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(Dated: November 25, 2024)

Models for viral populations with high replication error rates (such as RNA viruses) rely on the
quasispecies concept, in which mutational pressure beyond the so-called “Error Threshold” leads
to a loss of essential genetic information and population collapse, an effect known as the “Error
Catastrophe”. We explain how crossing this threshold, as a result of increasing mutation rates,
can be understood as a second order phase transition, even in the presence of lethal mutations. In
particular, we show that, in fitness landscapes with a single peak, this collapse is equivalent to a
ferro-paramagnetic transition, where the back-mutation rate plays the role of the external magnetic
field. We then generalize this framework to rugged fitness landscapes, like the ones that arise from
epistatic interactions, and provide numerical evidence that there is a transition from a high average
fitness regime to a low average fitness one, similarly to single-peaked landscapes. The onset of
the transition is heralded by a sudden change in the susceptibility to variations in the mutation
rate. We use insight from Replica Symmetry Breaking mechanisms in spin glasses, in particular by
considering the fluctuations of the genotype similarity distribution as the order parameter.

I. INTRODUCTION

Most RNA viruses lack error correction capabilities
due to the inherent limitations of RNA-dependent RNA
polymerases which, unlike DNA-dependent DNA poly-
merases, do not have have proofreading abilities [1] (an
important exception to this rule are coronaviruses [2, 3]).
RNA is less stable than DNA, which also contributes to
higher error rates [4]. Furthermore, DNA repair mecha-
nisms happen mostly in the nucleus, while RNA viruses
typically reproduce in the cytoplasm, where there is no
access to host’s repair enzymes. This lack of error correc-
tion in most RNA viruses leads to high mutation rates,
contributing to their rapid evolution and adaptability
[5, 6]. Importantly, the error rate in RNA replication
is itself an outcome of selection pressure [7].

The concept of an “Error Catastrophe” describes the
dynamics of RNA viral populations when mutation rates
overwhelm selective pressure, resulting in a loss of genetic
information [8]. In this scenario, the viral population
transitions into a state where the majority of genotypes
have accumulated so many mutations that the genetic in-
formation becomes diluted in a pool of defective genomes.
The mathematical framework for understanding this phe-
nomenon is provided by the quasispecies model, which is
particularly straightforward in the case of single-peaked
fitness landscapes, where only one master sequence dom-
inates [9, 10].

Epistatic interactions arise when the effect of one gene
is influenced by one or more other genes, and are preva-
lent in RNA viruses [11]. Epistasis can also arise at sub-
gene level in RNA viruses [12, 13]. This is due to their
compact genomes and the fact that protein expression
often depends on multiple loci [14, 15]. The presence of
epistatic interactions creates complex fitness landscapes
characterized by multiple fitness peaks separated by low-
fitness valleys, and navigating these rugged landscapes
poses a significant challenge for RNA viruses, as ben-
eficial mutations must be combined in specific ways to

traverse the fitness valleys and reach new adaptive peaks
[16, 17].
The mechanisms leading to the Error Catastrophe can

be understood in the language of continuous phase tran-
sitions [18–21]. This analogy helps explain the transi-
tion from a state of high fitness to one dominated by
defective genotypes. We extend this analogy to rugged
fitness landscapes, which are expected to arise whenever
the effects of epistasis are strong [22]. Rugged energy
landscapes arise as well in the context of spin glasses,
which are magnetic systems with numerous local minima
in their landscape arising from conflicting energy require-
ments [23, 24]. To study their properties, one can em-
ploys the Replica Trick, a mathematical technique that
facilitates the analysis of magnetic systems with disor-
dered and conflicting interactions [25]. We apply meth-
ods developed in this framework to study epistatic land-
scapes in RNA viruses, providing a deeper understanding
of their evolutionary dynamics and the factors that in-
fluence their adaptability, such as the prospect that phe-
notypes can correspond to classes of genotypes which are
separated by fitness valleys.
The paper is structured as follows. In Section II

we present statistical-mechanical models of replicator
growth to establish the analogy between the Error Catas-
trophe and ferro-paramagnetic transitions, and we ex-
plain how to generalize it to epistatic fitness landscapes.
The numerical simulations are presented in Section III,
where metrics derived from spin glasses are used to diag-
nose the existence of a threshold. We conclude in Section
IV by discussing possible applications and further steps.

II. MODELS FOR REPLICATOR GROWTH

The interplay between the mutation rate µ and the
backmutation rate µB in RNA viruses is crucial for sur-
vival and adaptation. A moderate mutation rate, to-
gether with a sufficiently large population size, can foster
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adaptability and evolution, allowing the virus to thrive
in changing environments. Backmutation is the process-
whereby a mutated gene returns to its original state.
However, the rate of backmutation is typically much
lower than the forward mutation rate, meaning that not
all harmful mutations can be reversed. Mathematically,
this can be understood in terms of graph theory (see Ap-
pendix I). Since the coordination number of the mutation
graph with genotypes as nodes and mutations as edges
is very large, on the order of the sequence length L, mu-
tational paths will diffuse very rapidly and will not go
back to the original states. Simple models for the Error
Threshold consider a simplified transition matrix of the
form in Eq.(2), in wich the master sequence is connected
to a number of genotypes, which are disconnected among
them. This can be argued for on grounds that mutational
paths between different genotypes vanish in the sequence
length (see Section III). However, one drawback of this
simplification is that the high-dimensional character of
virus difusion in a hypercube cannot be captured [21].
Some works have explored workarounds of this problem
[15, 16, 26]. In order to provide solid grounds for the sta-
tistical treatment that follows, we provide in Appendix
I analytical and numerical support for reducing a high-
dimensional diffusion, potentially in presence of lethal
mutations, to the simplified transition matrix in Eq.(2).

The size of the viral population also plays a significant
role in the relationship betwen µ and µB : in large popu-
lations, the impact of harmful mutations can be diluted,
as there is a higher chance that some individuals will
maintain a lower mutation load and thus higher fitness
[27, 28]. Conversely, in small populations, each mutation
has a proportionally larger effect on the population’s ge-
netic makeup, which can lead to rapid changes in genetic
fitness. We define the master sequence molar fraction ρ
as the ratio between the number of viruses at the fitness
peak and that of all the other genotypes at any point in
time.

