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Towards the determination of an algorithm for
Simultaneous Localization and Mapping in nuclear

facilities
Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre and Frédérick Carrel

Abstract—Establishing an accurate radiological mapping is an
essential step for the Dismantling & Decommissioning (D&D)
processes since it allows the localization of possible hotspots.
Nowadays, this work is usually done manually by operators who
construct matrices and place each measured value in its respective
position. However, this method presents many drawbacks, leading
the literature to increasingly explore alternative solutions, such
as combining radiological measurements with SLAM techniques
(where SLAM stands for Simultaneous Localization and Map-
ping). SLAM technology allows the simultaneous mapping of
the surroundings and indoor localization of a sensor without
needing a GPS (usually inoperative in indoor nuclear facilities).
Nonetheless, the current solutions based on SLAM algorithms
are not suited to different nuclear measurement devices, are
often bulky, and require post-processing. To address this matter,
we started the development of a modular device for online
3D environment reconstruction and radioactivity measurement
localization. This work presents the selection of the most suitable
SLAM algorithm for the operation of nuclear installations under
dismantling. As far as we know, this is the only study in
the literature that evaluates the different SLAM algorithms
regarding the nuclear facilities’ characteristics. To address this
issue, we established comprehensive state-of-the-art visual-sensor-
based SLAM algorithms. Then, we critically assessed the algo-
rithms from the literature regarding the characteristics present
in dismantling environments. We selected and implemented five:
Direct Sparse Odometry, Visual-Inertial Direct Sparse Odom-
etry, Large Scale Direct Monocular SLAM, Semi-direct Visual
Odometry, and Visual Inertial Semi-direct Visual Odometry. In
order to compare them, we constructed a dataset not found in
the literature representing the radiological mapping operations
in nuclear facilities. Our dataset relies on stereo images from
two cameras in a stereo configuration, inertial data from an
Inertial Measurement Unit, and spherical information from a
Lidar. This dataset allowed us to benchmark the algorithms
considering algorithms’ tracking and mapping accuracies. The
Visual Inertial Semi-direct Visual Odometry presented the lowest
average errors for the tracking and an equivalent performance
as the other algorithms for the mapping, being the most suitable
algorithm for the dismantling operation.

Index Terms—dismantling, radiological mapping, simultaneous
localization and mapping, SLAM

I. INTRODUCTION

RADIOLOGICAL MAPPING plays a crucial role in
dismantling and decommissioning nuclear installations.

It involves determining the facilities’ radiological condition,
which helps identify potential contamination areas. In France,
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most radiation-protection operators (RPOs) still rely on man-
ual radiological mapping, which is time-consuming, exposes
them to potentially contaminated environments, and is prone
to human errors. This is mainly because the existing literature
lacks a system that can reliably perform radiological mapping
during the dismantling of nuclear installations, considering the
French facilities’ characteristics and the procedures followed
by RPOs in various scenarios and nuclear measurements.

As an alternative to manual radiological mapping, re-
searchers have increasingly explored the combination of ra-
dioactivity monitors with Simultaneous Localization and Map-
ping (SLAM) algorithms. For instance, [1] developed a sys-
tem that enables real-time 3D modeling of the environment,
gamma-ray imaging, and localization. Their system incor-
porates LiDAR, RGB, and Compton camera technologies.
They created a handheld device capable of performing 3D
reconstruction and localization in indoor and outdoor envi-
ronments. Additionally, their system can generate gamma-
ray 3D images. However, the system they built weighs 6
kg, which poses a significant challenge for long dismantling
procedures, unlike the maximum of 3 minutes considered by
the authors. Moreover, their solution does not address real-case
scenarios found in certain French dismantling sites, which will
be depicted later.

A handheld imaging system for localizing gamma-ray
sources in a 3D reconstructed environment was developed
by [2]. They combined gamma-ray imaging with visual data
to implement the SLAM algorithm to achieve this. They
utilized a Kinect sensor, a High-Efficiency Multi-mode Imager
(HEMI), a control tablet, and a notebook for processing the
SLAM algorithm. Their system allowed for dense colored
3D reconstructions while integrating gamma-ray localization.
Regarding the main drawbacks, their system weighed 3.6 kg
and had large dimensions, making it unsuitable for prolonged
operations. Additionally, they selected a sensor unsuitable for
reconstructing certain nuclear environments, such as laborato-
ries equipped with reflective surfaces and telemanipulators.

