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A B S T R A C T

The estimation of the heat flux density distribution profiles in tokamak devices is a very important research topic
for edge plasma physics purposes and also to ensure the safety of the machine. In the radial direction, the heat
flux exhibits an exponential decay that could be captured by thermal sensors distributed in the plasma facing
components. Radially distributed thermal sensors based on Fiber Bragg grating technology have been embedded
in the WEST lower divertor to study the heat flux deposition profiles during plasma operation. The comparison
between embedded measurements and a 3D finite element model shows a small decay length (5 – 10 mm) on top
of a wider heat flux with a decay length around 30 to 50 mm. A tool using neural network has been developed in
order to predict the values of the different parameters describing the deposited heat flux from embedded tem-
perature measurements in steady state. A large span of deposited heat fluxes with maximum heat flux ranging
from 1 to 9 MW/m2 and decay length from 5 to 50 mm were characterized using this tool over a database of more
than 250 experimental L-mode pulses performed in WEST in attached divertor configuration. The comparison of
the predicted heat flux parameters values with macroscopic plasma parameters have revealed the appearance of
the narrow component with the increase of the divertor power load (Pdiv) with a threshold dependant of the
plasma current (IP).

Introduction

One of the main objectives of WEST is the testing of the actively
cooled tungsten Monoblock (MB) technology foreseen for ITER divertor
in a tokamak environment. To do so, WEST lower divertor technology
and design are following exactly the specifications of ITER divertor
vertical targets. The plasma facing units (PFU) of the divertor are
designed to sustain heat flux going up to 10 MW/m2 in steady state and
up to 20 MW /m2 during slow transient. To evaluate the heat exhaust
capability and the temperature behaviour of these components, different
diagnostics are monitoring the divertor components. Langmuir probes
are monitoring the particles flux and edge plasma temperature, infrared
thermography is checking the surface temperature of the divertor and
embedded thermal diagnostics are used to obtain temperature inside the
MB, thus without any parasitic surface-related effects. This work focus
on the exploitation of thermal embedded measurements performed with
Fibre Bragg Gratings (FBG) technology [1,2]. In WEST, the FBGs are

located 5 mm below the divertor surface on the trailing edge of the
component [3]. The goal is to compute the heat flux distribution on the
top of the PFU from these thermal measurements. To do so, a tool using
neural network has been developed and allows to predict the deposited
heat flux shape and intensity from multiple embedded thermal mea-
surements. In the first part of this paper, the WEST lower divertor as well
as the sensors used in this work are presented. The second part of this
article presents the identification and validation of a double decay
length heat flux deposition shape from the measurements made in
WEST. A third part will present the development of a tool using neural
network to predict the surface heat flux from embedded measurement.
Finally, the results of our prediction on a database of more than 250
experimental L-mode pulses in attached divertor configuration will be
presented and compared with macroscopic plasma parameters.

1 http://west.cea.fr/WESTteam.
2 See the author list of “Overview of the EUROfusion Tokamak Exploitation Programme in Support of ITER and DEMO” by E. Joffrin Nuclear Fusion 2024.
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WEST lower divertor and embedded thermal measurement

From the C7 experimental campaign performed in 2023, WEST lower
divertor was fully equipped with ITER-grade PFU [4]. It consists of a full
tungsten actively cooled divertor divided into 12 toroidal sectors (30◦

toroidal extension), each made of 38 PFUs. Each PFU is made up of 35
tungsten MBs arranged in the poloidal direction along a copper pipe for
cooling. The Fig. 1 presents in A. a view of the full divertor with a close
up on one 30◦ sector. Figure B. shows a close up on one PFU instru-
mented with FBG embedded 5 mm below the surface of the component
(here on the outer side of the divertor). This diagnostic allows to mea-
sure the temperature up to 1000 ◦C on 14 locations along the PFU, one
measurement point every 12.5 mm, using an acquisition frequency of 10
Hz. The FBG sensors are positioned in the middle of the 12 mm width
MB, 5 mm below the top surface of the MB to avoid temperature
exceeding 1000 ◦C (technical limitation), on the trailing edge. In the
following studies, only 11 measurements are exploited due to the
magnetic shadowing of the baffle on the divertor PFUs presented in
Fig. 2 B. The monitoring and comprehension of these heat fluxes in the
scrape-off layer (SOL) is mandatory to ensure the safety of the divertor
as well as the machine and evaluate heat exhaust capabilities of the PFUs
tested in WEST.

