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ABSTRACT

Aims. We investigate whether neural networks (NNs) can accurately differentiate between growth-rate data of the large-scale structure
(LSS) of the Universe simulated via two models: a cosmological constant and Λ cold dark matter (CDM) model and a tomographic
coupled dark energy (CDE) model.
Methods. We built an NN classifier and tested its accuracy in distinguishing between cosmological models. For our dataset, we gen-
erated fσ8(z) growth-rate observables that simulate a realistic Stage IV galaxy survey-like setup for both ΛCDM and a tomographic
CDE model for various values of the model parameters. We then optimised and trained our NN with Optuna, aiming to avoid over-
fitting and to maximise the accuracy of the trained model. We conducted our analysis for both a binary classification, comparing
between ΛCDM and a CDE model where only one tomographic coupling bin is activated, and a multi-class classification scenario
where all the models are combined.
Results. For the case of binary classification, we find that our NN can confidently (with >86% accuracy) detect non-zero values of
the tomographic coupling regardless of the redshift range at which coupling is activated and, at a 100% confidence level, detect the
ΛCDM model. For the multi-class classification task, we find that the NN performs adequately well at distinguishing ΛCDM, a CDE
model with low-redshift coupling, and a model with high-redshift coupling, with 99%, 79%, and 84% accuracy, respectively.
Conclusions. By leveraging the power of machine learning, our pipeline can be a useful tool for analysing growth-rate data and
maximising the potential of current surveys to probe for deviations from general relativity.
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1. Introduction

In the past few decades, advances in observational cosmology
have allowed us to achieve percent-level precision, bringing us
ever closer to understanding the nature of the Universe. Cur-
rently, the concordance model postulates the presence of ordi-
nary baryonic matter, slow-moving and non-interacting (hence
cold) dark matter (DM), and a cosmological constant, Λ,
assumed to be responsible for the late-time accelerating expan-
sion. Collectively, this is known as the Λ cold dark matter
(CDM) model and has been largely successful in providing an
accurate description of the Universe. However, with the recent
continuous releases of observational data, tensions have arisen
(Di Valentino et al. 2021), most notably the significant discrep-
ancy (of an order of ∼5σ) between the measured, current-day
value of the expansion of the Universe – the Hubble con-
stant (H0) – derived from high-redshift and low-redshift probes.
Putting aside systematic errors in the measurements, this could
hint at new physics beyond ΛCDM that is yet to be uncovered.

As such, a variety of alternative cosmological models have
been proposed (Schöneberg et al. 2022) in an attempt to answer
the questions that ΛCDM has so far been unable to. This
typically involves modifying Einstein’s field equations, either
by generalising the Einstein-Hilbert Lagrangian to modify the
space-time geometry (Clifton et al. 2012) or by altering the

? Corresponding author; lisa.goh@cea.fr
?? Both authors contributed equally.

matter-energy contents of the Universe. In this study, we focused
on a class of models that deal with the latter. Specifically,
we assumed that the dark energy component of the Uni-
verse exists in the form of a scalar field, mediating a fifth
force attraction between the CDM particles (Wetterich 1995;
Amendola 2000). The coupled dark energy (CDE) model, as
it is known, has been demonstrated to relieve the H0 tension
(Gómez-Valent et al. 2020) while being compatible with cur-
rent data (Pettorino 2013; Di Valentino et al. 2020), making it
one of the ΛCDM model extensions still being actively investi-
gated today (Gómez-Valent et al. 2022; Goh et al. 2023). How-
ever, there are also many other variations of CDE models, mainly
with different couplings (see for example Gumjudpai et al. 2005;
Gavela et al. 2010; Salvatelli et al. 2013; Amendola et al. 2007;
Pourtsidou et al. 2013, and references therein).

To test the CDE model, we availed ourselves of the informa-
tion on the late-time evolution of the Universe, which is embed-
ded in combined probes of its large-scale structure (LSS).

Through measurements of galaxy clustering and weak lens-
ing, LSS surveys such as the Kilo Degree Survey (KiDS;
de Jong et al. 2013), the Dark Energy Survey (DES; Abbott
2005), the Dark Energy Spectroscopic Instrument (DESI;
Levi et al. 2019), and others have provided precision in cosmo-
logical parameter estimation of better than 5%.

