
HAL Id: cea-04815427
https://cea.hal.science/cea-04815427v1

Submitted on 2 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Subsampling approach and data-driven models to
predict silicate glass melt viscosity

Damien Perret, Alexandra Garcin, Carole Soual, François Bergeret

To cite this version:
Damien Perret, Alexandra Garcin, Carole Soual, François Bergeret. Subsampling approach and
data-driven models to predict silicate glass melt viscosity. Materials Letters, 2024, 379, pp.137691.
�10.1016/j.matlet.2024.137691�. �cea-04815427�

https://cea.hal.science/cea-04815427v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Subsampling approach and data-driven models to predict silicate glass 
melt viscosity

Damien Perret a,*, Alexandra Garcin a, Carole Soual b, François Bergeret b

a CEA, DES, ISEC, DPME, Univ Montpellier, Marcoule, France
b Ippon Innovation, Toulouse, France

A R T I C L E  I N F O

Keywords:
Glass
Viscosity
Machine learning
Database

A B S T R A C T

This study focused on developing a predictive tool for calculating glass melt viscosity between 900 ◦C and 
1500 ◦C. A database containing approximately 16 000 silicate glass compositions was built using both literature 
data and a proprietary dataset. The approach integrates statistical techniques, including design of experiments, 
machine learning, and subsampling strategies for model training. Prediction accuracy was found to be highly 
promising for the various types of silicate glasses studied. The relative error in viscosity prediction at 1200 ◦C 
was approximately 20 % for simple SBN compositions, and less than one order of magnitude for more complex 
compositions.

1. Introduction

In situations where theoretical models cannot be efficiently applied 
to calculate glass properties, empirical statistical models are often 
required. This is typically the case when the glass contains a high 
number of components. Since the end of the 19th century, it has been 
known that under certain conditions, silicate glass properties can be 
expressed as a simple linear combination of oxide contents. This “Prin
ciple of Additivity” was initially introduced to calculate heat capacity of 
glass, and was later extended during the 20th century to a larger number 
of properties: optical, thermal and mechanical properties [1]. However, 
this calculation can only be applied to predict glass properties within a 
narrow range of compositions. Since the 2000s, the significant increase 
in computational power has enabled the use of highly efficient algo
rithms in data mining predictive methods.

However, glass melt viscosity prediction remains difficult. From 
strain point to melting temperature, glass viscosity extends on over 13 
orders of magnitude, making prediction very challenging on wide range 
of temperatures. Even within a narrow range of temperature, glass melt 
viscosity variation may be significant. Viscosity-temperature depen
dence is highly sensitive to phase separation and crystallization. The 
melt transition from a Newtonian to a non-Newtonian behavior during 
crystallization is a phenomenon that has been observed and extensively 
discussed in the literature [2–4]. Therefore, glass viscosity prediction 
remains difficult even for compositions with few oxides. To illustrate, 

three simple SBN (SiO2-B2O3-Na2O) glass compositions were selected to 
compare their viscosity at 1200 ◦C as predicted by several models 
available in the literature. Results are given in Fig. 1. Predictions were 
compared to the experimental value measured by using a device and 
protocol well documented in the literature [5]. Significant discrepancy 
was observed among the predicted values calculated from the different 
models.

In the case of glasses containing a higher number of oxides, it has 
been shown that viscosity predictions obtained from recent Machine 
Learning (ML) models based on Neural Nets can deviate by up to seven 
orders of magnitude far from the reported values [7]. For these reasons, 
a new approach was developed to better account for the broad variations 
in glass melt behavior across composition and temperature ranges.

2. Data collection and subsampling method for model training

Database for glass viscosity prediction was built using both data 
available in the literature [6] and a proprietary dataset. The global 
database includes 15 587 glasses, all silicate glasses (Table 1). Each of 
these glasses contains either one or more viscosity values within the 
temperature range of 900 ◦C to 1500 ◦C, or Vogel-Fulcher-Tammann 
(VFT) coefficients.

