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Meeting the latency and energy constraints on 
timing-critical edge-AI systems 

 
Ivan Miro-Panades, Inna Kucher, Vincent Lorrain, Alexandre Valentian 

Abstract— Smart devices, with AI capabilities, at the edge have 

demonstrated impressive application results. The current trend in 

video/image analysis is to increase the resolution and classification 

accuracy. Moreover, computing object detection and classification 

tasks at the edge require both low latency and high-energy 

efficiency for these new devices. In this paper, we will explore a 

novel architectural approach to overcome such limitations by 

using the attention mechanism of the human brain. The latter 

allows humans to selectively analyze a scene allowing limiting the 

spent energy. 

 
Index Terms—Edge AI accelerator, high-energy efficiency, low-

latency, object detection. 

I. INTRODUCTION 

The observed trend, in visual processing tasks, is to increase 
the complexity of neural network (NN) topologies to improve 
the classification accuracy. This results in NN models being 
deeper and larger leading to several issues when used in edge 
applications. Even though mobile versions of some network 
topologies have been introduced over time, it remains difficult 
to integrate them on-chip in an energy-efficient manner. The 
main issue is the large number of parameters, requiring the use 
of an external memory which leads to a large power dissipation 
due to the data movement. It should be noted that the energy 
necessary for moving data is three orders of magnitude larger 
than that for doing computations on the same data 0. This is the 
primary issue (“Issue No. 1”) that must be addressed. 

Moreover, when processing a video input stream, the whole 
image is processed, frame by frame, even though there is 
enormous spatial redundancy between consecutive frames. If 
the target application requires a low reaction time to events 
(e.g., to an object or person moving), the frame rate needs to be 
high, leading to high instantaneous power values. On the other 
hand, if the frame rate can be kept low, such as for security 
surveillance applications, the system overall energy efficiency 
would still be poor, because of the high inter-frame redundancy 
(especially during nights and weekends). The second issue 
(“Issue No. 2”) that must be addressed is to reconcile low power 
dissipation and short reaction times to events. 

In those respects, bio-inspired approaches can lead to 
innovative solutions. For instance, neuroscientists have found 
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anatomical evidence that there are two separate cortical 
pathways, or ‘streams’, in the visual cortex of monkeys 0: the 
ventral pathway and the dorsal pathway, as shown in Fig. 1. The 
dorsal stream is relatively fast, sensitive to high-temporal 
frequencies (i.e. motion), viewer-centered and relatively 
unconscious. It has been called the “Where” path, since it is 
used for quickly retrieving the location of objects, especially of 
moving ones. On the other hand, the ventral stream is relatively 
slow (≈4x higher reaction time), sensitive to high-spatial 
frequencies (i.e., details), object-centered and relatively 
conscious. It is known as the “What” path, involved in the 

recognition of objects. If millions of years of evolution has lead 
to such a 2-path solution, this is because it brought a 
competitive advantage to our ancestors, allowing them to 
quickly evade threats, even before their brain was knew the 
nature of the threat. 
 

 
Fig. 1. Illustration of the two visual pathways or streams in the 
visual cortex, used for extracting different information 
 

Even though this 2-stream hypothesis has been disputed over 
the years and we now know that those pathways are not strictly 
independent, but do interact with each other (for instance for 
grasping fine objects 0), it is still relevant to the problem at 
hand, as it provides a good fit to many motor and perceptual 
findings. 