Fig. 2 presents the FBG measurements during one typical 500kA, dX
= 69.4 mm, 4 MW injected LH power pulse in WEST. Fig. 2 A. presents,
for each grating, the temporal evolution of the heating of each MB (ΔT
= TFBG-Twater, where TFBG is the FBG measurement and with Twater =

70 ◦C as operated in most of the WEST experiments). This allows us to
evaluate the stability of the pulse and checking the most exposed MB.
The thermal response of the FBG sensor is longer than the time to reach
the thermal equilibrium of the MB. The time to reach 90 % of the sta-
bilized temperature is typically 5 s with the ITER PFU. With the FBG
system, the stabilized temperature is obtained after 10 s for the probe
presented in Fig. 2 A.. Fig. 2 B. which represents the profile of heating is
plotted using the measurement of each grating averaged over a time
period at thermal equilibrium (here between tbeginning = 35s and tend =

40s). Heating profiles can be used to predict deposited heat fluxes in
steady state, which is the focus of this paper. Validation of a method for
transient problem for ITER-grade PFU is presented in [5].

Deposited heat flux shape: Observation of double decay length in
thermal measurement

Due to the limited number of measurements, an a priori is needed to
describe the evolution of power in the SOL. The convolution of an
exponential with a Gaussian as expressed in Eich et al. [6] is considered a
reference in the fusion community to describe the heat flux distribution
in the radial/poloidal direction. This heat flux deposition shape was
characterised for ELM-free, H-mode pulses but still is usable for L-mode

pulses as shown in the work of Scarabasio et al. [7]. During WEST first
phase of operation, with inertial tungsten coated graphite components
in the divertor and assuming this distribution, heat fluxes presenting
decay length ranging from 10 mm to 60 mm were observed [8]. With the
second phase of operation in WEST, the whole divertor has been
changed to ITER-grade actively cooled bulk tungsten castellated plasma
facing unit [9,10]. The plasma control system was also improved
allowing better stability for the position of the strike line enabling to
stabilize the temperature of the MB during the plasma experiment. With
this evolution and progress with the operational domain, a narrow heat
flux component is needed to match some of the measurements with
numerical modelling. The sum of two different heat flux distribution
profiles, each following Eich et al. distribution but with two different
decay lengths is considered as the total deposited heat flux, also seen in
Asdex-Upgrade [11], or JET [12,13]. The Equations (1) & (2) presents
Eich et al. classical deposition shape and the two decay length shapes,
respectively. With the maximum heat flux for a pure exponential: ϕm0

, in
the rest of this paper the exact maximum heat flux ϕm will be used, the
background heat flux: ϕBG, the strike line (separatrix) position: x0 and
the spreading factor on the target in the private region: St, the heat flux
decay length on the target: λtq larger than the decay length on the mid-
plane by the factor of magnetic expansion.
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Equation (1): Classical 1 decay length Eich et al. deposition shape
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Equation (2): Double decay length Eich et al. Deposition shape
with a narrow contribution and a far contribution

Fig. 3 presents in A. measured (black circles) and computed heating
for the pulse shown in Fig. 2 considering the 1 and 2 decay lengths heat
flux shapes. In this pulse, the peak heat flux is found on MB25. The
background heat flux is computed in the private area (between MB20
and MB22). For this pulse it is evaluated to ϕBG = 51kW/m2. Comparing
the green triangles (1 decay length) with the black circles (experimental
points), the 1 decay length model gives higher temperature on MB26,
and lower temperature for MB 28 to 30. Meanwhile the purple crosses
are following almost perfectly the measurement. These temperatures are