Measurements at the sub-percent level are expected to be
achieved with the current generation of LSS observational pro-
grammes, such as the European Space Agency’s Euclid mis-
sion (Laureijs et al. 2011) and the Legacy Survey of Space and
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Time (LSST; Ivezić et al. 2019). This implies that the upcom-
ing decade is poised to witness an exponential increase in the
quantity, variety, and quality of multi-wavelength astronomical
observations of the LSS, which will require very sophisticated
computational resources. Likewise, at this stage, the constraints
may come from the statistical and data-driven tools them-
selves, rather than the data quality or quantity. As a result,
machine learning (ML) techniques have proven to be a valuable
tool capable of addressing some of the computational limita-
tions of conventional statistical methods (Moriwaki et al. 2023;
Kacprzak & Fluri 2022).

In this work, our goal is to test slight deviations in the
growth history of the Universe with respect to ΛCDM within
the framework of the CDE model. For this purpose, we analysed
growth-rate ( fσ8) data by leveraging ML techniques to differen-
tiate between the models. Similar analyses have been carried out
for ΛCDM and other more generalised modified gravity mod-
els (Peel et al. 2019; Merten et al. 2019; Mancarella et al. 2022;
Thummel et al. 2024; Murakami et al. 2024). We aim to build
upon these efforts by investigating how accurately deep learning
methods can detect hints of beyond-ΛCDM physics.

This paper is arranged as follows: In Sect. 2 we explain the
theoretical framework of the CDE model, specifically a tomo-
graphic CDE model, highlighting how the presence of coupling
between DM and dark energy (DE) modifies the cosmological
observables. We then describe the development of our neural net-
work (NN) architecture as well as the generation of mock data in
Sect. 3. We present and discuss our results in Sect. 4, for both a
binary and a multi-class classification scenario, and finally sum-
marise our work in Sect. 5.

2. Coupled dark energy

In CDE cosmologies, a scalar field, φ, is assumed to play the role
of DE by driving the late-time accelerating expansion of the Uni-
verse. This field consequently mediates an interaction between
Fermionic DM particles, resulting in them experiencing a fifth
force that can be stronger than gravity.

In the case of cosmologies with a non-minimal coupling
between a scalar field and non-relativistic particles, the general
form of the Lagrangian can be split into several components
(Koivisto et al. 2015):

L = Lgrav +Lφ +Ldm, (1)

where Lgrav is the Einstein-Hilbert Lagrangian, Ldm is that of
the DM component, and Lφ is that of the scalar field given by
Lφ = 1

2∂µφ ∂
µφ − V(φ), where V(φ) is the potential of the scalar

field.
We can further break down the DM Lagrangian term by

expressing it as a sum of its kinetic and interaction terms:

Ldm = Lkin +Lint = ψ̄iγµ∂µψ + mdm(φ)ψψ̄, (2)

where ψ refers to the DM wave vector and mdm its field-
dependent mass term. Hence, we see that in the case of cou-
pled cosmologies that we are studying, the DE-DM interaction
is mediated by the mass of the DM particles. Furthermore, we
can specify the form of the mass term as m(φ) = m0eβκφ, where
κ =
√

8πG is the reduced Planck mass, and β ≡ − 1
κ
∂ ln mdm
∂φ

is the
coupling parameter quantifying the strength of coupling between
the φ and DM sectors.

From the Lagrangian, we can also derive the energy-
momentum tensors Tµν ≡ −2

√
−g

δ(
√
−gL)
δgµν

and subsequently con-

struct the modified covariant equations for the φ and DM com-
ponents:

∇µT φ
µν = κβT dm∇νφ; ∇µT dm

µν = −κβT dm∇νφ, (3)

with T dm = gµνT dm
µν . For a comprehensive review of the the-

oretical formalism of the CDE model, we refer the reader to
Amendola (2000) and Pettorino & Baccigalupi (2008).

2.1. Tomographic coupled dark energy

A tomographic CDE model, first introduced in Goh et al. (2023),
is an extension of the CDE model that allows for a coupling that
varies with redshift, z. For simplicity, we employed in this work
a three-bin parameterisation of the coupling strength, where β(z)
is given by

β(z) =
β1 + βn

2
+

1
2

n−1∑
i=1

(βi+1 − βi) tanh[s(z − zi)], (4)

with n = 3 and redshift bin edges zi = {0, 100, 1000}. To ensure
a smooth transition of the coupling between redshift bins, we
defined a smoothing factor s = 0.03, which is the same value
used in Goh et al. (2023). In the following equations, we drop
the explicit z dependence of β for clarity of notation and assume
that βi refers to the coupling parameter in the ith bin.

