
HAL Id: cea-04804545
https://cea.hal.science/cea-04804545v1

Submitted on 26 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Performances of the CFD open-source HPC platform
TRUST on GPUs

Elie Saikali, Adrien Bruneton, Pierre Ledac

To cite this version:
Elie Saikali, Adrien Bruneton, Pierre Ledac. Performances of the CFD open-source HPC plat-
form TRUST on GPUs. SNA+MC 2024, Oct 2024, Paris, France. pp.03004, �10.1051/epj-
conf/202430203004�. �cea-04804545�

https://cea.hal.science/cea-04804545v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

03004

Performances of the CFD open-source HPC platform
TRUST on GPUs

Elie Saikali1,∗, Adrien Bruneton1,∗∗, and Pierre Ledac1,∗∗∗

1Université Paris-Saclay, CEA, Service de Génie Logiciel pour la Simulation, 91191, Gif-sur-Yvette,
France.

Abstract. TRUST is a versatile open-source CFD tool developed by the CEA
since 1993. Initially designed for nuclear applications, TRUST has evolved
to tackle a range of thermohydraulic challenges, from one-phase to multi-
phase flows. It offers various numerical methods and supports different mesh
types for efficient computation on diverse computing platforms, including high-
performance computers. Recently, efforts have been made to integrate GPU
computing libraries like AmgX, rocALUTION, and Kokkos aiming for a hybrid
CPU/GPU code achieving better performance portability. This paper provides
an overview of the TRUST platform, discusses its GPU computing strategy, and
presents selected associated results.

1 Introduction

TRio-U Software for Thermal-hydraulics (TRUST) is an open-source (BSD license) software
tool for computaional fluid dynamics (CFD). Developed by the Energy Division (DES) of the
French Atomic and Alternative Energy Commission (CEA) since 1993 [1], it is built on an
object-oriented, parallel approach using the C++ language.

The platform, with its main open-source derived application TrioCFD [2], handles var-
ious thermohydraulic challenges, from turbulent one-phase flows to turbulent multi-phase
compressible flows. Simulating multi-species Low Mach Number flows (combustion-like
model) is also possible, thanks to the weakly-compressible model of TRUST. Initially fo-
cused on nuclear applications [3], TRUST is now used in diverse fields like hydrogen safety,
Li-ion battery simulations, and PEMFC fuel cells [4, 5].

TRUST offers different numerical methods for various mesh types, supporting finite dif-
ference, finite volume, and finite element techniques. It is designed to work efficiently on
different computers, including high-performance ones. Simplification and reusability are key
aspects. Figure 1 illustrates some mesh types that can be read and used by TRUST to run a
dedicated calculation.

Using the METIS library, TRUST enables High-Performance Computing (HPC) simula-
tions by dividing the computational domain into overlapping sub-domains. METIS ensures
balanced load distribution among MPI processors thus enhancing performance. In practice,

∗e-mail: elie.saikali@cea.fr
∗∗e-mail: adrien.bruneton@cea.fr
∗∗∗e-mail: pierre.ledac@cea.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

Figure 1. Series of meshes that can be used by the TRUST software.

all sub-domains are normally distributed homogeneously among the processors, which by us-
ing MPI communicate only with required neighbor processors when data transfer is needed.
Linked with powerful libraries such as PETSc and MEDCoupling, TRUST ensures high per-
formance and scalability.

The software’s I/O processes are parallelized, allowing reading and writing from single
or distributed files using the HDF5 library. CFD General Notation System (CGNS) [6] is one
of the parallel format (based on HDF5) available for post-processing.

TRUST handles large-scale simulations, supporting 64-bit integer representation for do-
mains exceeding 250M cells. Notably, the largest TRUST simulation run to date comprised
2 billion cells distributed over 50K MPI processors [7].

