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ABSTRACT:  
 
This study presents an innovative approach to solar photovoltaic (PV) performance analysis through the integration of 
temperature and solar irradiance data using a graph-based community detection method. While previous research often 
considered these factors independently, our method captures their complex interactions, offering a more comprehensive 
insight into the behaviour of solar PV systems. We introduce a novel data reduction technique that identifies 10 
representative days from a year's worth of hourly data, significantly reducing computational requirements while 
preserving crucial microclimate patterns relevant to PV performance. Our methodology employs a graph-based 
community detection algorithm, representing days as nodes and similarities as edges, enabling the identification of non-
spherical clusters that better represent complex weather patterns. We evaluated three normalization techniques—
standard, min max, and robust—finding minmax normalization to yield the best-defined clusters for our dataset. The 
effectiveness of our approach is demonstrated using hourly average temperature and irradiance data. Results show that 
our method successfully captures annual weather patterns while substantially reducing data volume. This research will 
contribute to more efficient and accurate solar PV performance evaluations, balancing comprehensive data analysis 
with computational efficiency. 
 
 

 
1 INTRODUCTION 
 
The effectiveness of solar photovoltaic (PV) systems 
hinges on a thorough understanding of their interaction 
with the environment. Temperature and solar irradiance 
are two key factors that significantly affect power 
generation [1, 2]. A comprehensive knowledge of how 
these factors vary over time throughout the year is crucial 
for optimal system design. Solar irradiance, or sunlight 
intensity, directly dictates the electrical energy produced. 
Accurate modeling of irradiance variations caused by 
cloud cover, seasonality, and geographic location is 
essential for precise energy yield estimates [3]. 
Temperature plays an equally important role in PV system 
performance. As solar panels heat up, their efficiency 
declines, a phenomenon quantified by the temperature 
coefficient. Typically, for every degree Celsius increase in 
panel temperature, power output drops by more than 0.5% 
[4]. This inverse relationship between temperature and 
efficiency underscores the importance of considering local 
temperature patterns throughout the year. Accurate 
knowledge of these patterns is essential for generating 
realistic energy production estimates and optimizing 
system performance. However, analyzing yearlong 
environmental data is computationally expensive and 
time-consuming. Data reduction algorithms offer an 
efficient solution to this challenge. By selecting 
representative days, we can accelerate performance 
analysis and free up resources while providing meaningful 
insights into temporal trends. Various techniques have 
been proposed for data reduction, each having its own 
strengths and limitations. Typical Meteorological Year 
(TMY) analysis [5] and extreme value analysis (EVA) [6] 
are common approaches, but they may not capture the full 
spectrum of weather patterns. Clustering provides a more 
comprehensive data reduction approach for weather data, 
capturing both typical and extreme weather patterns [7]. 
 
In this paper, we address two key challenges in analyzing 

environmental data for solar PV performance analysis: 
information fusion and temporal representation. We 
present Graph-Oriented Information Fusion (GOIF), a 
novel approach to the information fusion of temperature 
and solar irradiance data. GOIF employs a community 
detection method and the PageRank technique to identify 
a subset of representative days that effectively capture 
diverse weather patterns throughout the year. This 
approach enables efficient analysis of large datasets while 
preserving crucial microclimate information. Importantly, 
GOIF represents an explainable AI approach, providing 
transparency in its decision-making process and allowing 
for interpretable results. By bridging the gap between 
comprehensive data analysis and practical applicability, 
our method offers a robust framework for improving solar 
photovoltaic performance predictions and system design 
optimizations. 
 
2 METHODOLOGY 
 
Our Graph-Oriented Information Fusion (GOIF) approach 
for analyzing solar PV performance data consists of 
several key steps. This section outlines the data source, 
preprocessing techniques, and the core algorithm used in 
our study. 
 
