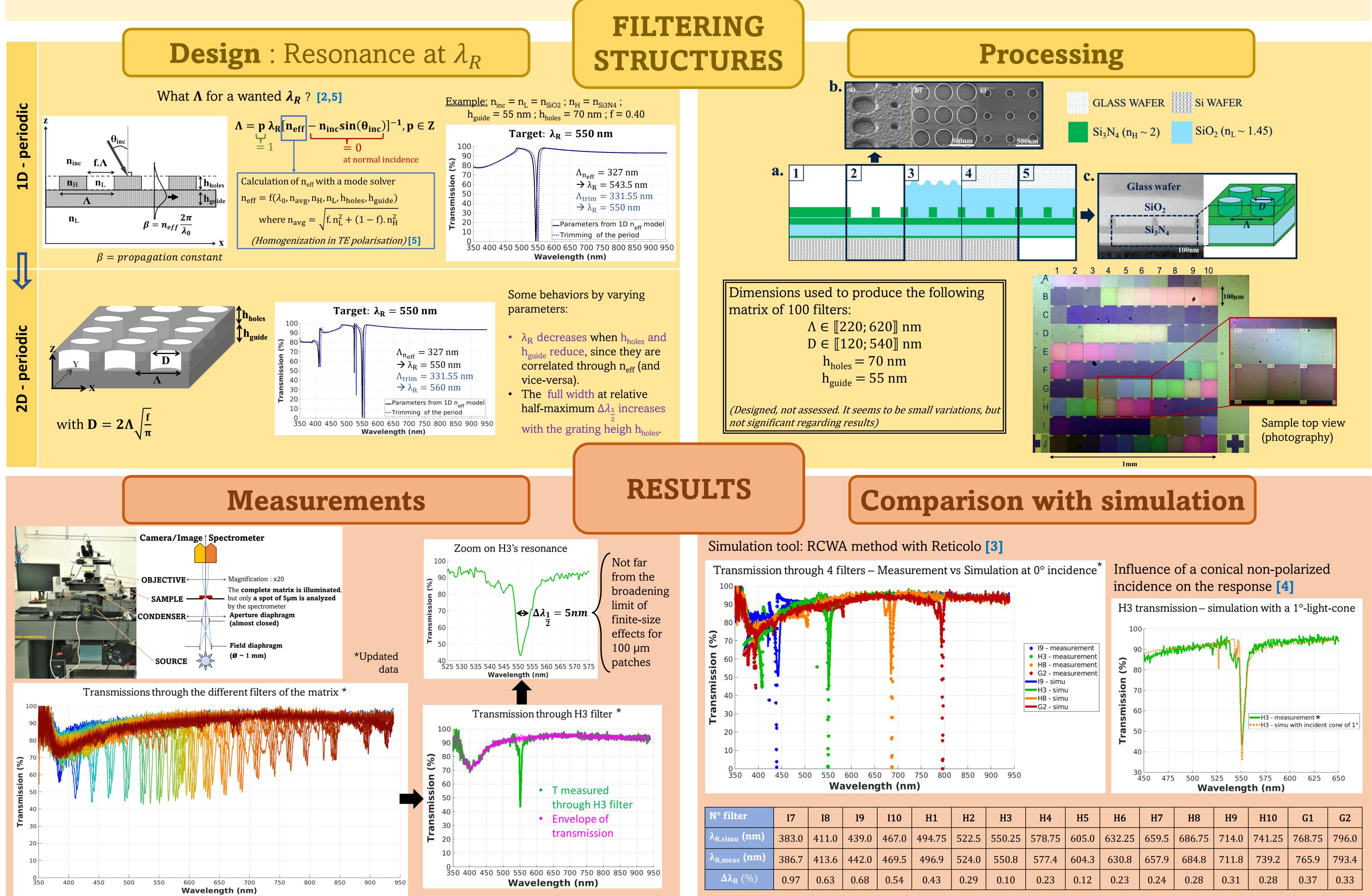
INTRODUCTION

KEYWORDS:

life.augmented

Photonic crystals Dielectric metasurfaces Multispectral filtering CMOS integration VIS & NIR ranges

General concerns about environment & health [1]

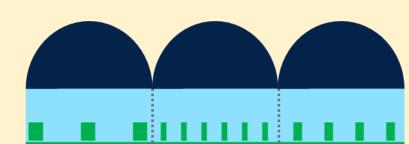

→ Main goal: bring sensing ressources everyone can reach

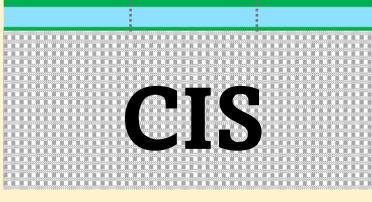
□ How ?

 \rightarrow Retained principle: Spectral analysis over Visible – Near-Infrared ranges (spectrometer-like)

• What ?

 \rightarrow Core solution: Resonant waveguide grating filters [2] made in Si_3N_4 and SiO_2 using CMOS compatible process. Filters are embedded on 300mm glass wafer (independent component)




40									
30	Envelope of								
	transmission								
20									
10									
0 350 400 450 500 550 600 650 700 750 800 850 900 950 Wavelength (nm)									

N	° filter	17	I8	I9	I10	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	G1	G2
λ	_{R,simu} (nm)	383.0	411.0	439.0	467.0	494.75	522.5	550.25	578.75	605.0	632.25	659.5	686.75	714.0	741.25	768.75	796.0
λ	_{R,meas} (nm)	386.7	413.6	442.0	469.5	496.9	524.0	550.8	577.4	604.3	630.8	657.9	684.8	711.8	739.2	765.9	793.4
	$\Delta\lambda_{\mathrm{R}}$ (%)	0.97	0.63	0.68	0.54	0.43	0.29	0.10	0.23	0.12	0.23	0.24	0.28	0.31	0.28	0.37	0.33

CONCLUSION

- ✓ Numerical and experimental demonstration of a filter matrix made of resonant waveguide gratings
- \rightarrow Numerous narrowly filtered bands
- \rightarrow Deterministic resonance properties (position & halfwidth) through geometrical parameters
- \rightarrow Rejection mode
- \rightarrow Visible to Near-Infrared spectral domains
- Production of grating filters with dielectric material, adapted to CMOS process, onto 300 mm ST platform
- \rightarrow Access to industrial quality
- \rightarrow Low-cost because usual dielectric materials and processes, and mass-production
- \rightarrow Can be integrated onto CMOS image sensor
- > Perspectives :
- Pass-band filter (instead of stop-band like here)
- Use of other CMOS compatible materials (amorphous Si) • Integration onto CMOS image sensor (CIS)

REFERENCES:

[1] E.S. McLamore et al., "FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America", Biosensors and Bioelectronics 178 (January 2021). [2] G. Quaranta et al., "Recent Advances in Resonant Waveguide Gratings", Laser & Photonics Reviews 12, 1800017 (2018). [3] J.P. Hugonin and P. Lalanne, "Reticolo software for grating analysis", Institut d'Optique, Orsay, France (2005) http://doi.org/10.5281/zenodo.4419063 [4] L. Devys et al., "Characterization of photonic crystal coupling to and from guided light by absorbance," J. Nanophot. 8(1), 083992 (2014). [5] H. Benisty, J.J. Greffet, P. Lalanne, "Introduction to Nanophotonics", Oxford Graduate Texts, ISBN:9780198786139 (April 2022)