A. Landau Theory for the Error Catastrophe

Whereas it has been suggested that the error catastro-
phe is a first order phase transition [29], under the cor-
respondence “fitness ⇐⇒ energy”, “magnetisation ⇐⇒
master sequence molar fraction”, “mutation rate ⇐⇒
thermal transition probability”, and “backmutation rate
⇐⇒ external magnetic field”, we show here that one can
describe the error catastrophe using the language and
machinery of ferro-paramagnetic transitions, which are
continuous. The master genotype can be thought as the
fully magnetised state (all spins pointing in the same di-
rection, i.e. a bitstring made of 0s uniquely), whereas
random mutations giving rise to the “quasispecies cloud”
correspond to spin thermal fluctuations. Backmutation,
that is, the mutational path that establishes the original
sequence, is to be compared with an external magnetic
field. It will be useful to define a effective temperature

T to compute the transition probability µ between two
genotypes:

µ(s→ s′) = exp(−∆F/T ) (1)

where ∆F = fs−fs′ is the fitness difference between two
genotypes conected by a transition, potentially by an
incorrect nucleoitde replacement. One crucial difference
between first and second order phase transitions is that
whereas the former rely on a microscopic account of de-
grees of freedom, the latter form universality classes that
obey unversal phenomenological descriptions [24, 30].

We now analyse the Error Catastrophe in terms of Lan-
dau theory. The fitness matrix:

T =


f(1− µ) fbµB . . . fbµB

fµ/m fb(1− µB) . . . 0
...

...
. . .

...
fµ/m 0 . . . fb(1− µB)

 (2)

governs the transition probabilities n⃗t+1 = T n⃗t, where
n⃗ = [n0, n1, . . . , nm]. ni denotes the absolute abundance
of genotype i, and n0 is the relative abundance of the
master sequence, also known as wild-type, which is
the genotype with the highest associated fitness. Its
normalised dominant right eigenvector is the stationary
distribution of the growing population. A canonical
obtention of the Error Threshold gives that the critical
mutation rate is µC ≈fb=1 s, where s is the fitness
advantage over the background landscape, f = fb + s
[21]. For a genotype configuration with only one peak
at f = 1 + s, we can obtain a critical temperature
TC = −∆F/ log(1− 1/f) ≈ −∆F/ log(s).

One important detail, though, is that while the
ferro-paramagnetic transitions are static, in the sense
that the state is fully determined by the parameters
and stationary in time, the mathematical framework
which describes Error Catastrophe entails a population
variability which depends on the fitness of the dominant
eigenvectors. If the fitness associated to an eigenvector
of the population matrix is larger (smaller) than one,
this eigenvector will grow (decrease) with time. There-
fore, this analogy holds only away from the mutational
meltdown regime, that is, all considered states need to
have a fitness equal or larger than 1, so that populations
are maintained and molar fractions are stabilised in time
[21](see Appendix I).

Diagonalising the transition matrix for the dominant
eigenvalues in the limits µ ≪ µC and µ ≫ µC correctly
reproduces the asymptotic states of “strong selection,
weak mutation” (completely magnetised) and “weak se-
lection, strong mutation regime” (completely demagne-
tised state), as shown in Fig.1(a). This constitutes a
strong hint that the average fitness above the baseline
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⟨F ⟩ =
∑

s fsps of a viral population near the error catas-
trophe can be expressed as a power series expansion in
terms of an order parameter ρ = p0, with ps = ns/

∑
j nj .

For a single-peaked fitness landscape with fitness fb ev-
erywhere except of at the peak, the fitness functional
F (ρ, T ) can be written as:

F (ρ, T ) = fb −
α(T )

2
ρ2 − β

4
ρ4 + · · · (3)

where α(T ) is a temperature-dependent coefficient. The
coefficient β is positive to ensure stability of the fitness
around its maximum [30]. Here the fitness is maximised,
in contrast with the free energy in a ferro-paramagnetic
transition, which is minimised by the magnetisation order
parameter (see Fig.1(b)). The coefficient α changes sign
at the critical mutation rate µC :

α(T ) = α0(µ− µC) = a0(T − TC)

where α0 and a0 are positive constants (since µ is a mono-
tonic function of T ). At mutation pressures above µC

(i.e. , temperatures above TC), α > 0 becomes posi-
tive and the genetic information of the master sequence
gets diluted in the total population, ρ → 0. Below µC

(T < TC), α < 0 and the virus population is clustered
around the master sequence, i.e. ρ > 1 (see Fig.1(b,c)).

The “mutational susceptibility” χ measures the re-
sponse of the master sequence molar fraction to an fluc-
tuating backmutation rate µB . It is given by:

χ =
∂ρ

∂µB

∣∣∣∣
µB→0

(4)

In this case, the “external parameter” is the backmuta-
tion rate µB . To obtain χ in Landau theory, we add a
term ρµB to the fitness functional functional, since the
backmutation rate µB can be thought as being thermo-
dynamically conjugate to the order parameter ρ:

F (ρ, T, µB) = F (ρ, T ) + ρµB

Slightly above µC , in the weak selection, strong mu-
tation regime (i.e. paramagnetic phase), it is possible to
approximate ρ for small µB (see Appendix I):

ρ ≈ µB

α

Since α = a0(T − TC):

χ =
∂ρ

∂µB

∣∣∣∣
µB→0

=
1

a0(T − TC)
(5)

which shows that the susceptibility diverges as T ap-
proaches TC , following a Curie-Weiss law, as shown in
Fig.2(a,b).

