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Abstract: Urban air pollution is a major concern that significantly impacts the environment and public health. In this 

context, machine learning has enabled the development of surrogate models, which have proven to be valuable tools 

for simulating atmospheric pollution. Our previous work introduced the MCxM, a new approach to learning air 

pollution dispersion in urban environments. This framework allows for the prediction of 2D concentration fields by 

applying a series of masking and correction operations that gradually incorporate the influence of obstacles into the 

physics of pollutant transport and dispersion. In this paper, we propose to enhance the MCxM architecture by extending 

its capabilities to predict three-dimensional concentration fields. These enhancements mainly involve the integration 

of architectural blocks to scale and approximate the underlying physics. To validate the effectiveness of our approach, 

we used synthetic integrated concentration data generated by the PMSS modeling system, considering extensive twin 

experiments in the French cities of Grenoble and Paris. The results indicate that the accuracy of the predicted integrated 

concentration field has improved significantly compared to our previous work.  
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INTRODUCTION 

 

The accurate forecasting of urban air pollution is crucial for public health advisories, environmental 

protection, and urban planning. Traditionally, this has been approached through high-fidelity CFD models, 

which simulate the physics of atmospheric flows and chemical processes to predict the transport and 

dispersion of pollutants. However, these models often require extensive computational resources.  

Surrogate modeling is a crucial technique that provides efficient alternatives to computationally expensive 

simulations, offering significant reductions in computational time and resources while maintaining 

acceptable accuracy. The development of surrogate models in the context of physics encompasses several 

advanced methodologies, primarily leveraging machine learning technologies. Physics-Informed Neural 

Networks (PINNs) (Cai et al., 2021) incorporate physical laws into the learning process, usually by adding 

a residual of PDEs in the loss function, which helps in training data-efficient models that adhere closely to 

the underlying physical principles to approximate the PDE solution. When there is an abundance of data 

(experimental or synthetic), data-driven deep learning models are favored as surrogate models because they 

can model complex spatial and temporal nonlinear dynamics. Several DNN architectures have been 

employed to model airflow in different use cases. Usually, these studies learn to infer the solution in a fixed 

PDE instance, which generally entails retraining the model when the setting changes (for example, the 

building topology) (Calzolari et al., 2021). A relatively novel class of methods employs neural networks to 

learn operators (a mapping between function spaces), which are conceptually generalizable and can solve 

different families of PDEs without the need for retraining. For example, DeepONets (Lu et al., 2021) and 



FNOs (Li et al., 2020) enable the learning of a generalizable operator that can solve different instances 

(initial and boundary conditions) of the underlying PDE. 

 

Our previous work introduced the MCxM, an innovative approach designed to address urban pollution 

dispersion challenges. The MCxM framework improved upon traditional methods by incorporating 

domain-specific knowledge through a series of masking and correction operations, enhancing the model's 

ability to account for the effects of urban obstacles on pollutant dispersion. This paper proposes 

enhancements to the MCxM architecture to extend its capabilities into three-dimensional (3D) space. This 

advancement is crucial as it allows for a more accurate representation of pollution dispersion, which is 

inherently a 3D process. The enhanced model includes a series of complementary preprocessing steps and 

new architectural blocks to scale the model to approximate complex physics involved in pollutant transport 

and dispersion in three dimensions.  

 

MODEL DESCRIPTION 

 

In our previous study (Mendil et al., 2022), we developed a deep learning-based approach called MCxM to 

predict the concentration of pollutants accidentally released in urban areas. Such an approach is extended 

to 3D by scaling the masking and correction operations. Instead of 2D inputs, we provide the MCxM-3D 

with a couple of 3D tensors: a 3D building mask indicating the presence or absence of buildings in different 

locations and heights and a prior integrated concentration field derived from the 3D Gaussian plume in a 

flat terrain under specified stability conditions. 