2.1 Feature Extraction  
 
Our approach begins with extracting informative features 
from daily temperature (T) and irradiance (Q) data. For 
each day i, we compute a feature vector fi, comprising 
several statistical measures. Mean (μ) represents the 
average value for each variable μᵢₓ = (Σₖ₌₁ᴹ xₖ) / M. 
Standard deviation (σ) measures data dispersion around 
the mean σᵢₓ = √ [(Σⱼ₌₁ᴹ (xⱼ - μᵢ)²) / M]. Minimum (min) and 
Maximum (max), provide data range and identify potential 
outliers. Quartiles (Q¹, Q², Q³) offer insights into data 
distribution and central tendency. 
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The comprehensive feature vector for day i is: 
fᵢ = [μᵀᵢ, σᵀᵢ, minᵀᵢ, maxᵀᵢ, Q¹ᵀᵢ, Q²ᵀᵢ, Q³ᵀᵢ, μQᵢ, σQᵢ, minQᵢ, 
maxQᵢ, Q¹Qᵢ, Q²Qᵢ, Q³Qᵢ] 
 
To balance model performance and computational 
efficiency, we focus on mean temperature (μᵀᵢ) and mean 
irradiance (μQᵢ), creating a simplified two-dimensional 
feature vector fᵢ = [μᵀᵢ, μQᵢ] ∈ ℝ². This approach results in 
a characteristic matrix F ∈ ℝᴺˣ², where N is the total 
number of days, effectively representing average daily 
weather conditions throughout the year. 
 
2.2   Data Source and Preprocessing 
 
For this study, we utilized hourly average temperature and 
irradiance data from the solar panel installation at INES 
(Institut National de l'Énergie Solaire), located in Le 
Bourget-du-Lac, France (Latitude: 45.64395818844°N, 
Longitude: 5.875884919217°E, Elevation: 233m). The 
dataset spans a full year. Prior to applying our algorithm, 
we applied three different normalization techniques to 
align all features and improve clustering performance. 
Standard normalization, transforms data to have zero 
mean and unit variance, defined as z = (x - μ) / σ, where μ 
is the mean and σ is the standard deviation of the feature. 
Min max normalization, scales data to a fixed range [0, 
1], given by z = (x - min(x)) / (max(x) - min(x)), where 
min(x) and max(x) are the minimum and maximum values 
of the feature, respectively. Robust normalization, 
centers data around the median and scales it based on the 
interquartile range, expressed as z = (x - median(x)) / 
IQR(x), where IQR(x) is the interquartile range of the 
feature. 
 
2.3  Algorithm Implementation 
 
Graph-Oriented Information Fusion (GOIF) algorithm 
consists of four main steps. 
 
Graph Construction: We represent our dataset as an 
undirected graph G = (V, E), where V is the set of nodes, 
each representing a day in the dataset and E is the set of 
edges, encoding similarities between weather profiles. We 
employ a k-nearest neighbors (k-NN) approach to 
determine edge connections. For each node vi (i = 0 to N-
1, where N is the total number of days), k nearest 
neighbors Ni(k) are determined based on euclidean 
distances to all other nodes. Edges are then created 
between vi and each vj ∈ Ni(k). A node may have ≥ k 
edges due to reciprocal connections. Here k is a user-
defined parameter determining the number of nearest 
neighbors. 
 
Community Detection: We apply the Louvain Modularity 
Maximization algorithm [8] to identify distinct 
communities within the graph, optimizing the modularity 
of graph partitions to effectively group similar days 
together. By adjusting the resolution parameter, we can 
control the number of communities identified; in this 
study, we set the resolution to 0.9, resulting in 10 distinct 
communities. This parameter can be modified to achieve 
different numbers of desired communities based on 
specific analysis needs. 
 
PageRank Application: Within each identified 
community, we apply the PageRank algorithm [9] to 
determine the most central node. The PageRank algorithm 

iteratively calculates the importance of each node based on 
the importance of its incoming connections, assigning 
higher scores to nodes that are linked to by many high-
scoring nodes. PageRank scores are initialized uniformly 
and updated iteratively based on the equation: 
 
PR(i) = (1-d)/N + d * Σ(PR(j) / deg(j)) 
 
Where PR(i) is the PageRank score of node i, d is the 
damping factor (typically set to 0.85) modeling random 
navigation, N is the total number of nodes, and the sum is 
over all nodes j that have an edge to node i. This approach 
allows us to identify the most influential or representative 
day within each weather pattern cluster. 
 
Representative Day Selection: We select the node with the 
highest PageRank score in each community as the 
representative day for that cluster. This process results in 
a set of 10 representative days that capture the essential 
characteristics of the annual temperature and irradiance 
patterns. 
 
2.4 Evaluation Metric 
 
To assess cluster quality, we use the Average Intra-Cluster 
Standard Deviation (σ̄I) as our primary metric. This is 
calculated in three steps. 
 