In summary, previous studies have led to the developing of
portable systems capable of simultaneously localizing radioac-
tivity measurements and providing contextual information.
However, many systems are not compact, hindering their use
in long-duration operations for mapping large facilities. In
addition, the presented references are based only on gamma
imaging measurements; therefore, remote measurements of
hot spots, not including other types of nuclear measurements,
are used as contact measurements for contamination detec-
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tion. Furthermore, SLAM algorithms have their performance
dependent on different scene aspects, such as the presence
of reflective and reflexive surfaces. This feature raises the
necessity of selecting a SLAM algorithm robust to the envi-
ronment constraints. The presented works do not perform such
selection or consider characteristics imposed by the French
nuclear installations.

In this context, for the first time in the literature, this study
selects and benchmarks SLAM algorithms for 3D localization
and reconstruction of real-case scenarios of nuclear installa-
tions under dismantling.

This paper is organized as follows: Section II describes
the challenging characteristics of French dismantling facilities
that hinder the well-functioning of certain sensors and SLAM
algorithms and a theoretical selection of algorithms in the
literature robust to those characteristics. Section III describes
the construction of the first nuclear dismantling dataset in
the literature, which enables the benchmarking of different
SLAM algorithms. Section IV depicts the metrics adopted in
this paper for the algorithms’ evaluation. Section V shows the
results obtained for determining the most suitable algorithm
for localization in French nuclear facilities. Finally, Section VI
highlights our conclusions.

II. NUCLEAR DISMANTLING FACILITIES

In order to employ a SLAM algorithm for reconstruction
and localization, it is necessary to characterize the scene and
the application, as some scenarios may have specific attributes
that directly affect the performance of the algorithms [3]. Con-
sidering this scenario dependency, four criteria were defined,
which depend on the actual condition of several representative
nuclear facilities under dismantling. These criteria have the
potential to influence the effective functioning of certain
SLAM algorithms significantly; they are:

• Texture absence: this criterion was selected considering
the techniques employed by many SLAM algorithms,
especially the feature-based ones. For instance, the Harris
corner detector [4], employed to identify the features in
an image, the lack of texture can lead to bad algorithm
functioning. Some examples of algorithms based on tex-
ture detection are ORB-SLAM [6] and OKVIS [5].

• Environment Size: the size of a nuclear facility can be
important for some algorithms because it affects how
much data needs to be processed and what sensors are
needed. For example, the KinectFusion [7] algorithm
can only be used in room-sized spaces, while the LSD-
SLAM [8] algorithm can be used in large-scale areas.
Nuclear facilities can range from a single room to a large
contaminated building.

• Reflective and Transparent Surfaces: some algorithms,
especially those based on RGB-D and LiDAR sensors,
may have difficulty mapping reflective and transpar-
ent surfaces. Nuclear facilities often contain reflective
metal and glass equipment, and contaminated facilities
in France may be isolated with glass and transparent
materials or contain gloveboxes.

• Luminosity variations: some SLAM algorithms, espe-
cially those that rely only on luminosity information, may

have difficulty mapping in low-light conditions. For in-
stance, some visual-based algorithms, such as DTAM [9],
LSD-SLAM, and SVO [10], use the intensity of pixels to
estimate depth, meaning they are particularly susceptible
to problems caused by low light.

When choosing a SLAM algorithm for radiological mapping
in a decommissioning scenario, it is important to consider al-
gorithms that are robust to the challenging conditions of these
environments, such as large, textureless spaces with reflective
and transparent objects and changes in lighting. Following, we
present a theoretical analysis considering the nuclear facilities’
characteristics and the main SLAM algorithms [3] and sensors.

A. Comparison of SLAM Sensor technologies for nuclear
dismantling facilities

SLAM algorithms may process data from one or more
sensors to localize it within a 3D reconstruction. The main
employed sensors are:

• LiDAR (Light Detection and Ranging): LiDAR sensors
emit laser beams and measure the time it takes for the
laser to bounce back from objects in the environment.
By analyzing the reflected laser beams, LiDAR sensors
can create accurate 3D point cloud representations of the
surroundings. LiDAR data is commonly used in SLAM
algorithms for precise mapping and localization. How-
ever, due to its functioning physics, LiDAR is not ideal
for reconstructing dismantling facilities with reflexive
and transparent surfaces since this feature significantly
changes the reflected laser beam.

• Inertial Measurement Unit (IMU): IMUs are devices able
to measure acceleration, angular velocity, and orientation.
IMU data helps estimate the device’s motion and is often
fused with other sensor data to improve position tracking
and motion estimation in SLAM algorithms. However, it
must be combined with other types of sensor, such as
cameras, to allow the 3D reconstruction and increase the
system calibration’s complexity.