As with all previous historical in-house codes, TRUST was entirely CPU-based. In the
coming years however, the power of supercomputers will predominantly come from the com-
pute partition equipped with GPU accelerators, while a minor portion (30 PFlops, at best 3%)
of the power will come from traditional scalar nodes. This presents a significant challenge
for code developers looking to leverage this new architecture, requiring substantial efforts in
porting and algorithmic rewriting.

For this reason, the TRUST platform has been pursuing a strategy of gradually incorporat-
ing dedicated GPU computing libraries for certain intensive computational tasks over the past
few years. Its goal is to achieve a hybrid CPU/GPU code, ensuring performance portability
regardless of the type of partition used on the supercomputer.

In 2020, the Nvidia GPU-accelerated sparse linear algebra library, AmgX [8], was suc-
cessfully evaluated and subsequently integrated into the platform the following year. In 2022,
an equivalent library for AMD GPUs, rocALUTION [9], was integrated into the code as
part of a GENCI support contract during the installation of the Adastra supercomputer at
CINES [10]. While the results obtained were satisfactory in some aspects, they revealed a lag
compared to AmgX, prompting consideration for other solutions. Currently, we are working
on supporting multiple architectures (including Nvidia, AMD, and Intel GPUs).

The paper is organized as follows: we will first review the overall architecture of the
platform, then the strategy used to port the code to GPU will be detailed. The fourth section
will present the most important results obtained so far, and we will finally conclude.

2

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

2 TRUST architecture

Figure 2. Main TRUST modules and tools.

TRUST is designed with an architecture that ensures robust and efficient computational
tasks, thanks to the power of the C++ language and object-oriented principles. The choice
of C++ is historical and justified by the following points: 1) it is an object-oriented language
that supports inheritance, polymorphism and encapsulation, 2) the language uses strong typ-
ing which contributes to achieving reliability objectives, 3) it is a compiled language and is
therefore compatible with the level of performance required, 4) it is a de facto standard, with
a large installed base. This contributes to the life expectancy of the software and enables it to
benefit from the development of a large number of software engineering tools and component
libraries.

Modernization using C++11 features like templates, smart pointers, SFINAE (Substitu-
tion Failure Is Not An Error [11]), and STL enhances readability and maintainability of
the platform. With a focus on simplicity and directness, TRUST emphasizes coarse-grained
class inheritance and straightforward loops. Supported by user-friendly tools like Doxygen
(for code documentation) and Jupyter notebooks (for validation forms), TRUST provides a
modern environment for development, computational exploration, validation/verification and
physical analysis.

Figure 2 depicts the main modules (kernel, spatial discretizations and physics), prereq-
uisites and tools of TRUST. The modular architecture of the code makes it easy to add new
functionalities, classes and physics. Developers who choose to introduce a new class by spe-
cializing an existing one are guided by the architecture, which provides a model to follow.
We emphasize that the added classes can be either generic or specific by spatial discetization.
Recall figure 1 that illustrates all possible meshes that the code can deal with.

Finally TRUST can be used as a standalone generic simulation software, but can also
be extended by building a specialized application re-using part of the modules, or overrid-
ing some of the C++ classes found in the code base. Such an application (called BALTIK

3

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

internally) allows for example to specialize the TRUST functionalities for low scale turbu-
lent multi-phase simulations (TrioCFD [2]), component-scale simulations (e.g. 3D module
of CATHARE [12]), or even non-nuclear applications, like batteries and fuel-cell (PEMFC)
simulations (and many other CEA internal codes).

3 Porting TRUST to GPU

The total computing cost of a TRUST simulation can be split into two main parts: first the
resolution of one (or several) sparse system(s) of the form Ax=B, typically required for ob-
taining the pressure field when solving the incompressible Navier-Stokes equations, or when
impliciting part of the computation (e.g. diffusion implicitation), and second, the actual com-
putation of various physical data, be it the fluxes at the element faces, or the coefficients of
the matrix used for an implicit computation for example.

