
HAL Id: cea-04799431
https://cea.hal.science/cea-04799431v1

Submitted on 22 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In-memory computing low level programming model and
amp; Compiler innovation

Henri-Pierre Charles

To cite this version:
Henri-Pierre Charles. In-memory computing low level programming model and amp; Compiler inno-
vation. MSC 2024 - International Workshop on Memory and Storage Computing, Sep 2024, Raleigh,
United States. �cea-04799431�

https://cea.hal.science/cea-04799431v1
https://hal.archives-ouvertes.fr

In-memory Computing Low Level Programming Model
& Compiler Innovation

or “What is a compiler support for IMC accelerator”
Pearls on Tool Chains of In-memory Computing

MSC@ESWEEK 2024

Henri-Pierre CHARLES

CEA DSCIN department / Grenoble

Thursday, October 3

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Amhdal Law’s ?

Ahmdal law’s: “Speedup is limited by the sequential part”

Acceleration limited by the “X” part : S = 1
1−p

X ∈ {Parallel, Vectorized, using IP bloc, . . . }

Programmer approach
“This part is parallel” let’s optimize !
It’s better to fight for a small x2 than for a big
x5 !

What to optimize

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 2

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Niklaus Wirth (15 February 1934, 1 January 2024)

Niklaus Wirth in 2005. Niklaus Wirth Wirth Projects
Pascal 1968-1972 Pascal2 / P-Code - UCSD -
TurboPascal
Modula2 1973-76
Oberon 1977-1980
Lilith 1977-1981

Books / Articles
“The Pascal User Manual and Report”
Algorithms + Data Structures = Programs
Wirth’s law (1995) “Software is getting slower
more rapidly than hardware is becoming
faster.”
Article "A Plea for Lean Software"

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 3

https://en.wikipedia.org/wiki/Niklaus Wirth
https://en.wikipedia.org/wiki/Algorithms + Data Structures = Programs
https://en.wikipedia.org/wiki/Wirth's law

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Low Level Programming Models

Programmer view
How to use an IP block from my program ?

How to activate silicon blocks aka IP
1 Independent block
2 CPU Write Control Register / active waiting :

device handling in OS
3 Included into ISA + asm intrinsic
4 Include into ISA + IR + code generation

Pro / Cons
1 Nothing to do
2 Huge Programmer Effort : hidden in OS
3 Huge Programmer Effort :

cast data in & out
manually select instructions

4 Compiler global view :
Better global optimization opportunities
If IP has possible optimizing parameters ->
include higher level optimization
automatic correct instruction selection

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 4

Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : CISC-versus-RISC

RISC CISC
“Complex” versus “Reduced” has no meaning.

RISC : compute instructions, memory
instructions
CISC : compute instructions with memory access
(need microcode)

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 5

Introduction Compiler Innovation C-SRAM support Conclusion

Programming Model : Model-and-Compiler

Compiler life (gcc)
more than 40 year
more than 100000 files
precursor in terms of “eco conception”

Compiler Contains
SSA form : program as transformable data.
Program transformation : parallelization,
vectorization ...
Register allocation.
Instruction scheduling : based on data type
arithmetics
Asumptions about target
Pattern matching for low level instructions
selection

Illustration

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 6

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 7

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 8

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 9

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 10

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : Compiler And Architecture Links

Links between application and architecture

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 11

Introduction Compiler Innovation C-SRAM support Conclusion

Compilette principle : “Working Example”

Control flow in application

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 12

Introduction Compiler Innovation C-SRAM support Conclusion

Compilette principle : “Working Example”

Control flow in application with dynamic adaptation

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 13

Introduction Compiler Innovation C-SRAM support Conclusion

List of Code Generation Scenarios

Compilation scenarios
(a) Static compilation
(b) Dynamic adaptation

1 Program initalization
2 Kernel initialization
3 Application controlled
4 Heterogeneous architecture

(multi-isa support)

Target list
RISCV (Embedded system)
CSRAM (Embedded system)
POWER 8 (HPC computer)
AARCH64 (both)
Others (both)

All following scenarios examples works
on all platforms

Illustration

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 14

Introduction Compiler Innovation C-SRAM support Conclusion

Compiler Support : HybroLang DSL description

Specific features
C like syntax
Variable are hardware registers
Mix run time data values and binary code

#(C expression) include C expression
Datype triplet
arithmetic wordlen vectorlen

int 32 1 scalar int
flt 32 2 vector of 2 floats
flt 32 #(vlen) vlen vector of floats
flt #(wlen) 4 vector of 2 floats of size wlen