Fig. 1. A. view of WEST complete lower divertor and sector, B. WEST ITER-grade PFU with embedded FBG (outer probe).
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obtained using the double decay length heat flux shape model with the
values for the narrow and far component of the heat flux presented on
Fig. 3 B. The heat fluxes distribution parameters values are specified in
Table 1 for 1 λtq model and Table 2 for 2 λtq model. Despite the modifi-
cation of the global shape, the total maximum heat flux remains un-
changed. In Fig. 3 B. the closest fit is obtained with a total maximum
heat flux of 5.1 MW/m2 for both deposition shape. The narrow

contribution, representing 70 % of the peak heat flux, shows much
smaller decay length compared to the averages values observed in WEST
during its first phase of operation (5 mm vs ~ 20 mm) [8]. The far
contribution allows to fit the measurement for MB 28 to 30 with a
smaller influence on the peak heat flux but a very large decay length (50
mm). However, due to the small decay length for the narrow contribu-
tion, less power is channelled in the narrow contribution than the far
one. In this example, the integral of the heat flux along the radial dis-
tance represents 46 kW/m in the narrow contribution and 80 kW/m in
the far contribution.

It has been validated those measurements presenting only one decay
length cannot be obtained using a two exponential deposition shape
independently of the position and vice versa.

Development of a neural network based prediction tool

The following part presents the development of a neural network
prediction tool designed to predict the deposited heat flux parameter
(ϕm, λtq, x0…) values based on FBG temperature measurements. This
kind of problem is called regression and is best solved using multilayer
perceptron (MLP) neural network. A MLP is a deep learning neural

Fig. 2. Measurement in WEST with embedded FBG on the outboard part of the divertor, A. Measured heating during pulse 58209, B. Heating profile during steady
state (between 20 and 40 s).

Fig. 3. Comparison of 1 and 2 decay length for the experimental pulse 58209, A. Heating profiles measured (black), fit 1 λtq model (green), fit 2 λtq model (magenta),
B. Deposited heat fluxes1 λtq model (green), 2 λtq model (magenta), narrow component for 2 λtq model (red), far component for 2 λtq model (blue), location of the FBG
gratings for temperature measurement (black cross marker) on the PFU.

Table 1
Heat flux distribution parameter, for model 1 λtq and pulse #58209.

ϕmnarrow λtqnarrow
x0 ϕBG S

5.1E6 W/m2 15 mm 301 mm 51 kW/m2 2 mm

Table 2
Heat flux distribution parameter, for model 2 λtq and pulse #58209.

ϕmnarrow
ϕmfar λtqnarrow λtqfar

x0 ϕBG S

3,57E6 W/
m2

1,53E6 W/
m2

5 mm 50
mm

301
mm

51 kW/
m2

2
mm
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network [14] which means that the output is linked to the input by a
succession of layers, each made of a specific number of nodes. The
number of layer define the depth (from deep learning) of the neural
network and the number of nodes define it’s width. Different method-
ologies (decomposition in multiple neural networks), depth and width
were tested to obtain the best predictions of the parameters using Ten-
sorFlow, Keras library [15].

Two different MLP are needed to predict the two different heat flux
shapes with a different number of parameters. Numerical temperatures
are computed using a 3D model of the PFU developed with finite
element method using Cast3m software [16,5]. A wide range of plau-
sible deposited heat fluxes are then used in order to train the neural
networks. Table 3 presents the number of referential simulated data
used to train our neural networks as well as the range of values for each
parameter (peak heat flux, heat flux decay length, position of the peak
and background flux). Table 3 shows that some heat fluxes distribution
used to train our neural network present only one decay length (ϕm =

0). This choice is motivated to include most deposition shape possibles.
Due to the large number of possibilities, considering a double expo-
nential shaped deposited heat flux, more referential pulses were
considered. The exact values for each case were defined using Halton
sequence. A single value for the spreading factor in the private flux re-
gion is considered (S = 2), based on the observations made using infra-
red diagnostics in WEST [17] to limit the number of training data to
compute. Despite this simplification, the temperatures from more than
350,000 different heat fluxes distributions and intensities were
computed in steady state.