The first part is by far and large the most costly, as it can reach up to 80% of the total
computation time [7]. This hence represents the first priority in terms of performance op-
timization. When running on CPU only, TRUST traditionally uses the PETSc sparse linear
algebra library [13]. Although the PETSc project is making an increasing effort to port their
library to GPU, at the time of writing this was not mature enough, and we did not investi-
gate further this possibility. In recent years several sparse linear solvers adapted to GPUs
have been proposed. Among these we tested in this paper: AmgX [8], rocALUTION [9] and
AMGCL [14].

For the second part, OpenMP [15] was formerly used in the TRUST code to port to GPU
some of the most intensive compute kernels, but an ongoing effort is done to move to the
Kokkos library [16] which allows to write performance-portable code for various types of
architectures.

3.1 Solvers

3.1.1 AmgX

AmgX is a high-performance parallel computing, open-source library developed by
Nvidia [8]. Designed specifically to accelerate numerical simulations using Algebraic Multi-
Grid (AMG) Methods on NVIDIA GPUs, AmgX offers optimized implementations for this
architecture. The solvers available in AmgX are as follows, with the first two being the
most commonly used in TRUST: CG (Conjugate Gradient), GMRES (Generalized Mini-
mal Residual), BiCGSTAB (BIConjugate Gradient STABilized). Various preconditioners
(of paramount importance for an efficient convergence and scalability of the solver) are also
available: C-AMG (Classical AMG, Ruge-Steuben) and Unsmoothed Aggregation AMG. Fi-
nally AmgX also provides smoothers such as: Jacobi, Gauss-Seidel, SOR, ILU, Chebyshev
polynomial type, etc.

The Solv_AMGX class in the TRUST solver hierarchy interfaces with the library AmgX.
As can be see on figure 3, the class currently inherits from the Solv_Petsc which implements
the calls to the PETSc library. Indeed, the TRUST matrix is stored in PETSc format “mataij”,
then transformed into AmgX format via the functions of the AmgXWrapper project [17].
This extra layer deals with the case where the number M of MPI ranks is greater than the
number G of GPUs available on the accelerated node. In this case, an agglomeration of
M matrices/vectors in G matrices/vectors is made, in order to guarantee (for performance
reasons) that each GPU only interacts with a single MPI rank.

4

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

Figure 3. Implementation of the AmgX solver as a TRUST solver

3.1.2 rocALUTION

rocALUTION [9] is an open source numerical computation library optimized for AMD
GPUs. Mainly focused on linear algebra, rocALUTION offers features such as factoriza-
tion, solving linear systems and manipulating sparse matrices. rocALUTION provides a
user-friendly, well-documented interface which facilitates its usage.

In TRUST the Solv_rocALUTION class inherits from the Solv_Externe class (see fig-
ure 3 again) which brings together information and shared methods for interfacing with ex-
ternal libraries (notably PETSc, AmgX and rocALUTION). This relates in particular to the
numbering scheme of matrices and distributed vectors (local, global indices), the manage-
ment of common items (shared by at least two MPI ranks, such as joint vertices or faces), and
conversion methods to the Morse format (CSR).

3.1.3 AMGCL

AMGCL (Algebraic MultiGrid Computation Library [14]) is a C++ library designed for
scalable algebraic multi-grid methods, and presented as being efficient on both CPU and
GPU. AMGCL supports different types of grids and can be used with various linear algebra
libraries notably the CPU based ones (e.g. Intel MKL, Eigen, Boost) and the GPU-based
ones (e.g. CUDA). A key point is that AMGCL can be built using the portable OpenCL
standard and can thus run on Nvidia GPUs (with Cuda or OpenCL) as well as AMD GPUs
(with OpenCL).

In this paper, AMGCL was tested to a lesser extent: no specific class was created in
TRUST for its usage. Only the raw solving performance was tested, using a common binary
format for the matrix loading [18], and the binary given as an example in the AMGCL project.

3.2 Computation kernels

As mentioned previously, computation kernels used to evaluate various physical data or coef-
ficients represent the second most costly part in a typical TRUST simulation, after the solving
of the sparse linear systems.