• Cameras: cameras capture visual information from the
environment and can be used for various purposes in
SLAM. Visual SLAM algorithms leverage camera im-
ages to extract visual features, track their motion across
frames, and estimate the device’s position and environ-
ment structure. Cameras can provide rich visual infor-
mation but may be sensitive to lighting conditions and
textureless environments, depending on the employed
algorithm.

• Depth Sensors: usually combined with RGB cameras,
depth sensors are typically designed to capture depth
information by measuring the time-of-flight or structured
light patterns of the infrared (IR) sensor, which bounces
off objects and then returns to the sensor. As a result,
they are generally unable to capture depth information
for transparent or highly reflective surfaces because most
of the IR light passes through or bounces away from the
surface without being reflected to the sensor. In addition,
they present a limited range that may vary from 0.2 m to
10 m (usually less than 10 m) [11]. Those reasons limit
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the use of this kind of sensor in large environments and
reconstructing transparent and reflexive surfaces.

• Global Positioning System (GPS): GPS receivers provide
global positioning and timing information. While GPS
signals are widely used for outdoor localization, they have
limitations in indoor or urban environments where the
signals may be weak or obstructed, such as an indoor
dismantling scene.

Considering the application of this paper, the only sensors
able to operate in facilities with the presented characteristics
are the cameras and IMU. For this reason, this study limits the
algorithms’ benchmarking to visual or visual-inertial SLAM
algorithms.

B. Selection of the visual-SLAM algorithms for nuclear facil-
ities

We could analyze the robustness of the main visual SLAM
algorithms according to the nuclear facilities’ conditions. A
recent review [3] assembled the main visual and visual-
inertial algorithms. Considering the algorithms presented by
the authors, Tables I and II summarize the theoretical analysis
realized for the presented SLAM techniques. In these Tables,
Textureless refers to the robustness to uniform environments,
Size refers to the ability of the algorithm to perform the
construction of large-scale maps, Refle./Transp. Surf. criteria
evaluate the algorithm’s robustness to reflective and transpar-
ent surfaces and Lum. Const. refers to the performance of the
algorithms under luminosity variation. They were classified
in Good (✓), Average (-), and Bad (✗) according to their
theoretical characteristics presented in the papers.

Table I details the assessment of visual-only SLAM tech-
niques. Regarding their ability to handle textureless environ-
ments, feature-based methods yielded unsatisfactory results
due to their heavy reliance on visual textures in the sur-
roundings. Hybrid and direct approaches, as highlighted by
[9], exhibited an inferior performance in textureless environ-
ments, but they remained functional—a contrast to feature-
based algorithms. The only monocular algorithm capable of
dealing with featureless environments is CNN-SLAM, which
relies on depth predictions via convolutional neural networks
(CNNs). However, regarding the Size criterion, CNN-SLAM
and DTAM faced challenges, as they were primarily designed
and tested for small-scale spaces, demanding significant com-
putational resources. MonoSLAM also did not address this
criterion, as it operates based on the Kalman Filter, and its
complexity scales with the environment’s size. As for the
PTAM algorithm, it was originally designed for augmented
reality and confined workspaces, which limits its effectiveness
in larger environments.

Feature-based algorithms exhibit resilience to changes in
lighting conditions when they can gather sufficient visual data
to recognize distinctive features. In this regard, the SVO,
LSD-SLAM, and DSO algorithms were assessed to deliver
an Intermediate performance level, as they consider both
photometric and geometric data during estimation. However,
the DTAM algorithm stood out as the only algorithm with
poor performance regarding this criterion, relying exclusively
on photometric errors to estimate depth information.

TABLE I: Theoretical evaluation of visual-only based SLAM
techniques.

Method Texture Size Reflective LuminosityTransparent
PTAM [17] ✗ ✗ ✓ ✓
DTAM [9] - ✗ ✗ ✗
SVO [10] - ✓ - -

LSD-SLAM [8] - ✓ - -
ORB-SLAM 2.0 [6] ✗ ✓ ✓ ✓
CNN-VSLAM [18] ✓ ✗ ✓ ✓

DSO [19] - ✓ - -

Table II summarizes the evaluation based on considered
criteria in the context of visual-inertial-based algorithms. Since
most of these algorithms rely on feature extraction, their ability
to reconstruct textureless environments is constrained, even
though they exhibit greater resilience than visual-only-based
algorithms, as they can maintain motion tracking even when
visual information is limited. An exception to this pattern is
the VI-DSO algorithm, which, like DSO, primarily focuses on
minimizing photometric errors for reconstruction. While most
algorithms have demonstrated strong performance in large-
scale environments, exceptions include MCSKF and ROVIO,
whose complexity is directly influenced by the size of the
scenario and the number of features. All algorithms were
theoretically expected to perform similarly to the last two
parameters. Even though VI-DSO is based on minimizing
photometric error, incorporating IMU data and coefficients
accounting for lighting variations in the optimization enhances
the algorithm’s robustness in low-light situations and when
dealing with reflective surfaces. As for the visual-only feature-
based methods, the other algorithms can operate effectively in
low-light conditions.