Assuming a flat Friedmann-Lemaître-Robertson-Walker
metric where DM and the scalar field behave as perfect fluids,
we can solve the Einstein field equations with a modified T dm;φ

µν ,
arriving at the relevant conservation equations for DM and φ:

ρ′dm + 3Hρdm = −κβρdmφ
′, (5)

ρ′φ + 3H(ρφ + pφ) = κβρdmφ
′, (6)

where the prime denotes a derivative with respect to conformal
time τ andH ≡ a′/a.

We can also derive the energy density and pressure terms of
the scalar field, ρφ and pφ:

ρφ =
(φ′)2

2a2 + V(φ); pφ =
(φ′)2

2a2 − V(φ), (7)

and by substituting Eq. (6) into Eq. (7), we finally obtain the
modified Klein-Gordon equation governing the evolution of the
scalar field:

φ′′ + 2Hφ′ + a2 ∂V
∂φ

= κβa2ρdm. (8)

For simplicity, we adopted a flat potential for the scalar field,
where V(φ) = V0, that is responsible for late-time acceleration.

2.2. Perturbation equations

In a tomographic CDE model, the evolution of the DM density
contrast δdm ≡ δρdm/ρdm, can be approximated, at sub-horizon
scales, as a second-order ordinary differential equation:

δ′′dm +
[
H − βκφ′

]
δ′dm −

κ2a2

2

[
ρbδb + ρdmδdm(1 + 2β2)

]
= 0, (9)

where the subscript ‘b’ denotes baryons.
The growth rate f , defined by f ≡ d ln δdm

d ln a , is the derivative of
the logarithm of matter overdensity with respect to the logarithm
of the scale factor, which we took to be scale-independent in this
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Fig. 1. Growth rate ( fσ8) against redshift (z) for the 16 redshift bins for
both the ΛCDM model (solid black line) and the CDE models (coloured
lines). We used the same cosmological parameters in all models, but in
the CDE case set the coupling at the three different redshift bins z =
[0, 100, 1000] to βi = 0.05.

model. Since the evolution of δdm is modified with respect to
ΛCDM, we expect that this will change the value of f such that
feff = f − κφ′β/H . However, we verified that the second contri-
bution term is of the order of 10−3 f , which is within the order of
magnitude of the uncertainty of fσ8. By solving Eq. (9), we can
see how coupling modifies clustering dynamics: δdm increases
due to the presence of a β term, and hence we would expect
an increase in f and σ8(z), the rms amplitude of clustering at
8 h−1 Mpc. This is further illustrated in Fig. 1, where we also see
that activating coupling at late times (z < 100) has the largest
impact on the increase in clustering.

We employed the observable fσ8(z), the product of the
growth rate f and σ8(z), as our data. Current Stage IV spec-
troscopic galaxy surveys such as DESI and Euclid will be able
to provide values of fσ8(z) through measurements of redshift-
space distortions, with forecasts of σ( fσ8)/ fσ8 at less than 5%
(DESI Collaboration 2016). It could hence be an effective probe
in testing for deviations in the growth history of the Universe
with respect to ΛCDM.

3. Numerical analysis

3.1. Generating mock DESI-like data

We used the Boltzmann code CLASS (Blas et al. 2011) to gener-
ate 4000 training and 750 testing datasets of the product fσ8(z)
for each model, varying Ωm within the range Ωm = [0.01, 0.7]
and fixing the fiducial cosmology to ωb = 0.02225, ln 1010As =
3.044, ns = 0.966, τ = 0.0522, V0 = 2.64 · 10−47GeV4, where in
ΛCDM, V0 = ρΛ. To be conservative, we set kmax = 0.1 h/Mpc
to exclude highly non-linear scales and only considered the lin-
ear matter power spectrum.

For the tomographic CDE model, we employed a modified
version of CLASS1 to generate the same number of training and
testing datasets, varying Ωm and additionally, βi = [0.001, 0.5]2

for each tomographic bin, separately. Then we simulated a

1 https://github.com/LisaGoh/CDE
2 Note that the value of β is rescaled by a factor of

√
2 in the code. We

also note that in the case of the modified version of CLASS, Ωm refers to
the value of the initial matter density, at zini = 1014.

DESI-like setup of 16 redshift bins with mean redshifts equally
spaced between z = [0.05, 1.65] and used values of the galaxy
bias b(z) and galaxy number densities dn/dz as specified in
DESI Collaboration (2016).