“Multi-time” Code Generation
Static time : Generate binary code generator

Included into compilation chain, remplace a part
of the C code

Run-time : Generate binary code
Faster than any JIT
Small code generator able to fit on embedded
platforms

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 15

Introduction Compiler Innovation C-SRAM support Conclusion

HybroGen : Simple-Add-Source

Simple Addition with specialization

typedef int (* pifi)(int);

h2_insn_t * genAdd (h2_insn_t * ptr , int b)
{

#[
int 32 1 add (int 32 1 a)
{

int 32 1 r;
r = #(b) + a; // b values will be included in code generation
return r;

}
]#
return (h2_insn_t *) ptr;

}

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 16

Introduction Compiler Innovation C-SRAM support Conclusion

Examples : CSRAM (Computational SRAM)

Architecture Programmer view
Single program flow
Non Von Neumann model : CPU send
instructions to CSRAM
DSL approach, which express

Heterogeneous computation (DONE)
Memory hierarchy (ONGOING)

Software support
HygroLang compiler
https://github.com/CEA-LIST/HybroGen

Functionnal emulator (based on QEMU): https:
//github.com/CEA-LIST/csram-qemu-plugin

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 17

https://github.com/CEA-LIST/HybroGen
https://github.com/CEA-LIST/csram-qemu-plugin
https://github.com/CEA-LIST/csram-qemu-plugin

Introduction Compiler Innovation C-SRAM support Conclusion

Inverted Von Neumann Programming Model

Choosen Programming model

Why ?
Allows scalability :

Any vector size
Any tile number
Any system configuration : near or far IMC

Works with any processor
In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 18

Introduction Compiler Innovation C-SRAM support Conclusion

Programming Model : Image Diff

Mini code Example : HybroLang code example

pifiii genSubImages (h2_insn_t * ptr){
#[

int 32 1 subImage (int [] 16 8 a, int [] 16 8 b, int [] 16 8 res , int 32 1 len)
{

int 32 1 i; // int 32 1 = RISC -V register
// int [] 16 8 = array of C-SRAM lines
for (i = 0; i < len; i = i + 1) // Control done on RISC -V

{
res[i] = a[i] - b[i]; // Workload done on C-SRAM

}
}

return 0;
]#

return (pifiii) ptr ;}

Compiler support
Dynamic interleaving
Instruction generator generator notion

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 19

Introduction Compiler Innovation C-SRAM support Conclusion

HybroGen : ImageDiff-Run

CxRAM Usage
Compute image difference
Iterate on image lines (RISCV)
Use difference operators / 16 pixels wide
(CxRAM)

Dataset

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 20

Introduction Compiler Innovation C-SRAM support Conclusion

CxRAM-Status : Circuit

Chip design evolution
1 chip built, characterized : CSRAM part only,
(photo)
Result published : “A 35.6TOPS/W/mm2
3-Stage Pipelined Computational SRAM with
Adjustable Form Factor for Highly Data-Centric
Applications” 2020
1 chip built, under testing / characterization :
CSRAM + RISCV
Ongoing work on new instruction set variants

IMPACT circuit (2019)

RISCV and CSRAM under testing (2023)

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 21

Introduction Compiler Innovation C-SRAM support Conclusion

Conclusion : Conclusion

Architecture point of view
Application ? Future is not only based on deep
learning !
Parallelism type
Memory layout is a key !

DRAM interleacing
Data locallity / aligment

Tools for collaborations
DSL / Compiler :
https://github.com/CEA-LIST/HybroGen

Emulator, based on QEMU : https:
//github.com/CEA-LIST/csram-qemu-plugin

HybroGen Roadmap
Include data value based run-time optimization
(Already started)
Include explicit data movement for sparse
accelerators
Include variable precision floating point number
Include system level PIM capabilities
more to come on the road

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 22

https://github.com/CEA-LIST/HybroGen
https://github.com/CEA-LIST/csram-qemu-plugin
https://github.com/CEA-LIST/csram-qemu-plugin

	Introduction
	Introduction : Amhdal Law's ?
	Introduction : Niklaus Wirth (15 February 1934, 1 January 2024)
	Introduction : Low Level Programming Models

	Compiler Innovation
	Introduction : CISC-versus-RISC
	Programming Model : Model-and-Compiler
	Compiler Support : Compiler And Architecture Links
	Compilette principle : ``Working Example''
	List of Code Generation Scenarios
	HybroGen : Simple-Add-Source

	C-SRAM support
	Examples : CSRAM (Computational SRAM)
	Inverted Von Neumann Programming Model
	HybroGen : ImageDiff-Run

	Conclusion
	CxRAM-Status : Circuit
	Conclusion : Conclusion