In this work, we focus on the “Where” subsystem, as the 

“What” one is already well addressed with existing accelerators 
[10]. The main objectives are therefore to obtain the lowest 
possible latency and power values. First, we have started by 
selecting an adequate neural network topology, i.e., one with a 
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small number of parameters, but with only slightly degraded 
accuracy: we have chosen the MobileNet-V1 topology 0. Since 
all the parameters need to be stored on-chip, for solving ‘Issue 

N° 1’, the synaptic weights and activation values must be 
heavily quantized, without a significant loss in accuracy: our in-
house learning framework was complemented with a state-of-
the-art quantization-aware training (QAT) algorithm. This tool 
is now available in open source and presented in Section II. An 
innovative architecture was considered for the hardware, once 
again taking inspiration from biology: layers V1 to V3 of the 
visual cortex, which are sensitive to orientations of edges and 
to movement, are fixed early on during life. For instance, V1 
undergoes synaptic and dendritic refinement to reach adult 
appearance at around 2 years of age 0. Even though these 
synaptic weights will not be learnt again during adulthood, that 
does not prevent our visual cortex to learn how to recognize 
new objects. We have thus chosen to fix the feature extraction 
layers of the MobileNet once and for all (while ensuring they 
remain sufficiently generic) and then to apply a transfer 
learning technique, to target several applications. Fixing 
synaptic weights actually leads to tremendous energy and 
latency savings, e.g. getting rid of memory accesses. Such an 
architecture can be used in an attention mechanism, solving 
‘Issue N° 2’. The analysis of the architecture is described in 
Section III. Finally, Section IV concludes this work. 

 

II. QUANTIZATION AWARE TRAINING 

A scalable and efficient QAT tool has been developed and 
integrated into the N2D2 framework 0 (see Fig. 2). N2D2 
provides a complete design environment for a wide range of 
quantization modes to achieve the best performances including 
SAT 0 and LSQ 0 methods. The overall framework and the 
addition of the quantization aware training modules are shown 
in Figs 3 and 4 below. 

The advantages of this dedicated framework include: 
 

· Integration of common quantization methods (Dorefa, 

PACT, CG-PACT). 

· Straightforward support of mixed-precision operators 

(2-bit to 8-bit for Weights and/or Activations). 

· Automatic support of non-quantized layers (e.g., batch 

normalization). 

· Training phase based on optimized computing kernels, 

resulting in fast evaluation of the quantization 

performance. 

 
There are two separate quantization modules, one dedicated 

to weights and another one to activations. This is illustrated in 
Figs 3 and 4 below, where the example Layer N consists of a 
Convolutional layer followed by the Batch normalization layer 
with an activation function (typically ReLu). The weights of 
this Convolutional layer are quantized to a desired precision, 
using the quantize_wts function. Batch normalization stays in 
full precision and goes through the activation function. This 
output is then quantized to the required precision, using the 
quantize_acts function. It must be noted that the two 
quantification precisions, i.e., of the weights and activations, 
might not necessarily be the same. 

During neural network training, the parameters are adjusted 
using backpropagation of errors on these parameters, and 
repeating this process for a certain number of epochs, until the 
figure of merit of the training is satisfactory. 

The forward pass with QAT follows the logic shown in Fig. 3:  
· Inputs arriving to the convolutional layer are passed 

through the convolution operation, where the 
weights are quantized beforehand using Weight 
Quantizer module; 

 
 

Fig. 2. N2D2 framework 
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· The output is propagated to Batch normalization 
layer, which provides operations in full precision; 

· The output from Batch normalization is transformed 
to its quantized values using the Activation 
Quantizer; 

· At the end, the quantized output is passed as an 
input to the next layer. 

 
The backward propagation with QAT, shown in Fig. 4, 

includes the following steps:  

· Starting from the errors on quantized activations, the 
errors on full precision activations are computed, 
using the derivatives of the transformations applied in 
the forward pass; 

· Then these errors, on full precision activations, are 
propagated through Batch normalization and 
convolutional layers; 

· In a similar way, the errors on full precision weights 
are computed using quantized weights errors. 

During the learning procedure, both full precision and 
quantized quantities are kept. One has to keep in mind that, 
during the training, the applied procedure is called “fake” 

quantization, since even quantized values are kept using 
floating-point type.  

Once the network is trained, the weights and inputs are 

transformed into true integer values before execution on a 
hardware target. 