B. Simplified Model for Epistatic Interactions

Ever since the inception of population genetics it has
been emphasized that epistatic interactions, that is, ef-
fects of combinations of genes rather than just genes’
individual effects, is the determinant factor in the study

FIG. 1. The Error Catastrophe as a second order (contin-
uous) phase transition. Using a simple model with a single
peak of fitness f = fb + s against a background of baseline
fitness fb. Here fb = 1, s = 0.05 and µB = 0 (solid lines)
or µB = 5 × 10−3 (dashed lines). (a) The two dominant
eigenvalues show an anticrossing for non-zero backmutation
rates µB . In the strong selection, weak mutation regime, the
fitness decreases linearly with µ, whereas for large µ the dom-
inant eigenstate is the uniform distribution of all genotypes
(excluding the master sequence), which is the stationary dis-
tribution in the weak selection, strong mutation regime.(b)
Landau functional for the fitness. At low temperature (mu-
tation rates), α < 0 and the maximum of the functional
happens at a non-zero value for the master sequence molar
fraction. For high mutation rates, the fitness is maximised
for ρ = 0. Here α/β ∈ (0.5, 0,−1,−2) for dotted green,
dot-dashed blue, dashed orange dotted and solid red, respec-
tively.(c) The order parameter as a function of the effective
temperature (TC ≈ −∆F/ log(s)). Different values of µB

contribute to smoothing out the transition. Inset: the more
familiar stationary distribution as a function of µ. Solid line
corresponds to ρ = n0/

∑
ni, the dashed line corresponds to

the average of ni/
∑

j nj , i > 0.
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FIG. 2. Critical behavior of the single peaked landscape at
the mutation threshold. (a) The order parameter ρ depen-
dence on backmutation rate µB . The three regimes of interest:
strong selection regime (T < TC , green solid line), at the crit-
ical temperature (T = TC , red dot-dashed line) and strong
mutation regime (T > TC , dashed orange line) exhibit a be-
havior analogous to that of a continuous ferro-paramagnetic
transition. In this case, the first order phase transition is ab-
sent because ρ is defined positive, contrary to magnetization,
which can change signs. (b) The “mutational susceptibility”
χ diverges at the error treshold. This can be understood in the
following manner: deep inside the strong selection-weak mu-
tation regime, backmutation does not play a significant role
because the viral population is already concentrated around
the fitness peak. On the other hand, in the weak selection-
strong mutation regime, the mutation rate overwhelms any
change in the backmutation rate. At the critical mutation
rate, small fluctuations of µB have an enormous effect on the
order parameter. µB ∈ (10−2, 5× 10−3, 10−3)

of fitness landscapes [31].

The underlying physical mechanisms by which sets of
genes tend to mute together is a still debated subject,
and it depends on the kind of replication considered. For
instance, during meiosis in the diploid case, DNA con-
densation and pairing due to electrostatic interactions,
or possibly protein-mediated interactions [32, 33], seem
to help understand why distant genes in the DNA se-

quence mute together. However, the concept of replica-
tor at genotype level is difficult to argue for in diploid,
sexed reproduction, given allele dominance and randomi-
sation of the genetic code into several gametes during
meiosis. In the haploid case, purely stochastic models of
gene (or even intragene) epistasis are particularly sim-
pler: while additive models give that the variation in fit-
ness of a mutation s → s′ at K nucleotides comes given

by ∆F =
∑K

j δfj , where δfj stand for fitness variations
per nucleotide, epistasis require that interactions between
nucleotides (or sets thereof) be taken into the account in
the computation of ∆F . In particular, the NK model
[22] allows to quantitatively tune the effects of epistasis
in a way that naturally leads to fitness peaks separated
by valleys, and is used to study the complexity of fit-
ness landscapes and the role of epistatic interactions in
biological systems. Its main parameters are N (number
of loci in the genome) and K (degree of epistasis). The
fitness of a particular genotype s is determined by the
contributions from each locus and its interactions with
K other loci:

Fs =
1

N

N∑
i

fi(li0, li1, li2, . . . , liK), (6)

where fi is the fitness contribution of locus i, which de-
pends on the state of locus i and the states of K other
loci (li0, li1, li2, . . . , liK). There are two limit cases: when
K = 0, each locus contributes independently to the fit-
ness, resulting in a smooth additive fitness landscape. As
K increases to a maximum K = N − 1, the fitness land-
scape becomes extremely rugged with many local optima.
Interestingly, the backmutation rate is influenced by the
epistatic interactions.
One drawback of the NK model, when it comes to sim-

ulatability, is its intrinsic randomness. That is, given N
andK, the loci and interaction strenghths are distributed
at random, which makes it challenging to identify at the
outset where the fitness maxima lie, since interactions
are sampled at random. In order to fully characterise
these maxima, an exhaustive search or computationally
expensive Monte Carlo sampling must be carried out,
which severely limits the size of systems ameable to full
analysis. We circumvent this limitation by reducing the
expressive ability of the NK model and allowing only a
reduced set of epistatic interactions. We only consider
fitness variations of the sort:

∆F =

K∑
i

δfi +

n∑
j

δϕj (7)

where δfi < 0,∀i stem from deleterious non-lethal muta-

tions and δϕj =
∑K/n

i ϵ
(j)
i > 0 represents the positive,

epistatic interaction between nucleotides (see Fig.3(a)).
It has been observed that epistasis in RNA viruses is

overwhelmingly of antagonistic nature [13], that is, given
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the presence of one or several deleterious mutations,
new epistatic mutations are expected to be less harmful
to fitness than they would be in the absence of the
previous mutations. If antagonistic epistasis is strong,
the likelihood of backmutations is decreased because the
genotype mutant is separated from the original one by
fitness valleys. Genetic recombination, which is prevalent
in positive strand viruses, is another mechanism leading
multiple peaked phenotypes [34]. Although recombina-
tion is a separate mechanism from mutation, it can be
accounted for in this model by increasing the ratio K/n,
which is a measure of mutation clustering. Antagonistic
epistatic behavior can be reproduced by ensuring that
mutations will tend to accumulate at loci that maximise
fitness, or decrease it minimally. The main motivation
for adopting this simplified model is that it allows
for direct sampling of fitness maxima, which are fixed
beforehand, as opposed to the canonical NK model,
where due to the random interactions it is necessary
to sweep configuration space to completely characterise
the minima. Throughout this work we will neglect the
effects of the interplay between epistasis and mutation
rates and assume that the former are tunable parameters.

Mathematically, we impose that the mutation rate at
locus i is µi = exp(−hi/T ), where the finess barrier hi

is small at loci subject to positive epistatic interactions
and large everywhere else. This allows to establish be-
forehand the location of fitness maxima, which is neces-
sary to carry out Monte Carlo simulations for large L, as
explained in next section.