Several traditional ML techniques were initially applied to the full 
dataset to identify the most predictive viscosity model. The techniques 
included artificial neural network, boosted tree, random forest, SVM and 
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multilinear regression. A benchmark of these techniques was performed 
on the same dataset by comparing their performance in predicting glass 
viscosity on a test data sample. Classical approach widely used in data 
science consisting in separating the total sample into random sub
samples was applied. At the end, no model was found to be sufficiently 
predictive due to the very wide range of compositions investigated.

Instead of partitioning the entire dataset into training, validation and 
test subsets, it was decided to implement a dynamic and automatic 
method of subsampling. This method was dynamic because the dataset 
selected to train the model depended on the glass composition of in
terest. Thus, only similar glasses were used to build the viscosity model 
ensuring more accurate predictions, as presented in the Results and 
discussion section. The method was automatic because subsampling was 
automatically performed by algorithms integrated in the tool.

In the objective of increasing the robustness of the prediction, two 
methods of subsampling were developed, evaluated, and implemented. 
The first method was based on the design of experiments (DOE) meth
odology, while the second method was based on a procedure of iterative 
enlargement around the composition of interest.

2.1. Method #1 − virtual design of experiment

DOE methodology has been extensively described in the literature 
[8] and has demonstrated its applicability for predicting glass properties 
on narrow composition domains [9,10]. For the present work, an 
optimal DOE was automatically generated and centered around the 
composition of interest. The optimality criterion was related to the 
average prediction variance. Then, algorithms were used to replace each 
run of the virtual DOE by the most similar experimental data present in 
the global database (Fig. 2a). Similarity criteria were based on mathe
matical distance calculations and physics-informed knowledge on the 
role played by glass oxides on melt viscosity. Factors such as the oxide 
type (e.g. former, modifier, intermediate, none) was taken into consid
eration, as well as oxide mass fraction in the glass composition. Final 
DOE was not rigorously optimal compared to initial virtual DOE, how
ever, it was observed that predictions were much better than considering 
the whole database. Three types of models were applied on this training 
set, as described later.

2.2. Method #2 − iterative enlargement

The iterative enlargement procedure involved generating training 
sets with progressively increasing amounts of data around the compo
sition of interest. A first dataset was generated around the composition 
of interest and predictive models were built on this training set. Simi
larly to the first method, three types of predictive models were built. 
Statistical criteria based on R2, adjusted R2, and prediction variance 
were computed and stored. Then, a second dataset was generated 
around the composition of interest by increasing distances, leading to a 

more populated training set. Additional larger and larger training sets 
were generated and statistical criteria were computed and stored 
(Fig. 2b). When the predictive quality decreased, algorithm stopped the 
process.

2.3. Predictive modeling

For both subsampling methods, three types of models were imple
mented (Fig. 2c). The first was a Partial Quadratic Model (PQM), which 
included main effects and selected cross-effects. PQM has previously 
demonstrated strong predictive performance for glass melt viscosity 
[11]. Cross effects included in PQM were specific to each composition. 
They were automatically selected at stepwise regression step according 

Fig. 1. Comparison of SBN glass melt viscosity at 1200 ◦C predicted from models available in the literature [6].

Table 1 
(a) Number of compositions and oxide content distribution in the viscosity 
database. Only oxides present in at least 10 % of the total number of glasses are 
indicated. (b) Distribution of viscosity values in the database.