We also included, in our training and testing data, uncertain-
ties in the fσ8(z) measurement within each redshift bin. To do
this, we built a covariance matrix by first calculating the Fisher
matrix for the observed galaxy power spectrum in each redshift
bin zi (Yahia-Cherif et al. 2021; Tegmark 1997), given by

Fαβ(zi) =
1

8π2

∫ 1

−1
dµ

∫ kmax

kmin

k2dk
[
∂Pδδ(k, µ; zi)

∂α

∂Pδδ(k, µ; zi)
∂β

]
× Veff(zi; k, µ), (10)

where α and β are the parameters of concern, Pδδ is the lin-
ear matter power spectrum and Veff is the effective volume of
the survey. We calculated the power spectrum using CLASS,
then evaluated its derivatives via a two-point central difference
formula with respect to the cosmological parameters, θcosmo ={
Ωb,0,Ωm,0, h, ns, ln

(
1010As

)
,
∑

mν

}
, and the nuisance parame-

ters, θnuis =
{
σp, Ps

}
(related to the non-linear component of the

power spectra and the shot noise). Subsequently, we obtained the
total Fisher matrix summing over all the redshift bins as

Fαβ =

Nbins∑
i=1

Fbin
αβ (zi) . (11)

Finally, the Fisher matrix is projected from the θcosmo and
θnuis parameters to fσ8(zi) in the redshift bins and then inverted
to obtain the covariance matrix C fσ8 fσ8 , which is used to gen-
erate an additional Gaussian sampled noise component added
to the values of fσ8(z) output by the Boltzmann code. This
method was compared with other approaches, for example by
Blanchard et al. (2020) and Yahia-Cherif et al. (2021), who find
excellent agreement, providing confidence in its robustness.

3.2. Neural network architecture

Neural networks are a popular ML technique that simulates the
learning mechanism of biological systems, by extracting infor-
mation from relationships and patterns from data. Every neu-
ron (unit) has a weighted connection with another one, and the
architecture depends on the problem at hand but typically con-
sists of hidden layers of neurons between the input and output
ones. Some packages have been developed to optimise, test, and
choose the most appropriate architecture; for the present study,
we worked with Optuna3 (Akiba et al. 2019) to find the number
of layers, the number of neurons in each layer and the values of
some hyperparameters. This agnostic framework works by train-
ing the same dataset several times with different architectures
and extracting the one with the highest accuracy and lowest loss.

Since the goal is to test deviations from ΛCDM using the
NN, we worked with three different architectures designed to
discriminate growth-rate ( fσ8) data coming from the two mod-
els being considered at hand: {ΛCDM, CDE(β1)}, {ΛCDM,
CDE(β2)}, and {ΛCDM, CDE(β3)}; we note that we varied each
tomographic bin independently of the others. The optimal num-
ber of hidden layers for the three cases was 1, while the number
of units and the dropout rate varied for each case. We also imple-
mented an early stopping callback with a patience setting of 50
epochs to find the ideal number of epochs to train each archi-
tecture and prevent overfitting. This information is available in

3 https://github.com/optuna/optuna

A101, page 3 of 9

https://github.com/LisaGoh/CDE
https://github.com/optuna/optuna


Goh, L. W. K., et al.: A&A, 692, A101 (2024)

Table 1. Best-fit hyperparameters as obtained by Optuna.

Model Hyperparameter
Hidden Nodes Dropout Training
layers (n) rate epochs

β1 1 38 0.224 660
β2 1 116 0.218 683
β3 1 82 0.215 673

Notes. Number of hidden layers, number of nodes in the hidden layer,
drop-out fraction, as well as the number of training epochs when utilis-
ing early stopping, for each tomographic bin that was activated.

Fig. 2. Schematic of the NN architecture we implemented in our work.
The normalisation of features and their concatenation as an input array
was performed within the architecture. 32× 32, as denoted beside the
topmost arrow, represents the 32 features (16 data points of fσ8(z) with
its standard deviation), with a batch size of 32.

Table 1, and the generalised diagram of the architecture used is
displayed in Fig. 2, which was generated with Netron4.

On the other hand, 32 is the number of nodes in the input
layer, which accounts for the 16 fσ8(z) values and its stan-
dard deviation σ( fσ8(z)), corresponding to each z bin. We
implemented feature normalisation with a batch size of 32
(Singh & Singh 2022). After the input layer, we have the hidden
layer with n number of units, which varies for each βi param-
eter (found by Optuna). The activation function of this hidden
layer is the Rectified Linear Unit (ReLU; He et al. 2018), fol-
lowed by a dropout layer (commonly used in the literature as
a regularisation technique; Srivastava et al. 2014). Lastly comes
the output layer, with a sigmoid activation function to enable the
classification task: ‘0’ for ΛCDM and ‘1’ for CDE. We compiled
the models using an Adam optimiser and a binary cross-entropy
loss function, while the NN was built using TensorFlow Keras
(Chollet 2015).