The K mutations are distributed evenly in n loci,
each hosting K/n mutations. The value K determines
how many different mutational paths can connect two
different fitness peaks. For a given K, the number of
mutational paths from the zero mutation state is K!.
The number of paths increases factorially, but each path
has a probability of ∼ pno LM × µK(1 − µ)L−K , where
pno LM = (1 − pLM)K is the probability of the path
encountering zero lethal mutations. So the probability
of each path vanishes exponentially for small K/L. The
fitness peaks are thus effectively disconnected, which is
the reason behind the loss of ergodicity.

Notice the resemblance with spin glasses, in which
there are local terms (like the δfis) and interaction
terms (δϕj). The degree of epistasis K in the NK
model determines how rugged the fitness landscape is,
similar to how the interaction strength and randomness
determine the complexity of the energy landscape in
spin glasses. In spin glasses the total magnetisation is
not a well-defined order parameter. In the same spirit,
we will not be using ρ defined in previous subsection
to study the multiple peak regime, since it will itself
become a random variable depending on the location
of the fitness peaks. Instead, we will used an order
parameter based on genotype overlaps, inspired on the
spin glass susceptibility for disordered magnetic systems.

FIG. 3. Pictorial representation of the simplified NK model
(a) Antagonistic epistasis, which is strictly positive for dele-
terious mutations, results in landscapes where concomitant
mutations at different loci can result in genotypes with higher
fitness than expected from an additive model. These epistatic
genotypes can have a fitness that even surpasses that of the
genotypes resulting from single mutations, separatedly. In
this model, µ depends on the ratio between the effective tem-
perature and the fitness barrier, hi/T . Higher fitness dif-
ferences will result in smaller mutation probabilities, which
means that at low temperatures, mutations will tend to clus-
ter in the loci that increment fitness, i.e. those affected by
epistatic interactions. At high temperatures, mutations will
be evenly distributed along the whole sequence. (b) Repre-
sentation of a rugged landscape in which the genotypes at
the peak of the fitness maxima that lie close together can be
considered as belonging to the same phenotype (thick dashed
line). For high enough temperatures, the whole configuration
space is sampled (thick continous line).

III. NUMERICAL SIMULATIONS AND
RESULTS

In spin glasses, Replica Symmetry refers to the theoret-
ical assumption that all instantiations of the system with
random couplings sampled from a distribution (i.e. sys-
tem replicas), which are necessary to estimate the free
energy, are equivalent [23–25]. This symmetry implies
that the system is in a regime where a single energy min-
imum dominates the phase space. This can arise at ei-
ther higher temperature, where the system’s behavior is
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typically less complex, or in energy landscapes where a
single energy minimum dominates. In spin glasses, as
the temperature decreases, the system may transition
into a phase where the Replica Symmetry assumption no
longer holds, because instead of a single (free) enery min-
imum, many energy minima have similar thermodynamic
properties and are macroscopically equivalent. However,
these minima are separated by energy barriers, leading to
a rugged energy landscape which leads to a breakdown
of ergodicity, meaning that the system gets effectively
trapped forever (over observational timescales) in one en-
ergy minimum. When this happens, each replica will typ-
ically end up in a different energy minimum, i.e. Replica
Symmetry Breaking (RSB) occurs.

A. Replica Symmetry Breaking in Viral
Populations

Under the aforementioned “fitness ⇐⇒ energy” cor-
respondence, RSB can be observed in viral populations.
This concept is not to be conflated with the quasispecies
description of a viral population, in which genotypes fluc-
tuate within same phenotype. In the case of RSB, the
existence of several fitness peaks indicates a genotype di-
versity which itself can lead to different phenotypes (dis-
tant local maxima). Define the genotype overlap as:

q(s, s′) =
1

L

∑
j

δsj ,s′j (8)

which takes values between 0 and 1. However, empiri-
cally we will only consider values of q above 1/2.This is
because, unlike spin models which are symmetric under
the label swapping (1 ←→ −1), the coexistence of ge-
nomic and antigenomic sequences, which have the same
genetic information but use complementary nucleotides
and correspond to the symmetry (1 ≡ 0) halves the size
of the configuration space.

The signature of RSM is the spreading of the over-
lap distribution P (q) =

∑
s,s′ δ(q − q(s, s′)) and the de-

parture from a delta function [25](see Appendix II and
Fig.4). Likewise, a genotype overlap distribution that de-
viates form a highly concentrated distribution indicates
that the system has entered a phase into which several
phenotypes coexist in the low mutation rate regime (see
Figs.4-5). The overlap distribution P (q) is itself averaged
over several instantiations (replicas) of the simplified NK
model to give ¯P (q) = ⟨P (q)⟩R.
The Monte Carlo sampling performed to estimate the

distributions consisted on a simple Metropolis-Hasting
algorithm with in which we assume that the fitness bar-
rier at non-epistatic loci is 10 times larger than for
epistatic loci, i.e. hnon-EPI = 10h. This means that for
low effective temperatures (strong selection, weak muta-
tion regime), the algorithm only samples genotypes which
are of antagonistic epistatic nature, i.e. genotypes with

FIG. 4. Overlap distributions ⟨P (q)⟩R averaged over 100 dif-
ferent instantiations of the simplied NK model, with 30 fitness
maxima each, for sequences of length L = 5000. A depar-
ture from a delta peak signals the onset of Replica Symmetry
Breaking. Increasing ratios of temperature over the barrier
T/h are shown in the legend. As the effective temperature
increases, the overlaps tend to shift towards the left of the x-
axis: they transition toward a fully disordered state. (a)(b)
The cutoffs qcutoff = 0.95 impose a high lower bound on the
similarity measure between genotypes. (c)(d) The cutoffs
qcutoff = 0.75 denote an initially spread out state over many
minima (as can be seen from the multiple peaks of the over-
lap distribution at T/h = 0.01. (a)(c) Percentage of epistatic
loci: 25% (b)(d) Percentage of epistatic loci: 50%

typically higher fitness. This corresponds to sampling
around a local optimum. In the high temperature regime,
the genotypes of all fitnesses are sampled.
In this extension of the strong selection, weak mutation

regime, a new way of testing the response of the viral pop-
ulation to changes in its environment is necessary. Very
much like in the case of the spin case, where the mag-
netic susceptibility is generalized to a spin-glass suscep-
tibility, the “mutational susceptibility”, which measures
the impact of variations of the backmutation rate on the
master sequence molar fraction, must be generalized into
an “epistatic susceptibility”, which measures how the fit-
ness peak overlaps change as a function of fluctuations in
the epistatic interactions. This “epistatic susceptibility”
is computed as the replica average (⟨.⟩P̄ ) of the variance
of overlap distribution:

χEPI(T ) =
1

T

(
⟨q2⟩P̄ − ⟨q⟩2P̄

)
(9)

Similar quantities have been defined for glassy tran-
sitions in RNA molecules, albeit in different contexts
[36, 37]. If a particular sequence at a fitness peak is being
subject to small mutation pressure, the mutated geno-
types will tend to cluster within a maximum Hamming
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distance of the fitness master sequence and will form a
“cloud” around it. Intuitively, it will form a local version
of the single-peaked landscape, in which small changes
in the backmutation rate can substantially contribute
to fitness variations. Note that several fitness peaks
could conceivably correspond to the same phenotype,
especially if the peak sequences are very similar (which
would correspond to epistatic interactions arising within
the mutant cloud). Estimates for the percentage of loci
that are subject to epistatic interactions ranges from
40% to 80% [13, 17]. Throughout this work, we assume
that a conservative 25 − 50% of the genotype to sustain
epistatic mutations.

Beyond a mutation threshold (see Fig.5), mutations
will accumulate evenly at all non-lethal loci and the viral
population becomes insensitive to the fitness and epis-
tasis of individual genotypes. It is, so to speak, as if
the high effective temperature smoothes out the fitness
landscape. As expected, the behavior of χEPI(T ) closely
resemples that of the single-peak landscape.

At low temperatures, the mutations in our model hap-
pen almost exclusively at loci subject to epistatic inter-
actions, since in the presence of antagonistic epistasis,
mutations at epistatic loci are likely to lead to fitter se-
quences than mutations at random loci. In this case,
two different possible behaviors arise, depending on the
balance between the percentage of epistatic loci in the
genotype and the strength of the fluctuations across dif-
ferent replica.

Imposing a cutoff qcutoff on the initial overlap ditri-
bution sets a upper bound on the fluctuations of the
distribution ¯P (q). For high cutoffs,i.e. qcutoff ⪅ 1, the
“mutational susceptibility” is computed over a reduced
number of nearby peaks (see Figs.5 and 3(b)). This
susceptibility qualitatively resembles the one that is ob-
tained in the single-peak landscape, albeit with a finite
cusp, and can be interpreted as quantifying the effect of
mutations in one or several peaks that correspond to a
single phenotype. This is due to the fact that the over-
lap variance remains small, since only similar genotypes
are being considered (see Appendix III). Conversely, if
the virus population is allowed to explore larger swathes
of configuration space, as could arise for instance in the
case where the mutation pressure decreases progressively,
it will retain the ability to choose the fitness peak that
is more suitable for a given mutation and backmutation
rates (qcutoff < 1). In this case the “mutational suscepti-
bility” is computed by averaging over arbitrarily different
peak sequences. As a result, the variance of the overlaps
remains well above zero, and χEPI(T ) ∝ 1

T diverges at
low temperatures, as shown in Fig.5.

This closely resembles the magnetic case, where a
change of slope in the susceptibility is the hallmark of a
phase transition [24]: whereas above the critical mutation
rate the population is a “weak selection, strong mutation
regime”, which is analogous to a paramagnetic phase in
spin glasses, at low mutation rates the population is in

a “strong epistatic interaction regime”, analogous to a
spin ice, in which short-range order is maintained. We
numerically calculated the “epistatic susceptibility” by
computing the genotype overlap distribution averaged
over several replicas. For high enough overlap cutoffs,
one clearly sees the emergence of a transition, i.e. the
emergence of a cusp in χEPI(T ) (see Fig.5). This change
of slope serves the purpose of heralding a phase transi-
tion, which can be understood as a generalisation of the
error catastrophe for epistatic landscapes.
By restricting the amount of minima that are consid-

ered in the calculations of the susceptibility, and in par-
ticular by considering only minima that are close in Ham-
ming distance, one is effectively reducing the strength of
epistatic interactions and the zooming into the “strong
selection, weak mutation regime” resembles more that of
a single-peaked landscape [25]. This is confirmed by the
progressive concentration of the genome overlaps around
a delta function. The transition from one susceptibility
to the other can be implemented by progressively impos-
ing a Hamming distance cutoff between fitness peaks (see
Fig.5).

FIG. 5. Epistatic susceptibilitiy χEPI as a function of the ratio
betwen the effective temperature and barrier h for epistatic
loci, for different cutoffs. It is assumed that the barrier at
non-epistatic loci is 10 times larger, i.e. hnon-EPI = 10h. Each
point was obtained from running a simulation with 30 fit-
ness maxima and 1000 instantiations. (a)(b) Percentage of
epistatic loci: 25% (c)(d)Percentage of epistatic loci: 50%.
(a)(c) L = 5000 (b)(d)L = 10000. The cusp in the sus-
ceptibilities reveal the existence of a transition from a strong
selection low mutation regime (in the presence of epistatic in-
teractions) to a strong mutation low selection regime. For a
fixed percentage of epistasis, as the cutoff increases (as shown
in percentages in the legend), a critical temperature becomes
visible in the diagram. Above this temperature, the popula-
tion is in a strong mutation / disordered state.

In order to provide further evidence for the existence
of a phase transition, we performed a simple finite-size
scaling analysis of the kurtosis (using Fisher’s defini-
tion) of the overlap distribution. This kind of analy-
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sis resembles that of the Binder cumulant [35] in lattice
systems. We considered sequences of increasing length,
L ∈ (1k, 5k, 10k) (See Fig.6), and found that the overlaps
transition from a regime in which the genotypes tend to
be clustered (strong selection, weak mutation) to one in
which the overlaps are relatively spread out (weak selec-
tion, strong mutation).

FIG. 6. Replica-averaged kurtosis of the overlap distributions,
⟨κ⟩P̄ . Percentage of epistatic loci:50%, cutoff qcutoff = 0.5. At
low mutation rates, we observe a leptokurtic behaviour, which
is consistent with the tradeoff between the bulk of overlaps
(toward the value of q = 1/2) from states in different max-
ima (a delta-like peak at large values of q). For high enough
mutation rates (temperature beyond the threshold), the dis-
tributions appear to be more mesokurtic. This is expected
since mutations cause the states in local maxima to become
relatively randomized, which pulls the remnant of the delta
function (rightmost-peak) toward the left, as shown in the
insets. Insets: typical overlap distributions in three different
regimes P̄ (q), in the range q ∈ (0.5, 1). Left: strong selection
in the presence of epistasis. Right: strong mutation. Center:
intermediate regime.