TABLE II: Theoretical evaluation of visual-inertial based
SLAM techniques.

Method Texture Size Reflective LuminosityTransparent
MSCKF [20] ✗ ✗ ✓ ✓

OKVIS [5] ✗ ✓ ✓ ✓
ROVIO [21] ✗ ✗ ✓ ✓

VINS [22] ✗ ✓ ✓ ✓
VI-DSO [23] - ✓ ✓ ✓

The presented theoretical assessment has enabled the se-
lection of algorithms well-suited for the specific conditions
imposed by nuclear facilities under dismantling. These se-
lected algorithms include SVO, LSD-SLAM, DSO, VI-SVO,
and VI-DSO. Figure 1 provides a visual synthesis of the
information presented in Tables I and II. In this representation,
each set contains the algorithms that exhibit robustness to a
particular characteristic of nuclear facilities. For instance, the
DTAM algorithm demonstrates robustness in textureless envi-
ronments but is not resilient to large-scale facilities, reflective
or transparent surfaces, and variations in lighting conditions.
Therefore, it is exclusively placed in the Textures set.

Nonetheless, it is necessary to benchmark the selected
algorithms on representative D&D datasets to reinforce the
presented theoretical selection. However, no dataset in the
literature currently represents a nuclear facility under disman-
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Figure 1: Set diagram representing the selected algorithms
that are theoretically robusts to the conditions imposed by the
decommissioning nuclear facilities.

Figure 2: Conceived system to data acquisition in real-case
scenarios of dismantling environments.

tling. Hence, there is a need to conceive a new dataset of
nuclear facilities under dismantling for benchmarking visual
and visual-inertial SLAM algorithms.

III. DATASET CONSTRUCTION

In order to obtain a practical and real-case evaluation of
the selected algorithms, we constructed a dataset one of its
kind in CEA Fontenay-aux-Roses facilities. This CEA site has
several installations under dismantling, presenting the different
characteristics mentioned earlier. The data was acquired based
on the hardware synchronized acquisition system shown in
Figure 2. It comprises two cameras Blackfly S [14] syn-
chronized with one IMU Xsens MTi-610 [15]. In addition,
a LiDAR Velodyne VLP-16 [16] provides additional data
representing the 3D reconstruction ground truth. The system
was mounted in a NuCoMo-100 α−β contamination monitor.
The radiological data was not acquired in the context of the
work presented in this article since the main objective is
selecting the most suited SLAM algorithm. So, the contami-
nation monitor is mostly used here to illustrate the concept of
employment. A laptop processed the data with Intel Core I7
10th generation, 32 Go of RAM.

The algorithms were benchmarked considering three differ-
ent sequences with different levels of difficulty to track. They
are presented in the following subsections.

Figure 3: General view of the easy-to-track sequence.

Figure 4: General view of the medium-to-track sequence.

A. Easy-to-track sequence

The easy-to-track sequence was recorded in a large-size
contaminated environment, and it may be considered an easy-
to-track sequence since it contains different types of elements,
being a texture-rich environment. It does not contain reflexive,
transparent surfaces nor luminosity variation. A general view
of this sequence scenario is shown in Figure 3.

B. Medium-to-track sequence

The medium-to-track sequence is considered a medium-
difficult sequence to track. It was recorded in the same
environment as the easy-to-track, but with a forced lightning
variation, which increased the sequence difficulty to track. It
is a texture-rich environment and does not contain reflexive or
transparent surfaces, as presented in Figure 4.

C. Difficult-to-track

Finally, the last recorded sequence is a difficult-to-track en-
vironment since it is an isolated and contaminated installation.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 5

Figure 5: General view of the difficult-to-track sequence.

This facility is isolated with a translucent material and poor
in texture presence. It counts with good luminosity conditions
and is equivalent to a small room (4.85m×2.87m), as shown
in Figure 5.

IV. EVALUATION CRITERIA

This section presents the metrics used to compare the se-
lected SLAM algorithms regarding their tracking and mapping
performances in nuclear facilities under dismantling. Usually,
the algorithms’ evaluation is based on the error estimation
over the estimated trajectory; this error is computed based
on a ground-truth trajectory from a Motion Capture (MoCap)
device. As the MoCap device was unavailable, this paper pro-
poses alternative error metrics. We used the metrics proposed
in [12] for the tracking evaluation: the loop drift estimation
and alignment error evaluations. Additionally, two metrics are
proposed to evaluate the 3D reconstructions: the evaluation of
the reconstructed wall distances compared to the actual wall
distances and the comparison between the 3D reconstruction
and the 3D reference point cloud from the LiDAR.