 

An instance of the MCxM model takes as inputs a binary map in ℝ𝑚×𝑚×ℎ representing the urban area and 

a prior Gaussian plume in ℝ𝑚×𝑚×ℎ derived for neutral stability conditions and stationary wind properties 

(direction and speed), where 𝑚 is the number of cells in each direction of the horizontal plane and ℎ is the 

number of levels along the 𝑧-axis. The Gaussian plume model is a well-established approximation of 

pollutant dispersion in a flat environment without any obstacles. However, MCxM aims to refine this model 

by considering the physical interactions between airflow and buildings, such as trajectory changes and 

mechanical turbulence. To achieve this, MCxM employs two primary operations: masking and correction. 

Masking is a point-wise multiplication between the binary building map and a concentration field, 

effectively enforcing spatial constraints associated with the urban area. Correction involves a deep learning 

model trained to approximate pollutant transport and dispersion physics. Figure 1 illustrates the architecture 

of the extended MCxM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sequence of masking and correction can be reiterated 𝑁 times to progressively model the impact of 

different obstacles on the expanding polluted areas.  

Figure 2: MCxM extended architecture. Figure 1: Non-linear operator (Φ) 

in the correction block. 



The correction block can be implemented using various models. In our previous study (Mendil et al., 2022),  

the correction block operated on inputs of dimension 𝑚 × 𝑚 (ℎ = 1) and consisted of a series of feed-

forward, ReLU activation, and batch normalization layers. We propose a new instance of the correction 

block that combines the strengths of convolutional neural networks with the capabilities of neural operators. 

The encoder/decoder consists of a Unet-like architecture (Ronneberger et al., 2015), and Φ is represented 

by a non-linear neural operator in the latent space. More precisely: 

 

 The encoder, represented in Figure 3, extracts features from the input 3D concentration field in ℝ𝑚×𝑚×ℎ 

and building topography in ℝ𝑚×𝑚×ℎ. It comprises 𝑁𝑒  contracting blocks, each consisting of two 

convolutional layers followed by ReLU activation, a batch normalization layer, and a max pooling 

layer. 

 The non-linear operator Φ, represented in Figure 2, processes the encoder’s latent state through a series 

of batch normalization, linear feed-forward, and convolution layers. According to (Kovachki et al., 

2023), using a composition of convolution and nonlinear activations enables the approximation of PDE 

solution operators, with the goal of deriving the general physical processes that govern pollutant 

transport and dispersion.  

 The decoder, shown in Figure 4, builds the final 3D concentration field based on the transformed latent 

representation. It is composed of 𝑁𝑒 expanding blocks, each featuring a transpose convolutional layer, 

two convolutional layers followed by ReLU activation, and a batch normalization layer. As for Unet, 

note the residual connection on the feature maps the encoding block provides. Finally, a 1x1 

convolution outputs the final integrated concentration field in ℝ𝑚×𝑚×ℎ.  
 

 

  

 

 

 
 

 
 

 

 

 

 

 

 

 

 

EXPERIMENT SETTINGS 

 

Our approach was tested in two French cities, Grenoble and Paris, which have a typical European 

architectural style. The buildings date back to the 19th and 20th centuries and are predominantly 20 to 25 

meters tall. The training dataset is composed of several instances of 3D integrated concentration over 2 

hours, generated by Parallel-Micro-SWIFT-SPRAY (PMSS) (Oldrini et al., 2017), a multi-scale 3D 

numerical modeling system of atmospheric transport and dispersion. The computational domain within 

PMSS encompasses an urban neighborhood of the French city of Grenoble. This domain is defined by a 

high-resolution grid, maintaining both horizontal and vertical resolutions of 2 meters up to the building 

heights. Beyond this point, as the simulation extends vertically above the building tops, the vertical 

resolution progressively coarsens while the horizontal resolution remains constant. 

 

The emission source is considered in different hypothetical locations given 108 stationary weather 

conditions above the urban canopy, built from a combination of 36 values of wind direction 𝜃 [°] ∈ {0, 

10,20, …,350} and three values of wind speed 𝑣 [𝑚. 𝑠 −1 ] ∈ {1.5, 3.5, 6}. The test dataset is constructed 

similarly in the Opera district of Paris. A point source produces an instantaneous fictitious emission of a 

Figure 3: Encoder component in the correction 

block. The skip connections take multiscaled 

feature maps to the decoder block. 