4 https://github.com/lutzroeder/netron

Finally, we performed robustness tests on the NN perfor-
mance. First, we verified the impact of randomness during the
training procedure: we trained and tested the network with the
same architecture and datasets multiple times, and determined
the performance error. We find a performance of 94.4% ± 0.2%
for the β1 architecture, 94.1%±0.1% in the β2 case and 93.9%±
0.2% for β3. This illustrates a high overall level of accuracy in
distinguishing between the two models used in our analysis, with
a very small error across all architectures. Second, we tested the
randomness of dividing the training and test sets with different
random seeds, then training and testing the NNs, and found a
similar error of ∼0.2%. These tests confirm that our NN archi-
tecture is robust to randomness.

Finally, we investigated the impact of increasing the num-
ber of training datasets. This analysis is relevant for the scal-
ability tests of our NN, since in cosmology the datasets are
becoming increasingly large and complex due to advancements
in observational technology and simulations. The time complex-
ity of the NN scales approximately linearly with the size of the
datasets (the number of simulated training data), meaning that
larger datasets result in proportionally longer training and test-
ing. However, a larger dataset does not scale proportionally with
the accuracy or performance of the NN, because the accuracy
reaches a saturation point with respect to the size of the dataset.
In other words, larger datasets lead to longer training times with-
out proportional improvements in performance. We find 8000 to
be the optimal number of training dataset samples, (with a fairly
reasonable training and testing time of 60 minutes). For more
details, we refer the reader to Appendix A. A further important
consideration is that as the dataset size increases significantly,
there is a risk of encountering degeneracies between ΛCDM and
CDE fσ8 data, which could negatively impact the NN’s per-
formance and may require more complex architectures. These
degeneracies could depend on how we choose to sample our
parameter space when generating the data (for example if we
decrease the couplings β1, β2, and β3 enough to be very close to
ΛCDM). At the same time, a dataset that is too small may fail
to capture a representative range of scenarios, limiting the NN’s
ability to learn effectively.

In terms of testing data complexity, when real data become
available from current Stage-IV surveys, we do not envision the
number of redshift bins to differ greatly from the setup we have
adopted. However, we expect a much more realistic and complex
covariance matrix compared to the one we employed, which was
based on a simplistic Fisher matrix forecast. Hence, this could
impact the fσ8 uncertainty values and in turn, the ability of the
NN to capture the more complex correlations between redshift
bins.

4. Results and discussion

4.1. Separate β

In this section, we present the results of our NN for the case
where we switched on coupling in only one of the three tomo-
graphic bins, β1, β2, or β3, which correspond to the tomographic
bins z < 100, 100 < z < 1000, and z > 1000, respectively. Here-
after, for brevity, we refer to the model where the coupling is
activated within the i-th tomographic bin as the βi model.

We first present in Table 1, the best-fit hyperparameters
obtained by Optuna and the final number of training epochs
when early stopping is invoked. We see that in all cases, hav-
ing one hidden layer is sufficient, although the number of nodes
within the layer can vary widely between models. Interestingly,

A101, page 4 of 9

https://github.com/lutzroeder/netron


Goh, L. W. K., et al.: A&A, 692, A101 (2024)

Learning curves for ￼  modelβ1

Fig. 3. Left: Accuracy curve for both the training (blue) and validation
(orange) datasets for the model where only β1 is activated. Right: Its
corresponding loss curve.

the best-fit dropout rate is relatively low, at around 20% for all
cases. To verify that Optuna indeed gives a better result, we also
conducted the same training and testing with an un-optimised
architecture, which we describe in more detail in Appendix B.

In the case where only the late-time coupling is activated
(where β1 is non-zero), Fig. 3 shows that our NN performs well,
reaching a high accuracy of over 90% and loss of <20%, and is
sufficiently trained after just 660 epochs. From the loss curve,
we also see that the training and validation losses stabilise and
roughly equalise, implying that the model has been able to learn
all the features from the training dataset and performs equally
well at classifying the unseen validation set.

We also present the classification results of our NN in the
form of a confusion matrix in Fig. 4. We see that the NN can
accurately predict 100% of the ΛCDM cases, and also has a high
accuracy of 86.4% when classifying CDE cases.