5

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

Contrary to the solver, which is called at a well defined location in the source code,
those computations are spread out in many different places in the code and require a much
lengthier and tedious migration effort. Those are typically code pieces where we loop on a
given geometrical entity (e.g. faces) to compute a given data (e.g. a diffusion flux).

For the last three years the effort was put on OpenMP [15] and its omp target pragma
directive, but an increasing effort is now being made to port those kernels to use the Kokkos
library [16]. Kokkos is being developped as part of the ECP (Exascale Computing Project) in
US and allows the writing of C++ calculation kernels that can be executed on CPU or GPU,
with the aim of ensuring performance portability on each of the target architectures. Ideally
the code should not be re-written when switching architecture and performance should re-
main. To this end, Kokkos implements a reference abstraction layer to abstract hardware het-
erogeneity (x86 or Arm processor, Nvidia, AMD, Intel accelerators, etc.) and offers efficient
memory access patterns (automatic selection of the data layout, etc.). It provides methods to
facilitate execution on machines having several accelerators of different types, but also the
management of data between different types of memories like those that are now accessible
on modern machines (HBM, DRAM, NVRAM...).

Below we present a concrete example of a kernel used in the divergence operator of
TRUST, for the velocity field on a non-structured mesh, using the Finite Element Volume
(VEF) spatial discretization. The three listings present the CPU version, the parallelized
version using OpenMP, and finally the Kokkos implementation.

f o r (i n t elem = 0 ; elem < nb_elem ; elem++) {
double p s c f = 0 ;
f o r (i n t i n d i c e = 0 ; i n d i c e < n f e ; i n d i c e ++) {

c o n s t i n t f a c e = e l e m _ f a c e s (elem , i n d i c e) ;
c o n s t i n t s i g n e = elem == f a c e _ v o i s i n s (f ace , 0) ? 1 : −1;
f o r (i n t comp = 0 ; comp < dim ; comp++)

p s c f += s i g n e * v i t (f ace , comp) * face_norm (face , comp) ;
}
d i v (elem , 0) += p s c f ;

}

The OpenMP kernel forces us to explicitely compute the indices expansion when access-
ing the multi-column arrays, which has proven to be very error-prone, and hard to debug as
no bound check is performed:

#pragma omp t a r g e t teams d i s t r i b u t e p a r a l l e l f o r i f (computeOnDevice)
f o r (i n t elem = 0 ; elem < nb_elem ; elem++) {

double p s c f = 0 ;
f o r (i n t i n d i c e = 0 ; i n d i c e < n f e ; i n d i c e ++) {

c o n s t i n t f a c e = e l e m _ f a c e s _ a d d r [elem * n f e + i n d i c e] ;
c o n s t i n t s i g n e = (elem == f a c e _ v o i s i n s _ a d d r [f a c e * 2]) ? 1 : −1;
f o r (i n t comp = 0 ; comp < dim ; comp++)

p s c f += s i g n e * v i t _ a [f a c e *dim+comp]* face_norm_a [f a c e *dim+comp] ;
}
d i v _ a d d r [elem] += p s c f ;

}

The Kokkos kernel, via its usage of C++ lambda functions, allows to re-use a syntax
much closer to the initial CPU one (first listing), while also offering mechanisms to detect
potential out-of-bounds indexing:

auto k e r n _ a j o u t e r = KOKKOS_LAMBDA(i n t elem)
{

double p s c f = 0 ;
f o r (i n t i n d i c e = 0 ; i n d i c e < n f e ; i n d i c e ++) {

c o n s t i n t f a c e = e l e m _ f a c e s _ v (elem , i n d i c e) ;
c o n s t i n t s i g n e = elem == f a c e _ v o i s i n s _ v (f ace , 0) ? 1 : −1;

6

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

f o r (i n t comp = 0 ; comp < dim ; comp++)
p s c f += s i g n e * v i t _ v (f ace , comp) * face_norm_v (face , comp) ;

}
d iv_v (elem , 0) += p s c f ;

} ;
Kokkos : : p a r a l l e l _ f o r (" [KOKKOS] Op_Div " , nb_elem , k e r n _ a j o u t e r) ;

The memory management mechanism currently still relies on OpenMP, which we manage
to associate with the Kokkos view allocations (using so called Kokkos unmanaged views).
This will be later be changed to rely exclusively on Kokkos functionalities.