1. Standard Deviation within Each Cluster (σ): For each 
cluster k, we compute the standard deviation of 
temperature (T) and irradiance (Q). 
σk,T = √[Σ(Ti  - T̄k)² / (Nk - 1)] 
σk,Q = √[Σ(Qi - Q̄k)² / (Nk - 1)] 
Where Nk is the number of days in cluster k, Ti and Qi are 
daily values, and T̄k and Q̄k are cluster means. 
 
2. Intra-Cluster Standard Deviation (σI): We average the 
standard deviations of temperature and irradiance. 
σI,k = (σk,T + σk,Q) / 2 
 
3. Average Intra-Cluster Standard Deviation (σ̄I): We 
calculate the mean of σI,k across all K clusters. 
σĪ = Σ σI,k / K 
 
A lower σ̄I indicates tighter clusters with smaller 
variations, reflecting a more effective normalization 
technique for the community detection process. Thus we 
aim to provide a comprehensive and efficient approach to 
analyze environmental data, balancing data reduction with 
the preservation of crucial microclimate information. 
 
3 RESULTS AND DISCUSSION 
 
Our Graph-Oriented Information Fusion (GOIF) approach 
yielded several significant findings in the analysis of 
environmental data. This section presents our key results 
and discusses their implications. 
 
We evaluated three normalization techniques, standard, 
minmax, and robust normalization. The effectiveness of 
each technique was assessed using the Average Intra-
Cluster Standard Deviation (σ̄I) metric. 
 

Normalization Technique σ̄I 
Standard 1.55 
Minmax 1.25 
Robust 1.60 
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Table 1: Comparison of Normalization Techniques 
 
As seen in Table 1, Minmax normalization produced the 
lowest σ̄I value, indicating that it resulted in the most 
coherent clustering of days. The Louvain Modularity 
Maximization algorithm identified 10 distinct 
communities within our dataset which is illustrated in  
Figure 1, with nodes colored by community. 
 

 
Figure 1: Community Graph with Minmax Normalization 
 
The PageRank algorithm successfully identified the most 
central node within each community, representing the 
most typical day for that weather pattern. Figure 2 shows 
the distribution of daily average temperature and 
irradiance over the year, with the 10 representative days 
marked as red dots. 
 

 
(a) 

 

 
(b) 

 
Figure 2: Distribution of (a) Temperature and (b) 
Irradiance with Representative Days 
 
As evident from Figure 2, the representative days are well 
distributed throughout the year, capturing both seasonal 
variations and extreme weather events. This distribution 
validates the effectiveness of our GOIF approach in 
selecting days that comprehensively represent the annual 
weather patterns. Our method successfully reduced a 
year's worth of hourly data to 10 representative days, 
achieving a data reduction ratio of 36.5:1. Despite this 
significant reduction, the selected days maintain the 
essential characteristics of the annual temperature and 
irradiance patterns, as demonstrated by the low σ̄I value 
and the distribution of representative days. The GOIF 
approach offers several advantages for solar PV 
performance analysis. By reducing the dataset to 10 

representative days, our method significantly decreases 
computational requirements for subsequent analyses. The 
selected days capture both typical and extreme weather 
patterns, providing a balanced dataset for performance 
evaluations. The distribution of representative days across 
the year ensures that seasonal variations in temperature 
and irradiance are adequately represented. The graph-
based approach and PageRank algorithm provide 
transparency in the selection process, allowing for 
interpretable results. 
 
4 CONCLUSIONS AND FUTURE WORKS 
 
Despite promising results, our approach has limitations. 
The current study is based on data from a single location, 
and the generalizability of the method to diverse 
geographical areas needs further investigation. 
Additionally, the optimal number of representative days 
may vary depending on the specific application and 
desired level of detail. Future work is focused on 
validating the GOIF method across diverse geographical 
locations and climates, exploring the impact of different 
numbers of representative days on analysis accuracy. We 
will incorporate additional environmental variables, such 
as wind speed or humidity, into the GOIF framework and 
other PV system specific parameters. Our aim is to 
develop a user-friendly tool for implementing the GOIF 
approach in solar PV system design and optimization. 
 
In conclusion, our Graph-Oriented Information Fusion 
approach demonstrates significant potential for enhancing 
solar PV performance analysis. By effectively reducing 
data while preserving crucial information, GOIF enables 
more efficient and comprehensive evaluations of solar PV 
systems, potentially leading to improved system designs 
and more accurate energy yield predictions. 
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