Figure 4: Decoder component in the correction 

block. The multiscale feature maps come from 

the encoder block.  



unit mass of the pollutant (gas or particle matter) at a fixed height ℎ𝑆 = 2 m for all experiments. For a given 

initialization (source location and wind conditions), PMSS simulates the steady 3D wind field and the 

unsteady 3D concentration fields for two hours. 

The data preparation consists of several steps to optimize the learning model. First, we integrate the 

concentration over the entire simulation period of two hours, thereby eliminating the temporal dimension 

from the analysis. Then, the 3D concentration fields and the corresponding building tensors are centered 

on the origin of emissions to ensure that the model learns dispersion patterns relative to the source, 

irrespective of its absolute location in the input data. Following this, we spatially subsample the data to 

achieve tensors of shape 𝑚 × 𝑚 × ℎ, which simplifies the training process. Finally, we implement data 

augmentation that includes flipping the fields along the vertical axis to enhance the robustness and 

prevent overfitting.  

 

Table 1. Hyperparameters of the extended MCxM  

m h 𝑵 𝑵𝒆 𝑵𝚽 Encoder/decoder 

Conv2D Kernels 

𝜱 Conv2D 

Kernels 
𝜱 Feed-forward 

# of Neurons 

𝜱 Conv2D 

1x1 Kernel 
100 6 1 2 2          3 × 3 × 32       3 × 3 × 64 32 1 × 1 × 6 

             3 × 3 × 64    

 

Throughout the training, regularization strategies were used to make learning tractable and improve the 

generalization error, mainly exponential decay of the learning rate and early stopping. Mean Squared 

Logarithmic Error (MSLE) is used as a loss function, with RMSProp serving as the optimizer. Other 

hyperparameters are summarized in the Table 1.  

 

RESULTS 

 

In our previous work, the MCxM achieved a MSLE of 0.96 on the Paris test set. Figure 5 shows the MSLE 

achieved by the extended MCxM across different vertical slices. Notably, the model exhibits higher 

accuracy at lower altitudes, closely approximating the 3D integrated concentration field. At the height of 

the emission source, the MSLE is approximately 0.33, indicating a clear improvement over the previous 

MCxM that primarily learned from horizontal slices of 3D concentration fields. The results show that the 

consideration of 3D concentration fields during training, as well as relying on dimension reduction and 

neural operator architectures have significantly improved our model's performance. However, the accuracy 

diminishes at higher altitudes, with an MSLE of around 0.5.  This issue will be further investigated in future 

work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 presents an instance of predicted and simulated concentration fields at various heights. The 

shadowed areas in the visualization highlight the presence of buildings. Overall, the results align with the 

simulations (ground-truth). Notably, at lower heights, the closed 2D contours located south of the emission 

source would typically be inaccessible to pollutants if not considering the comprehensive 3D airflow. This 

outcome suggests that the model effectively captures some 3D interactions between building structures and 

airflow, as well as the influence of street intersections on the trajectory of pollutants.  

Figure 5: MSLE achieved at different heights by the extended MCxM on the test dataset in Paris.  



 

Figure 6: Examples of predicted and ground-truth (synthetic) integrated concentration field [unit. s m−3/unit. released] 

in Paris (logarithmic scale) at different heights ℎ𝑖. 

 

 CONCLUSION 

 

By extending learning to 3D air pollution dispersion, we enable the model to integrate more comprehensive 

spatial data, including vertical variations that are critical in urban settings where buildings significantly 

influence airflow. The improved MCxM approach relies on scaled masking and correction operations that 

combine the strengths of physics priors, convolutional neural networks, and neural operators. The extended 

MCxM has demonstrated significantly lower MSLE and, thus, better predictive performance, particularly 

at lower altitudes where the concentration of pollutants is often the highest and most critical for urban 

populations. 
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