IV. DISCUSSION AND OUTLOOK

We have provided a framework that allows to gener-
alize the analysis of the Error Catastrophe to rugged
energy landscapes. The analogy with continuous phase
transitions in magnetic systems has proved to be a fruit-
ful one in the analysis of epistasis and error thresholds
for mutability in quasispecies models.

We have shown that there exists a threshold above
which the virus population remains in a strong mutation
regime in epistatic landscapes. Below this threshold,

we have generalized the behavior from a single-peak
landscape (additive mutations) to a multiple peaked
landscape, which is arguably a more complex and
realistic scenario for virus evolution. We have therefore
contributed to enlarging the applicability of the theory
underlying the Error Catastrophe to more realistic
cases (assuming large viral populations away from the
mutational meltdown threshold).

Backreaction rates are dependent on a host of diverse
factors, such the prevalence of lethal mutations, the
mutation pressure itself or the sequence configuration
associated to a fitness peak. We have assumed that
they are an independent parameter, as can be done
in spin systems, which is debatable. However, this
independence, a figment as it may appear, can be useful
to reason about drug safety and emergence of mutant
strains. Mathematical models for quantifying safety of
treatments based on mutagentic drugs asume a dynamics
which is then fitted to experimental parameters [38, 39].
This may or may not be representative of real effects.
The calculation of overlaps at any given point in time al-
lows to monitor the effect of mutagenic drugs on control
populations in more realistic, model-free scenarios. For
instance, this approach could provide a way to screen
epidemics in the absence of abundant ressources, as
can be the case during the rising curve of an outbreak.
If one assumes that it is possible to perform pooled
genomic analysis, then computing the overlap matrix
between sequenced viruses provides valuable, real-time
snapshot of the viral population, emergence of strains,
and responses to treatments or changing external factors.

We touched repeatedly on the concept of diffusion of
a population of replicators in a high-dimensional hyper-
cube. While this is not new, the application of spectral
graph theory to determine that an Error Threshold can
exist in the presence of lethal mutations is a novel re-
sult, to the best of our knowledge. An interesting avenue
of research would be to characterize whether and how
different kinds of fitness landscapes (i.e. additive, multi-
plicative, rugged...) lead to a threshold. Another possible
improvement of this work would be to consider epistatic
models with complexity higher than the simplified NK
model presented here. This would potentially lead to a
complete calculation of Binder cumulants, albeit at the
expense of heavier Monte Carlo sampling. We leave these
two questions for further work.
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APPENDIX I: EXISTENCE OF AN ERROR THRESHOLD IN THE PRESENCE OF LETHAL
MUTAGENESIS

It has been argued that lethal mutagenesis is incompatible with the existence of an error threshold in viral
populations. The underlying reason for this argument is that lethal mutagenesis necessarily implies a reduction of the
viral population since lethal mutants, which dominate over non-lethal ones, do not reproduce and act as a population
sink [41]. The mathematical model for the error catastrophe needs a finite non-vanishing ratio between the fit and
deleterious genotypes.

While this argument might hold for high percentages of lethal mutations, we show that there is a regime in which
this need not be the case generally. If at each time step there genotyope has a non-zero probability of transitioning
into a deleterious non-lethal mutation with fitness above 1, this will sustain a “escape route” that will circumvent
the lethal genotypes (corresponding to absent vertices in the hypercube graph). In other words, the important factor
is not whether the amount of mutations that are lethal at each time step is dominant, but rather wethere there are
at least a few mutations which are viable. If this is the case, the virus can continue to evolve, albeit less efficiently.

In order to see how this might happen, it is important to consider the full-dimensional model that leads to random
diffusion in a hypercube: a complete mathematical description of the Error Catastrope in viruses of genomic length
L involves considering every sequence in 2L configurations. A simple model which considers only single mutations
between genotypes comes given by the the adjacency matrix of the hypercube graph weighted with the fitness of each
genotype.

Thypercube =
(
diag([1− µ0, 1− µ1 . . . 1− µ2L ]) +

1

L
Ahypercubediag([µ0, µ1 . . . µ2L ])

)
diag([f0, f1 . . . f2L ])

where Ahypercube is the hypercube graph adjacency matrix and diag([...]) denotes the diagonal matrix.

Spectral graph theory provides valuable tools to analyse graph connectivity in terms of the eigenvectors and eigenval-
ues of the Laplacian matrix. We compute the spectral gap of the Laplacian matrix L of the L-dimensional hypercube
graphs subject to vertex percolation (that is, vertices are absent with probability p), as a way to model lethal mu-
tations. The Laplacian Matrix is defined as L = D − A, where D is a diagonal matrix encoding the coordination
number of each vertex. We show numerically that the L-dimensional hypercube remains connected, that is, there
is a path connecting the ”000...0” string with ”111...1” string (or local variations thereof), provided that the lethal
mutation rate is below a threshold. The spectral gap (the difference between the first two eigenvalues) is an upper
bound of the Cheeger constant hC , which is strictly positive (hC > 0) if the graph is connected, and zero if it consists
of disconnected subgraphs. Defining σ12 = λ2 − λ1 as the spectral gap of the L-dimensional hypercube graph, we use
the well-known relation:

2hC ≥ σ12 ≥
h2
C

2L

to infer that the hypercube remains connected even for significant abunance of lethal genotypes. Small values of
hC imply that there is a graph bottleneck, which means that two subgraphs are connected by a small number of edges.

We simulated virus diffusion in different landscapes (with a single fitness peak) for strings of lenths up to 15, and
found good agreement between the behavior of the spectral gap (as a function of vertex percolation probability) and
the long term molar fraction of the dominant peak sequence. The transition matrix of the hypercube can be written
as Thypercube = [I −µ(I − 1

LA)]diag([f0, . . . f2L ]) = [I −µ(L/L)]diag([f0, . . . f2L ]), meaning that they are not diagonal
in the same basis.