Another critical point of attention will be the internal layout of the data in multi-
dimensional arrays. Kokkos view mechanism allows to choose between left layout (left-most
index varying the fastest) and right layout (right-most index varying the fastest). It is well
known [16] that the former provides a better data locality for GPU processing, but the his-
torical set up of TRUST (as all typical CPU applications where cache considerations drives
the layout) uses the latter. It is not clear yet whether this should be changed explicitly (per-
forming a deep copy and a transpose of the data), or whether the small extent of the extra
dimensions that a typical TRUST multi-dimensional array presents (typically the second di-
mension of an array is often smaller than 10 in size) should not impact performance, even
using the ’wrong’ layout.

4 Selected results and discussion

4.1 AmgX

To highlight the performance of AmgX in TRUST on an accelerated partition we give in the
table below times and number of iterations when solving systems of respective sizes 2.59,
20.7 and 165.9 million lines (corresponding exactly to the number of pressure unknowns
in a tetrahedral mesh for the TRUST VEF P0 spatial discretization) on the CCRT topaze
supercomputer [19]. The comparison is made with an equal number of compute nodes (0.5,
4, 32) between the scalar partition (128 AMD Milan cores per node) and the accelerated
partition (4 Nvidia A100 80GB GPUs per node):

Table 1. AmgX performances on NVidia GPU

Scalar Partition (PETSc) Accelerated Partition (AmgX)
Unknowns CPUs Tps [s] Its Tps/It [ms] GPUs Tps [s] Its Tps/It [ms]
2, 592, 000 64 0.270 5 54 2 0.020 5 4

20, 736, 000 512 0.315 6 52 16 0.033 6 5.5
165, 888, 000 4096 0.362 6 60 128 0.112 18 6.2

On a small number of nodes AmgX performs better than the PETSc solver (20ms vs
270ms - acceleration factor 13) but it deteriorates to only reach an acceleration factor of 3 on
32 nodes (112ms vs 362ms). The main reason identified, visible in this table, is the lower
scalability of multi-grid algorithms on GPU in AmgX (the number of iterations of the its
solver increases from 5 to 18) while it is excellent for PETSc (iteration number remaining
between 5 and 6).

The two solvers (AmgX and PETSc) are however configured identically: CG and pre-
C-AMG conditioning with an identical relative convergence tolerance set at 5.e-4. Only the
smoother differs (Jacobi local for AmgX, Chebyshev for Petsc) and can explain the lower
scalability of AmgX.

7

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

It is clear that one of the challenges of exascale simulations will be the optimization of
algorithms and associated parameters to have a scalable convergence rate (stable number of
iterations), by having relatively cheap parallel preconditioners.

This being said, the AmgX library (available for 2 years now in TRUST) remains for the
moment the reference in terms of performance on GPU for TRUST. Furthermore the constant
updates of the upstream project indicates that those scalability issues might be improved in
the future.

4.2 rocALUTION

The first tests were carried out on the Adastra supercomputer [10], which was the only plat-
form available to us benefiting from the ROCm environment (equivalent of Cuda for Nvidia).
A difficulty was (and remains) to choose the most efficient, scalable GPU preconditioner.
Unsurprisingly, multi-grid preconditioners are the most efficient, but we did not succeed to
adjust them correctly to have a convergence rate as good as the AmgX one or the PETSc one.
In addition this rate degrades very clearly on a weak scaling test (even in a worse fashion
than AmgX) as shown by the figures in the table below. The calculations are carried out on
the scalar partition (192 AMD Genoa cores per node) and the accelerated one (8 GPUs via 4
AMD MI250X per node):