 

III. ARCHITECTURE EXPLORATION 

The architecture exploration started with the choice of the 
NN topology, with low energy and low latency per inference in 
mind: the target is an energy below 4mJ per image (HD:  
1280x720 pixels) and a latency compatible with a 30FPS frame 
rate (i.e. below 30ms). A tradeoff must thus be made between 
network complexity and operations per inference. A lower 
number of operations obviously leads to a lower number of 
Multiplication-Accumulation (MAC) operations to be 
performed per image. 

Fig. 5 illustrates the various topologies that can be found in 
the literature [9]. The MobileNet-V1 topology has been chosen, 
as it uses depth-wise and point-wise convolutions to reduce the 
computing complexity (their difference with a standard 
convolution is shown in Fig. 6).  

Usually, NN accelerators use a layer-wise architecture. This 
makes it possible to support different topologies, since 
networks are computed layer-wise. It also makes it possible to 
compute multiple images per layer, i.e., inputs with a batch size 
higher than one: the synaptic weights are read once and can be 
reused for the different images, reducing the power dissipation. 
However, in our case, we have conflicting constraints: the 
topology is fixed and the batch size is equal to one to limit the 
processing latency. A streaming architecture is thus considered, 

 
Fig. 3. Forward and backward quantization passes 

 
Fig. 4. Backward propagation with QAT 
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since the latency is minimized and the fixed topology allows 
optimizing the buffering and the inter-layer communication 
throughput, limiting the area overhead. 
 

 
Fig. 5. Comparison of several NN topologies, as function of 
number of operations (X-axis), classification accuracy (Y-

axis) and number of parameters (size of the circle) 0 

 
 (a)    (b) 
Fig. 6. (a) Standard convolution; (b) Depth-wise + point-wise 
convolution 

Our NN accelerator, called NeuroCorgi, thus takes the form 
of a pipelined computational architecture, in which each layer 
of the network is instantiated into a specialized, parameterizable 
sub-architecture. These sub-architectures are then connected 
according to the network topology and parameterized to 
perform the inference calculation (conv, FC …) and minimize 
the latency. 

To simplify the architectural tradeoff analysis and the RTL 
generation, a back-end tool has been added to the N2D2 
learning framework. This tool takes as input an algorithmic 
configuration file (representing the computation that need to be 
performed per layer) and the hardware parameters for each 
layer sub-architecture. It then generates files, following a 3 step 
procedure: first, the generation of the topological and hardware 
configuration; second, the generation of the RTL code; and 
finally, the test and validation files. 

This tool suite is very useful for architecture exploration; by 
varying several architectural parameters: level of parallelism of 
each sub-architecture; size of the buffers between layers, to 
balance the data flow and minimize the congestion in the 
pipeline. An exploration of the design space was done by 
manually varying these parameters: their impact can be readily 

assessed at accelerator-level. The pipelined architecture allows 
ultra-low latency image detection (11ms). The result of initial 
floorplanning experiments is shown in Fig. 7. 

 

 
Fig. 7. NeuroCorgi initial floorplan, illustrating the placement 

of the different NN layers 

IV. CONCLUSIONS 

We aim at solving the paradox of handling ever larger image 
resolutions (HD) and frame rates (>30FPS), with more complex 
neural networks, while at the same exhibiting low latency and 
power values. In this work, we explored a clever, bio-inspired 
solution, for providing an attention mechanism to vision 
solutions at the edge. We focus on the dorsal stream, or 
“Where” path, since the “What” path is already well covered by 
a number of accelerators. 

For pushing the energy efficiency to its maximum, several 
design decisions were made: a small NN topology was chosen, 
i.e., MobileNet-V1 to be completely integrable on-chip; 
weights and activations were heavily quantized (4b); bio-
inspiration was again considered, by fixing the features 
extraction layers (embedded memory limited to 600kB). 

Our in-house learning framework N2D2 has been completed 
with the necessary functionalities: state-of-the-art quantization 
algorithms, transfer learning, hardware generation and 
configuration. 
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