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Introduction : Amhdal Law’s ?

Ahmdal law’s: “Speedup is limited by the sequential part”

Acceleration limited by the “X” part : S = 1
1−p

X ∈ {Parallel, Vectorized, using IP bloc, . . . }

Programmer approach
“This part is parallel” let’s optimize !
It’s better to fight for a small x2 than for a big
x5 !

What to optimize

In-memory Computing Low Level Programming Model & Compiler Innovation Henri-Pierre CHARLES 2



Introduction Compiler Innovation C-SRAM support Conclusion

Introduction : Niklaus Wirth (15 February 1934, 1 January 2024)

Niklaus Wirth in 2005. Niklaus Wirth Wirth Projects
Pascal 1968-1972 Pascal2 / P-Code - UCSD -
TurboPascal
Modula2 1973-76
Oberon 1977-1980
Lilith 1977-1981

Books / Articles
“The Pascal User Manual and Report”
Algorithms + Data Structures = Programs
Wirth’s law (1995) “Software is getting slower
more rapidly than hardware is becoming
faster.”
Article "A Plea for Lean Software"
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Introduction : Low Level Programming Models

Programmer view
How to use an IP block from my program ?

How to activate silicon blocks aka IP
1 Independent block
2 CPU Write Control Register / active waiting :

device handling in OS
3 Included into ISA + asm intrinsic
4 Include into ISA + IR + code generation

Pro / Cons
1 Nothing to do
2 Huge Programmer Effort : hidden in OS
3 Huge Programmer Effort :

cast data in & out
manually select instructions

4 Compiler global view :
Better global optimization opportunities
If IP has possible optimizing parameters ->
include higher level optimization
automatic correct instruction selection
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Introduction : CISC-versus-RISC

RISC CISC
“Complex” versus “Reduced” has no meaning.

RISC : compute instructions, memory
instructions
CISC : compute instructions with memory access
(need microcode)
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Programming Model : Model-and-Compiler

Compiler life (gcc)
more than 40 year
more than 100000 files
precursor in terms of “eco conception”

Compiler Contains
SSA form : program as transformable data.
Program transformation : parallelization,
vectorization ...
Register allocation.
Instruction scheduling : based on data type
arithmetics
Asumptions about target
Pattern matching for low level instructions
selection

Illustration
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Compiler Support : Compiler And Architecture Links

Links between application and architecture
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Links between application and architecture
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Compiler Support : Compiler And Architecture Links

Links between application and architecture
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Compilette principle : “Working Example”

Control flow in application
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Compilette principle : “Working Example”

Control flow in application with dynamic adaptation
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List of Code Generation Scenarios

Compilation scenarios
(a) Static compilation
(b) Dynamic adaptation

1 Program initalization
2 Kernel initialization
3 Application controlled
4 Heterogeneous architecture

(multi-isa support)

Target list
RISCV (Embedded system)
CSRAM (Embedded system)
POWER 8 (HPC computer)
AARCH64 (both)
Others (both)

All following scenarios examples works
on all platforms

Illustration
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Compiler Support : HybroLang DSL description

Specific features
C like syntax
Variable are hardware registers
Mix run time data values and binary code

#( C expression ) include C expression
Datype triplet
arithmetic wordlen vectorlen

int 32 1 scalar int
flt 32 2 vector of 2 floats
flt 32 #(vlen) vlen vector of floats
flt #(wlen) 4 vector of 2 floats of size wlen

“Multi-time” Code Generation
Static time : Generate binary code generator

Included into compilation chain, remplace a part
of the C code

Run-time : Generate binary code
Faster than any JIT
Small code generator able to fit on embedded
platforms
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HybroGen : Simple-Add-Source

Simple Addition with specialization

typedef int (* pifi )( int );

h2_insn_t * genAdd ( h2_insn_t * ptr , int b)
{

#[
int 32 1 add (int 32 1 a)
{

int 32 1 r;
r = #(b) + a; // b values will be included in code generation
return r;

}
]#
return ( h2_insn_t *) ptr;

}
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Examples : CSRAM (Computational SRAM)

Architecture Programmer view
Single program flow
Non Von Neumann model : CPU send
instructions to CSRAM
DSL approach, which express

Heterogeneous computation (DONE)
Memory hierarchy (ONGOING)

Software support
HygroLang compiler
https://github.com/CEA-LIST/HybroGen

Functionnal emulator (based on QEMU): https:
//github.com/CEA-LIST/csram-qemu-plugin
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Inverted Von Neumann Programming Model

Choosen Programming model

Why ?
Allows scalability :

Any vector size
Any tile number
Any system configuration : near or far IMC

Works with any processor
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Programming Model : Image Diff

Mini code Example : HybroLang code example

pifiii genSubImages ( h2_insn_t * ptr ){
#[

int 32 1 subImage (int [] 16 8 a, int [] 16 8 b, int [] 16 8 res , int 32 1 len)
{

int 32 1 i; // int 32 1 = RISC -V register
// int [] 16 8 = array of C-SRAM lines
for (i = 0; i < len; i = i + 1) // Control done on RISC -V

{
res[i] = a[i] - b[i]; // Workload done on C-SRAM

}
}

return 0;
]#

return ( pifiii ) ptr ;}

Compiler support
Dynamic interleaving
Instruction generator generator notion
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HybroGen : ImageDiff-Run

CxRAM Usage
Compute image difference
Iterate on image lines (RISCV)
Use difference operators / 16 pixels wide
(CxRAM)

Dataset
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CxRAM-Status : Circuit

Chip design evolution
1 chip built, characterized : CSRAM part only,
(photo)
Result published : “A 35.6TOPS/W/mm2
3-Stage Pipelined Computational SRAM with
Adjustable Form Factor for Highly Data-Centric
Applications” 2020
1 chip built, under testing / characterization :
CSRAM + RISCV
Ongoing work on new instruction set variants

IMPACT circuit (2019)

RISCV and CSRAM under testing (2023)
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Conclusion : Conclusion

Architecture point of view
Application ? Future is not only based on deep
learning !
Parallelism type
Memory layout is a key !

DRAM interleacing
Data locallity / aligment

Tools for collaborations
DSL / Compiler :
https://github.com/CEA-LIST/HybroGen

Emulator, based on QEMU : https:
//github.com/CEA-LIST/csram-qemu-plugin

HybroGen Roadmap
Include data value based run-time optimization
(Already started)
Include explicit data movement for sparse
accelerators
Include variable precision floating point number
Include system level PIM capabilities
more to come on the road
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