We see similar performance in the cases of β2 and β3, where
the coupling is activated between redshifts of 100 < z < 1000
and z > 1000, respectively. For the β2 model, we once again
achieve 100% accuracy in identifying fσ8 datasets coming from
a ΛCDM model, and 86.1% accuracy for CDE. In the case of
β3, we see that the accuracy of the NN is 99.6%. This might
be because activating coupling at early times (z > 1000) has
the least impact on the increase in fσ8, as illustrated in Fig. 1.
Hence, since the discrepancy between a ΛCDM dataset and a
CDE dataset is marginal, the NN might not have been able to
differentiate between the two as accurately as in the cases of β1
and β2. We present the accuracy and loss curves for these two
cases in Appendix C.

4.2. Generalisation of β

Here we also explore the implementation of an NN architec-
ture capable of performing multi-class classification. For this, we
created a dataset from the aforementioned cases of each tomo-
graphic bin, with the classes defined as follows: ‘0’ for ΛCDM,
‘1’ for β1 and ‘2’ for β2+β3, where for the last case we activated
these two couplings independently, and combined the generated
datasets into one class, where we assumed coupling at high red-
shifts of z > 100. The motivation comes from the fact that we
are simulating DESI-like data, where the redshift bins in which
this survey operates are between z ∈ [0.05, 1.65]. Hence, we
do not expect the NN to be able to differentiate between low-
redshift data generated with a coupling at 100 < z < 1000 and at
z > 1000.

We also implemented feature normalisation with a batch size
of 32 (see a summary of the architecture in Fig. 5), while high-
lighting that we added one more hidden layer with a ReLU acti-

vation function and 16 neurons as we found that this improved
the multi-class accuracy, as can be seen in Fig. 6. The optimal
dropout rate found by Optuna was 0.1 and the number of train-
ing epochs obtained by the early stopping callback was 875.
Another difference with respect to the previous architectures was
that the output layer contained three units for each category and
a softmax activation function. We compiled this model using
a Nadam optimiser (Dozat 2016) as it improved the results in
comparison with other optimisers, and a sparse categorical cross-
entropy loss function.

The learning curves for this multi-class task are illustrated in
Fig. 7, where we can see that the accuracy reached by our model
is about 85% and the loss 35%. The results of this multi-class
classification task are shown in Fig. 6. We also computed the
errors of the predictions performed by the NN, since the impact
of randomness in the training was found to be slightly more sig-
nificant than the previous cases. We can see that the prediction of
ΛCDM data achieves very high accuracy compared to the CDE
models. 99% of the ΛCDM data samples were correctly classi-
fied. The growth data coming from the β1 and β2+β3 activation
models are respectively 79% and 84% correctly classified, which
are lower than in the binary classification scenario. The lowest
performance comes from a 15% of the β2 and β3 data being mis-
takenly classified as coming from the ΛCDM model most likely
because, by looking at Fig. 1, the fσ8 data coming from both
cases are very close to the ΛCDM case (recalling that it does not
show the errors included in the mock data generation). We per-
formed the test again to evaluate whether our architecture could
discriminate between four classes instead, by separating class ‘2’
(combination of β2 and β3 data) into ‘2’ (β2 data only) and ‘3’ (β3
data only); however, the NN poorly differentiates the data. This
is to be expected since we do not anticipate being able to probe
dynamics at high redshifts with DESI-like data, which fall within
the redshift range z = [0.05, 1.65]. We argue that our architecture
being able to differentiate fσ8 data coming from the activation
of low- and high-redshift tomographic couplings is a substantial
result in itself.

5. Conclusions

In this work, we explored whether NNs can differentiate between
two different cosmological models, namely the standard ΛCDM
model and the tomographic CDE model, where a coupling exists
between DM and the DE scalar field. To do so, we used mock
growth-rate ( fσ8) data based on realistic DESI-like survey spec-
ifications created using a Fisher matrix approach. These realisa-
tions of the mock data were then used to train, validate, and test
the NN. In the case of the CDE model, we also considered a
three-bin tomographic coupling β that depends on the redshift z,
and is assumed to be constant (and independent) in the three bins
in order to capture a possible evolution of the coupling.

After creating the mocks, we explored different NN archi-
tectures (see Fig. 2 for a visual summary and Sect. 3.2). We
find that when treating each parameter of the coupling, sepa-
rately by assuming only one of the βs is free while fixing the
rest to zero, the NN can achieve nearly perfect classification for
the ΛCDM model and approximately 86−89% accuracy for the
CDE for each of the β models (see the confusion matrices in
Fig. 4). Using the NN optimisation package Optuna, we ensured
that our NN was well optimised, with the best number of layers
and hyperparameters to prevent overfitting (see Appendix B for
more details).