The development of a neural network can be split into 3 steps
repeated until a satisfactory result is reached. First, the conception of the
neural network: in this step, the user defines a number of parameters,
called hyperparameters, that will define the architecture of the network.
The number of hidden layers or nodes for each layer are good examples
of hyperparameters. Once the architecture is defined, come the tuning of
the network. Based on the training data, an algorithm will find the good
weight for each node so that the desired output appears from multipli-
cation between node and input data. This part uses automatic algorithms
and can be quite long depending on the complexity of the model as well
as the number of training data. Once the model is trained, it is necessary
to ensure that it is able to generalize the resolution of the problem with
new data unused during the training part. In this case, the total number
of referential pulses were divided in three categories: the training set
representing 70 % of the pulses, chosen randomly, 15 % for the vali-
dation during training and 15 % for the test after training [14]. During
the training phase as well as for the testing after training, different
quantities are tracked to evaluate the performance of the model. The
“mean absolute error” (mae) or “mean squared error” (mse) are good
indicators to track the discrepancies between the result of the model and
the real data.

Finally, two different models using different architecture were
defined. The first one is using a single neural network predicting the 4
parameters characterizing the heat flux parameters for the 1 decay
length model, based on 11 temperatures measurements. The second one,

for the 2 decay length model, is based on two different neural networks.
With a first neural network, the parameters ϕBG and x0 are predicted
using the measurements from gratings MB20 to MB22 (located in the
private flux region, thus exposed to plasma radiation and neutral par-
ticles only), the measurements and positions of the 2 gratings around the
maximum heating. Then, from a second neural network, ϕmnarrow

, λtqnarrow ,
ϕmfar and λtqfar are predicted using the 11 measured temperatures plus
the previously predicted x0 and ϕBG. Each neural network is made of
dense layer, fully connected. The final architectures are summarized in
Table 4.

These tools are applied on a database of 275 experimental L-mode
pulses in WEST in attached regime. Table 5 present the span of some
plasma parameters for these pulses, Pdiv being the divertor power load
calculated as the difference between heating power (ohmic and LH
mainly) and the power radiated by the plasma. dX is the X point height
obtained using WEST magnetic reconstruction.

Fig. 4 A. and B. present the best fits, for two different experimental
pulses in WEST, between the measured and computed temperatures
assuming the heat flux predicted by our neural networks. Fig. 4 A. shows
a fit for one pulse evaluated with 1 decay length and Fig. 4 B. for a pulse
with 2 decay lengths. The values for each parameter are given in the
figure caption and the plasma properties in the legend. A good agree-
ment between computed and measured temperatures is observed when
using the appropriate model.

For each case the mean discrepancies per grating normalized using
the maximum temperature is computed in order to evaluate the per-
formances of these tools. The results of this criterion are presented in
Fig. 5 and shows a mean error ~ 0.5 % of the maximum temperature for
each grating when using the appropriate model. Fig. 5 shows the sta-
bility of the predictions for repetitive pulses (pulses #100 to #220) as
mentioned in following section 5.1. The pulses ranging from #100 to
#220 are realised using the same plasma scenario. Similar heating
profile are measured for these pulses leading to stable predictions and
error. This criterion is used to automatically define if the deposited heat
flux is closer to the 1 or 2 exponential shapes. This demand for each
pulse to compute the results of the 2 models demanding ~ 1 min each.
This calculation is mandatory to ensure the results due to the inherent
black box system of neural networks. These results has been compared
with those of an inverse method using conjugate gradient (MGC), pre-
sented and validated in [5] for the pulse #57824. Comparison of esti-
mated heat flux (MGC) and the predicted heat flux (neural network)
shows good agreement and are presented in Table 6.

Comparison with infrared diagnostics were made using data from the
very high resolution camera in WEST for a specific pulse and shows good
agreement for the heat flux deposition shape narrow component. These
observations should be the object of future publication.