Table 2. rocALUTION performance on AMD GPU

Scalar Partition (PETSc) Accelerated Partition (rocALUTION)
Unknowns CPUs Tps [s] Its Tps/It [ms] GPUs Tps [s] Its Tps/It [ms]
2, 592, 000 64 0.162 5 32 2 0.118 49 2.4

20, 736, 000 512 0.182 6 30 16 0.316 124 2.5
165, 888, 000 4096 0.207 6 34 128 0.685 249 2.7

The figures are very disappointing for the classic AMG preconditioner (Ruge Stueben)
with a poor convergence rate (10 times more iterations on the first mesh) which does not help
performance despite an iteration cost half as much than in AmgX (2.5ms against 5ms). On
this first mesh rocALUTION holds a tight win, but then PETSc is systematically faster. Ac-
cording to the documentation, confirmed by discussions with the project support, the majority
of rocALUTION multi-grid preconditioners (C-AMG, SA-AMG, UA-AMG) are sequential
(in the sense that the grid hierarchy is created on each local subdomain). Only the PW-AMG
preconditioner (PairWise AMG) would be parallel, but on the one hand it is not reliable (a bug
report was submitted recently following crashes on several MPI ranks) but also very slow: its
rate of convergence is completely undermined by the cost of each iteration. The previous
table does not therefore contains those results.

4.3 AMGCL

As mentioned before, for AMGCL only pure solving tests using an external matrix format
were performed. A pressure matrix on a tetrahedral mesh with Finite Element Volume (VEF)
discretization was used and exported from TRUST in the Market Matrix format [18]. This
sparse matrix is symmetrical and contains 2,592,000 lines.

A Conjugate Gradient method was chosen and the matrix renumbering option is enabled,
which helps reduce the bandwidth, enhancing data locality and minimizing cache misses on
the accelerator. In fact these iterative methods are of the memory bound type with a limitation
on processing speed imposed by GPU memory bandwidth. We compare the performances

8

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

obtained with a calculation similar to TRUST in which the AmgX library is enabled with
similar options (Conjugate Gradient solver, SA-AMG or C-AMG preconditioner, relative
tolerance 5.e-4).

The smoother however differs : Jacobi for AmgX and a SPAI (SParse Approximate In-
verse) for AmgCL. A direct LU solver is used for the coarsest grid. The results are found
below:

Table 3. AMGCL performance on a TRUST matrix - NVidia GPU

AmgX AMGCL
CG/C-AMG CG/SA-AMG CG/C-AMG CG/SA-AMG CG/SA-AMG

Grids 8 20 6 4 4
Setup [s] 0.27 0.05 2.33 1.08 1.39
Solve [s] 0.060 0.220 0.075 0.055 0.045
Iterations 7 47 12 12 10

AMGCL performance is at the same level on a single GPU, or even better than AmgX.
The lowest AMGCL resolution time (0.045s) is 25% lower than that of AmgX (0.06s). The
time spent creating the preconditioner grids is greater with AMGCL (the documentation in-
dicates that the construction of the grids is done on CPU, whereas it is performed on GPU for
AmgX) but amortized quickly (done only once when starting a Navier-Stokes simulation of
an incompressible fluid). However this can be an obstacle if the simulation needs an update
of the Jacobian matrix at each time step: the grid setup time would then be prohibitive. It will
then be necessary to find iterative solvers with a less effective preconditioning than multi-grid
techniques, but quicker to set up.

In conclusion for AMGCL, scalability on multiple accelerated nodes, with TRUST-like
matrices, need further testing to confirm this first good result. The portability of this library
on the AMD architecture (recently confirmed to us by the Adastra cluster support team) will
also need to be validated.

The quality of the project documentation (tutorials) and the responsiveness of the support
must also be stressed as a clear advantage.

4.4 Computation kernels

Four computation kernels were evaluated in TRUST on a representative case, each one of
them in the flux computation for a given operator of the Navier-Stokes equation.