We also considered a multi-class classification scenario, we
conducted a three-class classification task, investigating whether
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Fig. 4. Classification results in the form of confusion matrices for the cases of switching on coupling β1 (left), β2 (middle), and β3 (right). As a
reminder, the tomographic bins for each coupling parameter are z (β1) < 100, 100 < z (β2) < 1000, and z (β3) > 1000.

Fig. 5. NN architecture implemented for the multi-classification task.
The normalisation of features and their concatenation as an input
array was performed within the architecture before training. 32× 32,
as denoted beside the topmost arrow, represents the 32 features with a
batch size of 32.

the NN can simultaneously differentiate between data originat-
ing from ΛCDM, CDE with low-redshift coupling, and CDE
with high-redshift coupling. We did this by combining the data
coming from the activation of β2 (100 < z < 1000) and β3 (z >
1000), since our DESI-like setup only contains data at low red-
shifts and the β2 and β3 models involve coupling at high red-
shifts where degeneracies with other cosmological parameters
may limit the predictive accuracy of the NN. This proved more
demanding for the architecture in the previous case, necessitat-
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Fig. 6. Confusion matrix for the NN multi-classification performance
and its errors. In this case, we show the distinction between three
classes: ΛCDM and CDE through the activation of couplings in β1 (low-
redshift coupling at z < 100) and in β2 + β3 (high-redshift coupling at
z > 100)As a reminder, the tomographic bins for each coupling param-
eter are z (β1) < 100, 100 < z (β2) < 1000, and z (β3) > 1000.

ing the addition of an extra hidden layer with a ReLU activa-
tion function and 16 neurons to improve the multi-class task
(see Fig. 5 for more details). We find that the classification accu-
racy for a ΛCDM model is nearly perfect (around 99%), while
we achieved a performance of around 79% for β1 and 84% for
β2+β3.

To verify the robustness of our analysis, we also per-
formed several tests on our NN architecture as described in
Appendices A, B, C, and D, where we find the optimal number
of training datasets, use Optuna to optimise the various hyper-
parameters of the NN, present the accuracy and loss curves for
the β2-β3 models, and use the Akaike information criterion as a
complementary classification analysis, respectively.

Finally, an interesting question is whether our NN could
in principle distinguish our CDE model from other varia-
tions, for example those presented in Gumjudpai et al. (2005),
Gavela et al. (2010), Salvatelli et al. (2013), Amendola et al.
(2007), and Pourtsidou et al. (2013). While a concrete answer
would require full numerical simulations and a detailed compar-
ison of the various models, which is something beyond the scope
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Learning curves for multi-class model

Fig. 7. Left: Accuracy curve for both the training (purple) and validation
(green) datasets for the model where the three parameters β1, β2, and β3
are activated. Right: Corresponding loss curve. We considered a three-
class classification task, with datasets generated from ΛCDM, CDE(β1),
and CDE(β2+β3) models.

of this work, we can at least speculate on the outcome based on
the behaviour of the models. For example, comparing our Eq. (6)
with Eq. (4) in Salvatelli et al. (2013), we see that the right-hand
sides (RHSs) of the two conservation equations are markedly
different. In the first case, the RHS depends on a function of red-
shift, β(z), the DM density, and the derivative of φ, while in the
second case, it depends on the conformal Hubble parameter and
the dark energy density. Therefore, the two functions have differ-
ent time dependences and thus affect early- and late-time physics
differently.

For example, this can be seen by comparing Fig. 3 of
Goh et al. (2024) and Fig. 1 of Salvatelli et al. (2013), where the
effect on the cosmic microwave background peaks, which are
normally affected by the DM density, is markedly different by
more than a few percent, due to the different dependence on the
evolution of the RHS of the continuity equations. As a result,
we expect a similar effect on the evolution of the growth rate in
both models. Thus, we can expect our NN to be able to discrimi-
nate between the two models, although we leave a more detailed
analysis and comparison for the future.

In summary, our work highlights the advantages of employ-
ing deep learning techniques, in this case, an NN pipeline, to
analyse spectroscopic growth-rate ( fσ8) data from current Stage
IV surveys like DESI and potentially other LSS experiments,
especially when testing models with DM and DE couplings,
which can have degeneracies at high redshifts and can be difficult
to disentangle from the cosmological constant model. We find
that our pipeline can confidently (with >86% accuracy) detect
non-zero values of the β coupling at some redshift range and
with 100% confidence detect the ΛCDM model. It can thus be a
useful tool for analysing these data and maximising the potential
of current surveys to probe for deviations from general relativity.