A. Loop drift

The recorded sequences started and finished at the same
position, enabling the computation of the loop drift error.
This error refers to the drift accumulated during the sen-
sor movement. Some algorithms can perform loop-closing
techniques, identifying the images previously detected by the
algorithm to estimate and correct the accumulated drift. For
those algorithms, as affirmed in [12], the loop closure detection
must be disabled to enable this evaluation. The computing of
the Euclidean distance between the first and end points of the
estimated trajectory provides the loop drift value.

B. Alignment Error

Another error metric proposed in [12] allowing the eval-
uation of the scale, rotation, and translation errors is the
alignment error computation. The authors propose the se-
quences recording starting and finishing by easy-to-track

frames enabling the reliable tracking by a SLAM algorithm
well-established in the literature; the authors in [12] em-
ployed the LSD-SLAM, and we employed the ORB-SLAM.
Initially, the authors propose the computation of two relative
transformations, T gt

s and T gt
e for the start- and end-segments,

respectively, and expressed by equations (1) and (2).

T gt
s := argmin

T∈Sim(3)

∑
i∈S

(Tpi − p̂i)
2, (1)

T gt
e := argmin

T∈Sim(3)

∑
i∈E

(Tpi − p̂i)
2. (2)

Considering the tracking of frames 1 to n with the tracked
positions p1...pn ∈ R3, S ⊂ [1;n] and E ⊂ [1;n]
correspond to the frames indices of the start- and end-segments
containing an aligned ground-truth position p̂ ∈ R3. From
equations (1) and (2) computations, the authors propose the
estimation of the accumulated drift by the computation of
Tdrift = T gt

e (T gt
s )−1 ∈ Sim(3), and propose the alignment

error computation. A combined error metric considering the
error caused by the scale, rotation, and translation over the full
trajectory. This error is expressed by equation (3):

ealign :=

√√√√ 1

n

n∑
i=1

||T gt
s pi − T gt

e pi||22 (3)

C. 3D reconstruction errors

In addition to the two tracking evaluation metrics, we
introduce two supplementary metrics to appraise the 3D re-
construction performance. The first metric assesses the re-
constructed walls’ precision compared to their actual dimen-
sions. This measurement gauges the SLAM algorithm’s ability
to reconstruct the environment, and it is important to note
that we adjust the scale of the reconstructed trajectory for
monocular algorithms to enable this evaluation. The second
metric for 3D reconstruction evaluates the disparity between
randomly selected points in the reconstructed point cloud
and the corresponding points in the reference LiDAR point
cloud. It is important to highlight that this latter metric is
exclusively applied in evaluating easy-to-track and medium-
to-track sequences, as LiDAR cannot effectively operate in
reconstructing the difficult-to-track sequences.

V. RESULTS

This section compares the visual and visual-inertial SLAM
algorithms to determine the most suitable one for 3D re-
construction and localization in nuclear facilities under dis-
mantling. Therefore, we implemented the selected algorithms
(SVO, DSO, LSD-SLAM, VI-DSO, and VI-SVO) and com-
pared them regarding the criteria presented in section IV and
real-case scenario dataset, described in section III.

It is worth noting that the results for LSD-SLAM are
omitted due to its inability to track and map the recorded
sequences successfully. LSD-SLAM requires a high frame
rate for accurate performance, with the authors suggesting a
minimum of 30 frames per second (fps). The employed 10
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TABLE III: Average alignment error ealign and standard
deviation σ obtained by the selected SLAM algorithms for
the trajectory estimation of the conceived dataset.

ealign × 10−2

DSO VI-DSO SVO VI-SVO
(σ × 10−2)

Easy-to-track 14.84 (0.58) 5.20 (0.53) 4.25 (0.90) 1.83 (0.48)
Medium-to-track 1.75 (0.42) 2.14 (0.64) 5.92 (0.51) 0.70 (0.26)
Difficult-to-track - - - 2.59 (0.15)

fps frame rate results in fast inter-frame motion, consequently,
substantial displacements between frames, increasing the dif-
ficulty for LSD-SLAM to identify matching features in the
images, leading to errors in the computation of the Jacobian
matrix (utilized for minimizing the reprojection errors). Conse-
quently, the algorithm may fail to converge towards an accurate
solution, resulting in an inaccurate map.