Table 4. Performance comparison between Kokkos and OpenMP

Operator OpenMP [ms] Kokkos [ms] Gain
Divergence 2.2 2.2 0%

Gradient 3.9 3.7 +5%
Diffusion 3.2 2.3 +28%

Convection 40.8 54.3 −33%

We notice a certain disparity in the performance of the two programming models. The
variability of around 30% in one way or the other must be put into perspective: these GPU
kernels still run 20 to 30 times faster than their CPU counterpart.

5 Conclusion and prospects
TRUST is a versatile open-source CFD platform that offers various numerical methods and
supports different mesh types for efficient computation on diverse computing platforms, in-

9

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

cluding high-performance computers. Recently, efforts have been made to integrate GPU
computing libraries like AmgX and rocALUTION, aiming for a hybrid CPU/GPU code for
better performance portability. We showed that among the various linear solvers that we
tested, AmgX (for NVidia) and rocALUTION (for AMD) are the most mature ones, but that
AMGCL could be the future reference. The computation kernels can be accelerated using the
portable performance library Kokkos, and an on-going effort is made to migrate the current
OpenMP kernels to it. Kokkos offers a rich set of features to be assessed in the future like the
management of different types of device memory, or the possiblity to have several execution
queues (thus increasing the GPU load).

References

[1] CEA-TRUST-Platform, code website, https://cea-trust-platform.github.io/
[2] P.E. Angeli, U. Bieder, G. Fauchet, Overview of the TrioCFD code: Main features,

VetV procedures and typical applications to nuclear engineering, in NURETH 16 - 16th
International Topical Meeting on Nuclear Reactor Thermalhydraulics (2015)

[3] U. Bieder, E. Graffard, Nuclear Engineering and Design 238, 671 (2008), benchmarking
of CFD Codes for Application to Nuclear Reactor Safety

[4] E. Saikali, G. Bernard-Michel, A. Sergent, C. Tenaud, R. Salem, international journal
of hydrogen energy 44, 8856 (2019)

[5] E. Saikali, A. Sergent, Y. Wang, P. Le Quéré, G. Bernard-Michel, C. Tenaud, Interna-
tional Journal of Heat and Mass Transfer 163, 120470 (2020)

[6] CGNS, library website, https://cgns.github.io/
[7] E. Saikali, P. Ledac, A. Bruneton, A. Khizar, C. Bourcier, G. Bernard-Michel, E. Adam,

D. Houssin-Agbomson, Numerical modeling of a moderate hydrogen leakage in a typ-
ical two-vented fuel cell configuration, in International Conference of Hydrogen Safety
(2021)

[8] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh et al., SIAM Journal on Scientific Computing
37, S602 (2015)

[9] rocALUTION, library website, https://rocm.docs.amd.com/projects/
rocALUTION/en/latest/

[10] AdAstra, cluster website, https://www.cines.fr/calcul/adastra/
[11] cppreference, Sfinae, https://en.cppreference.com/w/cpp/language/sfinae
[12] CATHARE, code website, https://cathare.cea.fr/
[13] S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,

E.M. Constantinescu, L. Dalcin, A. Dener et al., PETSc Web page, https://petsc.
org/ (2023), https://petsc.org/

[14] D. Demidov, Lobachevskii Journal of Mathematics 40, 535 (2019)
[15] O. consortium, standard website, https://www.openmp.org/
[16] C.R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gayatri,

E. Harvey, D.S. Hollman, D. Ibanez et al., IEEE Transactions on Parallel and Distributed
Systems 33, 805 (2022)

[17] P.Y. Chuang, L.A. Barba, The Journal of Open Source Software 2 (2017)
[18] N.I. of Standards, Technology, Matrixmarket, http://math.nist.gov/

MatrixMarket/index.html

[19] CCRT, cluster website, https://www-ccrt.cea.fr/

10

EPJ Web of Conferences 302, 03004 (2024) https://doi.org/10.1051/epjconf/202430203004
SNA + MC 2024