Results of AI based predictions

The deposited heat flux shape and intensity can now be predicted
automatically for every pulse in WEST. It is now possible to characterize
the heat flux during experimental campaigns between two pulses so in a
time interval of 10 to 15 min in WEST.

High fluence campaign: Robustness of the predictions

During the 2023 experimental campaign, a long “high fluence”
dedicated campaign (HFC) was done [18]. During this campaign, more
than 100 repetitive pulses (injected LH power: 3.8 MW, plasma current:
399 kA, plasma density: 3.7*1017 m− 3, dX: 70 mm) were executed in
order to maximize the particle fluence on the divertor components. This
campaign is a good opportunity to test the robustness of our neural
networks, as the heat flux should be the same pulse to pulse. The
following Fig. 6 A. and B. present the result of the predictions during the
HFC. Consistent parameters prediction is observed once the final tuning

Table 3
Numerical training data for 1 and 2 λtq heat fluxes prediction neural networks.

Model Ref. pulses
#

Parameters values span

ϕm
MW/
m2

λtq
mm

x0

mm
ϕBG
kW/
m2

S
mm

1λtq ~ 56,000 0.1 – 10 5 –
50

275 –
362

0 – 125 2

2λtq Narrow ~ 300,000 0 – 6 2 –
15

275
–
362

0 – 250 2

Far 0 – 6 15 –
50
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of the scenario is made. The heat flux presented in Fig. 6 A. is splitted
between 2/3 in the narrow component and 1/3 in the far component
with an averaged maximum heat flux ϕmtot ≅ 5MW/m2. A small
decrease of the peak heat flux is observed which is consistent with the
small increase of the radiated power also observed during the HFC (from
50 % at the beginning to 55 % radiated power fraction at the end of the
HFC as reported in [19]). Fig. 6 B. presents the predicted values of
λtqnarrow and λtqfar also constant after the final tuning. An average
narrow decay length of 8 mm and a far decay length of 45 mm are
observed.

Parameters prediction

Over the whole 2023 campaign, a wide range of plasma pulses were
performed (different plasma current, densities, magnetic equilibrium
and injected power). The experimental data base is built on pulses
featuring steady state heat load long enough to reach the thermal
equilibrium of the PFU. The following Fig. 7 A. presents for every
selected pulse the total predicted heat flux depending on the power on
the divertor. Different behaviour are observed between the pulses
evaluated with 1 or 2 decay lengths regarding the predicted heat flux.
For the same Pdiv, it appears from figure A. that the heat fluxes pre-
senting a narrow component displays higher maximum total heat flux
compared to single decay length heat fluxes. Fig. 3 in section 3 shows
that this difference is not due to the model used for the fit as the same
maximum heat flux is obtained for the same pulse with the two different

Table 4
Final architectures of the three neural networks.

Inputs Outputs Layer # Node # per layer Li Activation function

1λtq 11 temperatures ϕm,ϕBG, λtq,x0 9 Linput = 11; L1 = 1024; L2→7 = 512; L8 = 256; L9 = 128;Loutput = 4 relu
2λtq 6 temperatures, 2 positions ϕBG,x0 4 Linput = 8; L1 = 64; L2 = 32; L3→4 = 16;Loutput = 2 relu

11 temperatures,ϕBG,x0 ϕmnarrow ,ϕmfar , λ
t
qnarrow , λ

t
qfar

4 Linput : 13; L1 : 256; L2 : 128; L3→4 : 32;Loutput : 4 relu

Table 5
Plasma parameters span for the processed experimental pulses in WEST.

LH heating
power
(MW)

Pdiv(MW) Plasma
current
Ip(kA)

Plasma core
density
(1019 m¡3)

dX
(mm)

Minimum 6.64e-05 0.18 299.5 2.49 58
Maximum 5.784 3.52 499.5 4.46 81

Fig. 4. Fit of experimental measurement with numerical temperature assuming surface heat fluxes predicted using AI, A. for 1 λtq, Ip = 499 kA, Pdiv = 1.97 MW,
plasma density = 3.97*1017 m− 3, dX = 75.1 mm, B. for 2 λtq, Ip = 399 kA, Pdiv = 1.95 MW, plasma density = 3.76*1017 m− 3, dX = 70.4 mm.