Data availability

The NN and the relevant scripts used to conduct the
analysis are publicly available as a GitHub repository
at the link: https://github.com/IndiraOcampo/Growth_
LSS_model_selection_CDE.git.
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Appendix A: Number of training samples

Here we show several tests of the effect of increasing the number
of training datasets to [4050, 5000, 6400, 8200, 9800] where half
of the dataset are samples from ΛCDM, and the other half is
generated from a CDE model. From Fig. A.1 we see that the
NN is able to accurately distinguish almost 100% of the ΛCDM
cases regardless of the number of training datasets. In the CDE
case, results improve with an increasing number of datasets up
to an optimum value of about 8000, after which performance
plateaus, indicating that the network does not learn any more
new information with the increase in the number of data points.
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Fig. A.1. Percent accuracy of the NN against the number of training
datasets used. The circular points mark the average values out of 50
runs, with the error bars denoting the 1σ standard deviation.

Appendix B: Optimisation with Optuna

In Sect. 4 we use Optuna to optimise our NN for each CDE
model (β1, β2 and β3). Here, we assess the effectiveness of imple-
menting this additional optimisation step by also testing the NN
when it was not optimised, namely using an arbitrarily chosen
fiducial architecture of one hidden layer, 32 nodes, a dropout
fraction of 0.5 and fixing the number of training epochs at 2000.
We present our results in Table B.1.

Table B.1. Percentage accuracy of the NN classification scheme when
no optimisation is implemented (middle two columns) as compared to
when the NN is optimised with Optuna (rightmost two columns) for all
three models studied.

Model No optimisation Optimisation with Optuna
ΛCDM CDE ΛCDM CDE

β1 1.000 0.843 1.000 0.864
β2 1.000 0.836 1.000 0.861
β3 1.000 0.835 0.996 0.889

We see that optimisation improves our results in all three
cases. This might be because this is a relatively straightforward
classification problem requiring a simple network architecture,
and the optimised set of hyperparameters as reported in Table
1 did not deviate much from the non-optimised vanilla setup,
which was already adequate for this problem. We expect the opti-

misation to prove more impactful for complex problems requir-
ing multiple hidden layers. Nevertheless, we have demonstrated
the robustness of our NN architecture.

Appendix C: Accuracy and loss performance

Here we present the accuracy and loss curves of the training and
validation sets, for the models where we turned on coupling at
redshifts 100 < z < 1000 (activating only β2) and z > 1000
(activating only β3). We see similar results in all three models,
with accuracy reaching beyond 90%.

Learning curves for ￼  modelβ2

Fig. C.1. Left: Accuracy curve for both the training (blue) and valida-
tion (orange) datasets for the model where only β2 is activated. Right:
Its corresponding loss curve.

Learning curves for  modelβ3

Fig. C.2. Same as Fig. C.1 but for the model where only β3 is activated.

Appendix D: Complementary Bayesian analysis

Here we briefly present a complementary Bayesian analysis in
the case of the CDE model where β1 is free to vary as in Sect. 4.1,
using the corrected Akaike information criterion (AICc; see
Akaike 1974). Specifically, under the assumption of Gaussian
errors, the estimator is described via

AICc = −2 lnLmax + 2kp +
2kp(kp + 1)

Ndat − kp − 1
, (D.1)

where Ndat and kp denote the total number of data points and the
number of free parameters (see also Liddle 2007). In our case,
we have 16 data points for each of the fσ8 realisations and the
number of parameters we varied is Ωch2 for ΛCDM and [Ωm, β1]
in the CDE model; thus kp = 1 and kp = 2, respectively, for the
two models.

To compare the two cosmological models, namely the
CDE and the ΛCDM, we then introduced the quantity
∆AICc ≡ AICcmodel − AICcmin, which is the relative differ-
ence of the AICc estimators and can be interpreted as follows
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(Burnham & Anderson 2002): if ∆AICc ≤ 2 then the two mod-
els are statistically consistent, if 2 < ∆AICc < 4 there is weak
evidence in favour of the model with the smallest AICc, while if
4 < ∆AICc < 7 then there is definite evidence against the model
with higher value of AICc, while finally, if ∆AICc ≥ 10 then
this suggests strong evidence against the model with the higher
AICc.

Then we calculated the ∆AICc values for all the realisa-
tions used for the testing of the NN architecture, corresponding
to different values of the cosmological parameters in the grid,
in the case of a varying β1. Doing so we find that the differ-
ence in the AICc estimator between CDE and ΛCDM overall
is ∆AICc ' 2.59 ± 0.16, signifying weak evidence in favour of
ΛCDM over the CDE, even if some of the mocks were created
assuming the latter model.
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