A. Alignment error evaluation

This section conducts a performance comparison of the
selected SLAM algorithms, focusing on the alignment error.
This metric has proven its reliability to assess the effectiveness
of SLAM algorithms, as it provides a more comprehensive
evaluation of the algorithm’s accuracy compared to measure-
ments such as translational drift or joint RMSE, as highlighted
in [12]. Table III displays the average alignment errors the
selected SLAM algorithms obtained over ten estimations for
the three conceived sequences.

As observed, the two monocular algorithms exhibited the
highest average alignment error across all sequences, and they
faced a complete tracking failure in the last sequence. This
is mainly due to their susceptibility to scale error since they
cannot directly measure distances to objects in the scene due
to the absence of absolute scale. Furthermore, they demon-
strated a significant sensitivity to outliers, which decreases the
algorithms’ performance in terms of alignment error. Despite
the first sequence being relatively easy to track, it contains
frames with a radiation protection operator at work, which
can be regarded as a dynamic outlier object. While this did
not affect most algorithms’ functionality, it contributed to
increased errors compared to other sequences, emphasizing
the DSO algorithm’s lack of robustness compared to the other
considered algorithms.

On the other hand, VI-DSO demonstrated more resilience to
outliers than its monocular counterpart, as evidenced by the
results in the easy-to-track sequence. However, their perfor-
mances, in terms of alignment error, became comparable when
processing the medium-to-track dataset. Additionally, VI-DSO
failed to completely track the challenging-to-follow sequence.

Finally, VI-SVO emerges with the slightest average align-
ment error across all sequences, indicating that it stands out as
the most accurate SLAM algorithm for trajectory estimation
within the conceived dataset. Beyond the average alignment er-
ror, Table III provides the standard deviation of the alignment
error. This data serves as a measure of the SLAM algorithms’
resilience to noise and other disruptions. The results reinforce
that VI-SVO exhibits the highest level of robustness among

TABLE IV: Average RMSE error and standard deviation in
meters of the loop drift estimation obtained by the selected
SLAM algorithms for the localization of the conceived dataset.

RMSE(σ) DSO VI-DSO SVO VI-SVO

Easy-to-track 1.22 (0.12) 2.82 (0.32) 0.41 (0.25) 0.74 (0.28)
Medium-to-track 0.83 (0.06) 1.12 (0.38) 0.39 (0.18) 0.25 (0.09)
Difficult-to-track - - - 0.15 (0.05)

the SLAM algorithms for trajectory estimation regarding the
alignment error.

B. Loop drift evaluation

Loop drift stands as a crucial metric in the assessment of
SLAM algorithms. A low loop drift indicates an SLAM algo-
rithm’s ability to accurately monitor the camera’s motion over
an extended duration, significantly influencing the accuracy of
the estimated 3D structure of the environment. In contrast, a
significant loop drift leads to inaccuracies in the estimated 3D
structure of the environment. Moreover, loop drift can impact
the resilience of a SLAM algorithm, as a substantial loop drift
can increase the likelihood of losing track of the camera’s
position.

Hence, loop drift is a fundamental criterion for evaluating
SLAM algorithms. This section provides an evaluation of the
selected algorithms concerning loop drift. Table IV presents
the average loop drift estimation from ten runs for tracking
within the three considered sequences using the DSO, SVO,
VI-DSO, and VI-SVO algorithms.

Table IV displays the average root mean square error
(RMSE) and standard deviation for loop drift estimation for
the DSO, VI-DSO, SVO, and VI-SVO algorithms across
the recorded sequences. The results indicate that VI-SVO
consistently achieves the lowest RMSE and standard deviation
in most sequences, implying its superior accuracy regarding
loop drift estimation. Monocular SVO is the second most
accurate algorithm, followed by DSO and VI-DSO.

A primary reason justifying the enhanced accuracy of VI-
SVO and SVO compared to DSO and VI-DSO is the different
employed image alignment techniques. The latter two employ
traditional image alignment between the current frame and the
previous keyframe. At the same time, SVO and VI-SVO align
the camera poses with the map rather than prior frames. This
approach helps mitigate drift, notably enhancing loop drift
estimation accuracy, particularly in challenging scenarios such
as low-light conditions or high-speed motion.

Furthermore, the initialization method used in the DSO/VI-
DSO algorithms requires more processing time than SVO/VI-
SVO, which results in the loss of initial frames and inertial
data for tracking. DSO and VI-DSO employ a two-step initial-
ization procedure where they first estimate the camera’s pose
and a sparse set of 3D points in the scene. Subsequently, these
algorithms utilize joint optimization to refine the estimations
of the camera pose and 3D points. In contrast, SVO and
VI-SVO employ a one-step initialization process where they
estimate the camera pose and a sparse set of 3D points through
stereo matching, or in the case of monocular configuration, by
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(a) Trajectory estimated by the
DSO algorithm.