It is possible to obtain information from the asymptotic behavior of ρ = n0/
∑

j nj for large mutation rates. If
lethal mutations dominate, then ρ is expected to remain constant since the fitness peak is disconnected from most
of the other genotypes. Conversely, if ρ decays at some value of µ (which will typically be larger than the original
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critical mutation rate), then one can infer that the master sequence has been diluted in the total population since the
graph remains connected. This behavior is observed in Fig.7(b). Importantly, the value of µ for which the collapse
of ρ is observed will typically be lower than the mutational meltdown point, i.e. the corresponding eigenvalue will be
larger than 1 (the effective mutation rate can increase if transitions between genotypes with Hamming distance above
1 are allowed).

FIG. 7. Simulation of L-dimensional hypercube, which models mutations in sequence space of legth L = 10 up to L = 16, for
different percolation probabilities plethal, which corresponds to the prevalence of lethal genotypes. Percolation removes a vertex
from the graph. Equivalently, it reduces the fitness to zero and removes all links from the lethal genotype. (a) The spectral
gap σ12 of the Laplacian matrix is a measure of graph connectivity. A non-zero value indicates that the graph is connected.
Small values indicate that there is a connectivity bottleneck between subsets of vertices. (b) Master sequence molar fraction
for µ ≫ µC for different lethal mutation prevalences. As expected, the molar fraction remains near 1 for disconnected graphs,
and then it abruptly decreases around the same value in which the spectral gap indicates that the hypercube is connected.

FIG. 8. Threshold in the presence of lethal mutations. For a non-zero backmutation rate µB , the population of the lower fitness
genotypes tends to 1, even when lethal mutations are widely prevalent. (a) Population of master sequence for r = 0 (r = 0.8)
plotted in red (blue) dashed lines. In the presence of the backmutation, the master sequence population is plotted in solid
orange (green) (b) Population of low fitness non-lethal genotype for r = 0 (r = 0.8) plotted in red (blue) dashed lines. In the
presence of the backmutation, the population for these deleterious is plotted in solid orange (green). In all cases µB = 10−3

The simplest model for the error catastrophe in the presence of lethal mutations can be built by grouping the
microscopic into three collective states: the master sequence, the non-lethal deleterious mutations and the lethal
mutations :

M =

 f(1− µ) µB

2 0
fµ(1− r) 1− µB 0

fµr µB

2 fL


where r is a proxy for the ratio of lethal mutations, which all have fitness strictly lower than 1, fL < 1. This
coarsegraining allows a treatment in terms of effective mutation rates. It can be seen that the existence of a population
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sink stemming from the presence of lethal mutations amounts to a renormalisation of the non-dominant fitness and
the backmutation rate (see Fig.8). For high percentages of lethal genotypes (as r → 1), the order parameter becomes
progressively insensitive to variations of the mutation rate. Moreover, for zero backmutation rates, this behavior is
this behavior is similar to the one described in [41], in which the absence of a threshold is argued for. However, for
any non-zero backmutation rate, a threshold emerges (see Fig.8(b)).

APPENDIX II: LANDAU THEORY OF THE TRANSITION MATRIX EIGENSTATES

Even for the shortest viruses, a complete analysis is unfeasible due to the exponential number of configurations.
This is not necessarily a problem if we aggregate the genotypes (binary strings) into phenotypes (sets of strings with
equivalent functional properties). Indeed, a simple m+ 1×m+ 1 model of the form:

T =


f(1− µ) µB . . . µB

fµ/m 1− µB . . . 0
...

...
. . .

...
fµ/m 0 . . . 1− µB


allows to obtain the derive a threshold-like behavior. Note that this matrix is not symmetric, and that the rates that
connect the master sequence to deleterious or lethal mutations are larger than those for the reverse path. Diagonalising
the matrix yields the right eigenvalues (see Fig.9):

λmax = λ1 =
1

2

(
1− fµ+ f − µB +

√
2µB(fµ+ f − 1) + (f(µ− 1) + 1)2 + µ2

B

)
(10)

λ2 =
1

2

(
1− fµ+ f − µB −

√
2µB(fµ+ f − 1) + (f(µ− 1) + 1)2 + µ2

B

)
(11)

λ3:m = 1− µB (12)

FIG. 9. (a) Eigenvalues crossover between λ1 and λ2 for fb = 0.99. Mutational meltdown happens when λ1 < 1. We consider
three mutation rates, µ1 = 0.03, µ1 = 0.045 and µ1 = 0.065 (b) Time evolution of the master sequence population n0 (solid
blue) and less fit genotypes n1 (solid red) as a function of time. Interestingly, one observes an inversion just below the mutational
meltdown point, due to the existence of an error threshold. (b) Ratios for the asymptotic populations for different mutation
rates.

The dominant eigenvector vmax of the fitness matrix allows to compute the molar fractions of the different genotypes.
This vector grows at the fastest rate and rapidly becomes the only relevant one at long times, i.e. given the evolution
matrix U(t) = exp(tT ),

lim
t≫1

U(t)vmax∑
j U(t)vj

=⇒ 1(0) if µ < µC(µ > µC)

which allows to assume a large and constant viral populations. We define the order parameter ρ = vmax
0 /

∑
i v

max
i , as

the ratio between the number of viruses with master sequence genotype against that of all the other sequences. For
f = 1 + s, one can expand the order parameter ρ to first order in µB to obtain the dependence on temperature:
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ρ ≈ µB

s ln2
(

s
1+s

)
(T − TC)

+O(µ2
B)

which yields a divergent behavior of the susceptibilty at TC , since χ = ∂ρ/∂µB ∝ 1/(T − TC) for small backmutation
rates. This is in good qualitative agreement with the one expected from a functional maximisation in Landau theory
F (ρ, T, µB). To see this, we calculate the “zero-backmutation” susceptibility for the fitness functional:

∂F

∂ρ
= 0→ 0 = µB − αρ− βρ3 (13)

0 = 1− αχ− 3βρ2χ (14)

where we have taken the derivative w.r.t µB in the last line to obtain an expression for the susceptibility. Since ρ = 0
above the critical temperature, and ρ =

√
|α|/β below it, we obtain that:

χ =
1

α

(
1

2|α|

)
for µ > µC (µ < µC)

This, incidentally, allows us to derive an analytical form for α0 at the critical temperature:

a0 = s ln2
(

s

1 + s

)
At this point it is important to distinguish the “Error Catastrophe” from “Mutational Meltdown” [40, 41]. Whereas

the former occurs in large populations but is driven by high mutation rates, the latter involves a gradual accumulation
of deleterious mutations facilitated by genetic drift. Mutational meltdown entails a gradual decline of the population
(i.e. the fitness eigenvalue is less than one), whereas the Error Catastrophe is a rapid collapse of genetic information
due to a phase transition. Throughout this work, we only consider the mutation dynamics in which fitness remains
larger than 1.