(a)

Oxide Compositions 
containing the 
oxide

Oxide content (weight %) in the dataset

(count) (%) 25 % 
quartile

50 % 
quartile

75 % 
quartile

min max

SiO2 15 587 100 42,0 55,5 64,5 19,4 100,0
Al2O3 11 770 76 0,1 6,9 15,4 0 55,9
CaO 11 426 73 0 5,8 18,7 0 61,8
MgO 8 329 53 0 0,2 4,0 0 42,8
Na2O 7 924 51 0 0,1 10,4 0 55,8
K2O 4 999 32 0 0 0,8 0 61,1
B2O3 4 720 30 0 0 2,7 0 74,8
BaO 3 638 23 0 0 0 0 75,0
SrO 3 010 19 0 0 0 0 63,3
Fe2O3 2 777 18 0 0 0 0 65,6
ZeO2 2 462 16 0 0 0 0 24,9
TiO2 2 246 14 0 0 0 0 50,0
Li2O 2 178 14 0 0 0 0 40,3
FeO 1 976 13 0 0 0 0 75,0
ZnO 1 635 10 0 0 0 0 62,3

(b)

Temperature 
(◦C)

Number of 
viscosity 
values in 
the dataset 
(count)

Distribution of viscosity values in the dataset (dPa.s)

25% 
quartile

50% 
quartile

75% 
quartile

min max

900 4 122 2.5E4 1.2E5 2.1E6 1.7 2.9E13
1000 4 613 3.7E3 1.4E4 1.1E5 1.0 3.0E13
1100 5 566 9.3E2 3.6E3 2.6E4 1.0 3.1E13
1200 7 154 3.0E3 1.3E3 8.5E3 1.0 3.2E13
1300 8 094 5.6E1 4.2E2 2.9E3 1.0 2.5E13
1400 8 463 1.4E1 1.5E2 1.0E3 1.0 5.6E12
1500 6 807 5.0E0 5.6E1 4.5E2 1.0 4.7E12
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to Bayes Information Criterion (BIC). Second model was a Generalized 
Linear Model (GLM). GLM is a relevant approach for non-normally 
distributed data [12]. Third model was Neural Nets (NN). NN are 
widely used in ML for several reasons, including their prediction capa
bility in the presence of non-linear phenomena and without probabilistic 
assumptions on the response distribution. A simple architecture con
taining one hidden layer of three neurons with tanH activation functions 
was used.

3. Results and discussion

Predicted values of viscosity at 1200 ◦C for simple SBN compositions 
are given in Fig. 3a. These predictions were compared to values from 

literature models and experimental measurements. Results show that 
the relative error of prediction, calculated as the mean of the relative 
errors obtained for the three SBN compositions, was approximately 20 
%. This error was smaller than that obtained from literature models in 
their validity region, indicating that this subsampling approach was 
relevant for simple glass compositions. Tool capability was also evalu
ated by predicting 1200 ◦C viscosity on a dataset of 230 glasses, con
taining sodo-alumino silicate and borosilicate glass compositions 
(Fig. 3b). Number of oxides was up to 40 in the case of nuclear waste 
borosilicate glasses. Relative errors of prediction are given in Fig. 3c. 
Overall, highest relative errors were found to be less that one order of 
magnitude. For 90 % of the compositions, relative error was smaller than 
77 %. Most accurate predictions were obtained on borosilicate nuclear 

Fig. 2. Schematic representation of the subsampling methods using (a) virtual design of experiments and (b) iterative enlargement methodologies, and global 
description of the viscosity prediction tool (c).
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glass compositions. Main reason was attributed to the reliability of the 
experimental data, in term of both device accuracy and glass melt ho
mogeneity at the viscosity measurement temperature (1200 ◦C). Eval
uating the tool predictive capability on a bigger test dataset and over the 
whole range of temperature will be an important perspective of this 
work.

4. Conclusion

This study focused on developing a predictive tool for glass melt 
viscosity calculation. A database containing about 16 000 compositions 
was built from both data available in the literature and proprietary 
dataset. An innovative approach for subsampling was developed for 
model training. PQM, GLM and NN models were implemented in the 
tool. The results demonstrated promising prediction accuracy for the 
viscosity at 1200 ◦C across various types of silicate glasses. This dynamic 
subsampling methodology could be applied to any type of materials and 
properties.
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