(b) Trajectory estimated by the
VI-DSO algorithm.

(c) Trajectory estimated by the
SVO algorithm.

(d) Trajectory estimated by the
VI-SVO algorithm.

Figure 6: Estimated trajectories for the medium-to-track se-
quence by the DSO, VI-DSO, SVO and VI-SVO algorithms.

estimating the camera’s pose through solving linear equations
and matching 2D-3D correspondences.

Figure 6 illustrates the estimated trajectories for the
medium-to-track sequence, highlighting the loop drift resulting
from the initialization process. In order to ease the visualiza-
tion, a red dot indicates the trajectory’s start, and a red star
indicates the end. The presented results suggest the accuracy
and robustness of VI-SVO compared to the other implemented
algorithms.

C. Mapping evaluation

This section compares the selected SLAM algorithms re-
garding their 3D reconstruction capabilities. The resulting
reconstructions were assessed by contrasting them with the
actual measurements derived from the 2D plans of the facil-
ities. A lower error means a more consistent reconstruction,
and this metric holds significance for assessing the quality
of 3D reconstructions. A 3D reconstruction aligned with the
real-world environment is more likely accurate and valuable
for localizing nuclear measurements in dismantling facilities.
Figure 7 illustrates the resulting 3D reconstructions for the
medium-to-track sequence processing.

To assess the 3D reconstructions, we have introduced a
metric known as the reconstruction error ratio (erec). This
metric involves calculating the ratio between the height and
width of the 2D plan compared to the estimated height and
width ratio. This metric aims to evaluate the consistency of
the 3D reconstruction without factoring in scale errors, which
are predominantly observed in monocular algorithms. It relies
on the ratio between measurements, making it insensitive to

(a) 3D reconstruction by the DSO
algorithm.

(b) 3D reconstruction by the VI-
DSO algorithm.

(c) 3D reconstruction by the SVO
algorithm.

(d) 3D reconstruction by the VI-
SVO algorithm.

Figure 7: 3D reconstructions obtained for the medium-to-track
sequence by the DSO, VI-DSO, SVO and VI-SVO algorithms.

TABLE V: Average reconstruction error ratio erec and stan-
dard deviation σ obtained by the selected SLAM algorithms
for the 3D reconstruction of the conceived dataset.

erec × 10−2

DSO VI-DSO SVO VI-SVO
(σ × 10−2)

Easy-to-track 2.88 (2.3) 4.55 (2.38) 10.15 (6.65) 4.37 (3.61)
Medium-to-track 5.96 (2.45) 3.90 (2.44) 9.78 (7.35) 3.66 (2.42)
Difficult-to-track - 14.98 (8.07) - 7.12 (6.94)

scale distortions and ensuring a fair assessment across the
different algorithms. The estimated error values are presented
in Table V.

As one may observe, DSO and VI-SVO produced the lowest
values for the reconstruction error ratio, with DSO excelling
in the first sequence and VI-SVO outperforming in the last
two sequences. Despite the partial processing of the difficult-
to-track sequence by VI-DSO due to its failure to complete the
entire sequence, we could evaluate the partial reconstruction
based on the initial frames. This partial reconstruction con-
tained several outliers, leading to an error ratio value exceeding
the average.

Based on the presented results, we conclude that the VI-
SVO algorithm obtained the best results for the 3D reconstruc-
tion criterion in the specified dataset. It consistently produces
the lowest reconstruction error ratio in most sequences. The
DSO and VI-DSO provided erec similar to the VI-SVO, yet
this last one demonstrates superior consistency regarding the
average reconstruction error ratio. The SVO presented the
highest erec values.

In addition to erec, we propose an additional metric for
3D reconstruction evaluation, the average reconstruction error
eref , based on the reference point cloud from the LiDAR
device. Each algorithm was run on the easy- and medium-
to-track sequences five times, and we compared the resulting
3D point cloud reconstructions to a reference 3D point cloud
obtained from LiDAR. However, it is important to note that
this metric cannot evaluate the results for difficult-to-track
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TABLE VI: Average reconstruction error eref and standard
deviation σ obtained by the comparison between the SLAM
algorithms’ reconstructions with the reference point cloud.

eref (m) DSO VI-DSO SVO VI-SVO(σ(m))

Easy-to-track 0.15 (0.09) 0.18 (0.10) 0.16 (0.20) 0.31 (0.10)
Medium-to-track 0.19 (0.16) 0.15 (0.10) 0.16 (0.21) 0.44 (0.28)

sequence, as the LiDAR is unsuitable for operation in this
particular environment.