Fig. 5. Normalized criterion for neural networks performances evaluation.

Table 6
Comparison of the heat fluxes estimated using the MGC and predicted with the
neural network (1 λtq) for the pulse #57824.

ϕm(MW/
m2)

ϕBG(kW/
m2)

λtq(mm) S
(mm)

x0(mm)

Estimations MGC
(ϕm&ϕBG moyennés)

1,28 27,3 27,2 2 298,7

Prédictions IA 1,17 51,8 28,4 299,0
Error 8,6 % 89,7 % 4,2 %  0,1 %

Y. Anquetin et al. Nuclear Materials and Energy 41 (2024) 101788 

5 



Fig. 6. Predicted heat fluxes parameters for HFC, A. maximum heat fluxes, B. decay lengths.

Fig. 7. Range of predicted parameters values, A. total maximum heat fluxes depending on the power on the divertor, B. stacked histogram of predicted
decay lengths.

Fig. 8. Results of predicted maximum heat flux depending on Pdiv, A. for Ip = 400 kA, B. for Ip = 500 kA.
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model. The maximum heat flux reported in the C7 data base is 9 MW/m2

with 2.5 MW power in the divertor, value which is close to the nominal
heat load expected in ITER.

Fig. 7 B. shows the range of predicted decay lengths in our mea-
surement. 3 different populations are observed with small overlapping
mainly between the far population (in blue) and the 1 λtq population (in
green). Half the pulses have a far λtq between 25 mm and 31 mm and the
other half between 37 and 45 mm. The narrow component (in red) lies
mainly between 2 and 20 mm, with a peak between 2 and 10 mm. Such
sharp heat fluxes could be harmful to the divertor components causing
local over-heating or melting of the PFU and need to be monitored.

Plasma current (Ip) impact on narrow part appearance

The causes of these two different populations are not understood yet.
Some evidences point a relation between the appearance of the narrow
component and an increase of the power on the divertor with a threshold
value of Pdiv depending on the plasma current Ip. Fig. 8 A. and B. show
the maximum heat flux predicted depending on the Pdiv with Ip = 400 kA
and Ip = 500 kA for A. and B., respectively. Fig. 8 A. shows that above
Pdiv = 1.8 MW, almost no pulses are evaluated with only one decay
length and most of the pulses with 2 decay lengths. The HFC pulses are
gathered in the red circle. Whereas there is no clear transition for Ip =

500 kA. More analysis and probably dedicated experiment with a scan in
Ip and power will be needed in order to confirm these relations. The role
of plasma density profiles and neutral particles distribution could also be
investigated in the far SOL.

Conclusion

Thermal embedded measurements performed in the WEST lower
divertor ITER-grade PFUs have shown a 2 decay lengths shape in the
deposited heat flux poloidal profile. A narrow component with a decay
length λtq = 5 − 15mm has been identified on top of a wider heat flux with
a decay length λtq = 30 − 50mm during the high power pulses (Pdiv > 1.8
MW). The development of a neural network based prediction tool
trained with numerical temperatures allowed us to characterize heat
fluxes going up to almost 9 MW/m2. The method has been tested on the
high fluence campaign first. The results shows constant values for the
heat flux decay length (8 mm for the narrow and 45 mm for the far
components respectively) and peak heat flux of about 5.5 MW/m2 in the
beginning of the campaign, down to 4.7 MW/m2 in the end of the
campaign which is also consistent with the slow increase of radiated
power observed during the HFC. The method has also been applied to
the full experimental campaign. Two populations are clearly observed,
with one or double heat flux decay lengths. However, the origin of these
two different forms of heat flux observed in WEST has not been found
yet. A relation between power on the divertor, plasma current and shape
seems to appear in our data. Complementary experiments during future
experimental campaigns need to be done to prove or discard these ob-
servations, such as a scan of plasma current and power.
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