APPENDIX III: SIGNATURES OF REPLICA SYMMETRY BREAKING

The concept of Replica Symmetry Breaking (RSB) was introduced to describe the complex energy landscape of
spin glasses, and it is a fundamental idea in the study of complex systems and statistical mechanics [23, 24]. The
overlap qSG between two spin configurations σ and σ′ is defined as:

qSG =
1

L

L∑
i

σiσ
′
i

where L is the number of spins and σi ∈ {−1, 1}. In a system exhibiting RSB, the distribution of overlaps (the simi-
larity between different microscopic configurations) is non-trivial. Different instantiations of the quenched disorder
will give rise to different overlap distributions, which must be averaged over the replicas, i.e P̄ (qSG) = ⟨P (qSG)⟩R.
This means the overlap distribution function over several replicas, P̄ (qSG), is not a simple delta function as it would
be in a system with replica symmetry, but rather has a broad, almost continuous shape. RSB indicates that the
phase space of the system is divided into many metastable states, a hallmark of ergodicity breakdown.

In order to apply the methods to study RSB to epistatic fitness landscapes such as the ones that arise from the
simplified NK model presented previously, we introduce the overlap between two genotypes s and s′ as:

q(s, s′) = 1− dHamming(s, s
′)

where in this case the genomes are bitstrings of length L and dHamming(s, s
′) =

∑
j(1 − δsj ,s′j )/L is the Hamming

distance. The signature of RSB is the gradual spread of the overlap distribution (see Fig.4 in the main text).



14

In the single-peak case, it is possible to empirically measure the “mutational susceptibility” due to fluctuations of
the conjugate variable. If we call ⟨ρ⟩ the average molar fraction:

χ =
∂⟨ρ⟩
∂µB

=
∂

∂µB

(
1

Z
∑
s

p(s)ρs

)
(15)

=
1

T

(
1

Z

(∑
s

e−(Fs−ρµB)/T ρ2s

)
− 1

Z2

(∑
s

e−(Fs−ρµB)/T ρs

)(∑
s′

e−(Fs′−ρµB)/T ρs′

))
(16)

=
1

T
(⟨ρ2⟩ − ⟨ρ⟩2) (17)

where we have assumed that the population is described by an equilibrium distribution, i.e. p(s)µ(s → s′) =
p(s′)µ(s′ → s), such that p(s) = exp−(Fs − ρµB)/T and Z =

∑
s p(s).

For spin glasses and rugged lanscapes, magnetisation cannot be used as an order parameter due to lack of long-range
order, meaning that due to competing interactions and disorder, ⟨M⟩ = 0 both in the paramagnetic and the spin-ice
phases [24]. The alternative is to define the overlap order parameter.

qij =
1

L

∑
k

s
(i)
k s

(j)
k

where s(i) is the genotype associated to the fitness peak i.
In magnetic systems, the conjugate magnitude to this new order parameter is the “replica field” rij , which is a

theoretical construct that allows to write a “replica Hamiltonian”:

Hreplica = Hmagnetic −
∑
ij

rijqij

which, in paramagnetic phase (i.e. the strong mutation weak selection regime), approaches the magnetic Hamiltonian,
since the overlaps vanish and Hmagnetic ≫

∑
ij rijqij . Indeed, the magnetisation can be obtained as a limiting case of

the overlap order parameter when there is only one energy minimum at s(i):

qii =
1

L

∑
j

s
(i)
j s

(i)
j

The “spin glass susceptibility”, computed as the variance of the overlap distribution variance, measures how the
overlap distribution changes due to variations in a replica field (note that the “replica field” is not a physical quantity,
and ultimately the driving forces are magnetic fields and the quenched disorder, which are the counterpart to epistatic
intearctions). This susceptibility captures inter-replica correlation rather than just correlations between spins, as does
the magnetic susceptibility. Fluctuations in the overlaps stem from randomness across different instantiations of the
epigenetic landscape (replicas). Given the replica-averaged overlap distribution P̄ (q) = ⟨P (q)⟩R, we define:

χEPI(T ) =
1

T

(
⟨q2⟩P̄ − ⟨q⟩2P̄

)
This “epistatic susceptibility” will take on a range of values depending on whether we consider intra-phenotype

epistasis (that is, we only consider fitness peaks which are clumped into a single phenotype), or whether the overlaps
are taken between fitness peaks at arbitrary (Hamming) distance.

It is possible to transition from one regime to the other by imposing a cutoff on the initial overlap ditribution,
which sets a upper bound on the fluctuations of the overlap distribution.

χEPI(T, qcutoff) = χEPI(T ) calculated for ⟨P (q)⟩R with q > qcutoff

Whereas at high temperature the behavior of χEPI is qualitatively equivalent to a paramagnetic, disordered phase,
at low temperatures, it depends strongly on the ratio between the cutoff qcutoff and the percentage of the loci that
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undergo epistatic interactions. For a fixed espistasis probability, at relatively low cutoffs, i.e. qcutoff ≤ 0.7−0.8 for the
parameters in this work, the susceptibility diverges since in the spin-ice phase the variance of the overlaps remains
finite (and therefore χEPI diverges in the limit T → 0). This behavior is observed in spin glasses with weak disorder
[37]. On the other hand, at high cutoffs the variance ⟨q2⟩R remains small since very similar chains are being compared.
In the limit qcutoff → 1 only one fitness peak is considered.
This is reminiscent of the differentiation into “linear response susceptibility”, which measures responses of spins

to small changes in the magnetic field such that the system remains in one energy minimum, and “equilibrium
susceptibility”, which measures response over times in which the system has time to accomodate to the lowest energy
for a fixed magnetic field and the system becomes effectively insensitive to variations of the external field [25].