The error assessment involves aligning and scaling the
estimated point cloud to match the reference point cloud,
enabling the computation of the Euclidean distance between
ten randomly selected points in the estimated point cloud and
their corresponding points in the reference point cloud. These
operations were carried out using the CloudCompare tool [13],
which implements point cloud alignment based on the Iterative
Closest Point (ICP) algorithm. A lower error value indicates a
higher level of accuracy in the reconstruction. The error values,
denoted as eref , are presented in Table VI, comparing the
reconstructions of SLAM algorithms and the reference point
cloud.

As observed in Table VI, DSO yielded the lowest recon-
struction error in the easy-to-track sequence, followed by SVO,
VI-DSO, and VI-SVO. VI-DSO achieved the lowest error for
the second sequence, with SVO, DSO, and VI-SVO following.
erec analysis revealed a consistent 3D reconstruction quality
for the five algorithms, yet the VI-SVO presented a relatively
higher reconstruction error, possibly due to its mapping ap-
proach. VI-SVO initiates point estimation with a large depth
uncertainty and refines depth values in subsequent frames.
In contrast, DSO and VI-DSO employ a more sophisticated
method of identifying and tracking candidate points over
several frames, generating an initial coarse depth value for
joint optimization. Additionally, they incorporate an adaptive
threshold to identify and mitigate outliers by removing candi-
date points with photometric errors exceeding a set limit. The
mapping strategy adopted by DSO and VI-DSO contributes to
a reliable 3D reconstruction of the environment, resulting in
lower erec values and a more detailed reconstruction compared
to SVO and VI-SVO, as evidenced in Figure 7.

Based on the erec and eref results, it is possible to verify the
equivalent performance obtained by the algorithms regarding
the mapping. While VI-SVO presented a superior performance
regarding the general consistency of the 3D reconstruction by
presenting the lowest erec values across most of the sequences,
the DSO and VI-DSO also demonstrated to generate accurate
3D reconstructions as demonstrated by their low eref values
across the easy- and medium-to track sequences.

VI. CONCLUSION

In conclusion, this paper analyzed and compared various
SLAM algorithms within the context of real-case scenarios
and constraints associated with radiological mapping for the
first time in the literature. In order to do so, a first theo-
retical analysis was conducted, enabling the selection of five

algorithms based on their responses to the nuclear facilities’
characteristics. Then, we constructed a new dataset containing
different data types and features, allowing the benchmark
of the selected algorithms. The algorithms’ benchmarking
employed criteria encompassing alignment errors, loop drift
assessment, and 3D reconstruction evaluation.

In the context of tracking errors, the results highlight VI-
SVO as a promising SLAM algorithm for trajectory esti-
mation in nuclear facilities undergoing dismantling. VI-SVO
consistently demonstrated superior performance, obtaining an
average error ranging from 24% to 53% lower than the
other algorithms in terms of alignment error values for the
easy- and medium-to-track sequences, and it was the only
tested algorithm able to fully operate in the difficult-to-track
sequence, as presented in Table III. Moreover, regarding the
loop-drift evaluation, VI-SVO surpassed the other algorithms
by 1% to 76%, as presented in Table IV. In light of these
results, VI-SVO can be considered the most suitable algorithm
for tracking nuclear dismantling facilities, among the selected
algorithms.

Concerning the 3D reconstruction assessment based on the
erec analysis, aside from the SVO algorithm, all implemented
algorithms achieved comparable results, generating a con-
sistent 3D reconstruction, as depicted in Table V. VI-SVO
marginally outperformed the others, yielding reconstructions
that were, on average, 3% to 5% more consistent than those
produced by the DSO and VI-DSO algorithms.

On the other hand, in an overall evaluation of the recon-
struction quality based on the eref analysis, DSO and VI-
DSO outperformed the SVO and VI-SVO algorithms. While
exhibiting a low average error value, SVO demonstrated a rel-
atively high standard deviation, indicating inconsistency in the
reconstruction. In contrast, VI-SVO registered the highest error
values, as shown in Table VI. Despite this, only VI-SVO could
complete the tracking and mapping of the difficult-to-track
sequence successfully. VI-DSO managed to track a portion
of the last sequence’s trajectory and obtained a reconstruction
significantly affected by outliers. The monocular algorithms
could not process the final sequence, rendering them unsuitable
for localization and mapping in nuclear facilities undergoing
dismantling. Considering the presented analysis, it is possible
to conclude the superior performance and suitability of the VI-
SVO algorithm to reconstruct and localize nuclear facilities
under dismantling. Further analysis must be conducted to
analyze the embeddability of this algorithm for a modular
handheld implementation.
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