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Are We Ready for Real-Time LiDAR Semantic Segmentation in
Autonomous Driving?

Samir Abou Haidar1,2, Alexandre Chariot1, Mehdi Darouich1, Cyril Joly2 and Jean-Emmanuel Deschaud2

Abstract— Within a perception framework for autonomous
mobile and robotic systems, semantic analysis of 3D point
clouds typically generated by LiDARs is key to numerous
applications, such as object detection and recognition, and scene
reconstruction. Scene semantic segmentation can be achieved by
directly integrating 3D spatial data with specialized deep neural
networks. Although this type of data provides rich geometric
information regarding the surrounding environment, it also
presents numerous challenges: its unstructured and sparse
nature, its unpredictable size, and its demanding computational
requirements. These characteristics hinder the real-time seman-
tic analysis, particularly on resource-constrained hardware ar-
chitectures that constitute the main computational components
of numerous robotic applications. Therefore, in this paper, we
investigate various 3D semantic segmentation methodologies
and analyze their performance and capabilities for resource-
constrained inference on embedded NVIDIA Jetson platforms.
We evaluate them for a fair comparison through a standardized
training protocol and data augmentations, providing bench-
mark results on the Jetson AGX Orin and AGX Xavier series for
two large-scale outdoor datasets: SemanticKITTI and nuScenes.

I. INTRODUCTION
Autonomous mobile systems, including self-driving ve-

hicles and mobile robots, are required to independently
navigate in their environments. A fundamental prior step
for autonomous maneuvering is to fully understand the
surroundings and, more precisely, to analyze the semantics
of the scenes. Such systems usually perceive the environment
in the form of 3D point clouds that are generally obtained
using LiDAR sensors. Hence, semantic segmentation has
paramount importance in perception algorithms in terms of
assigning each point of the 3D point cloud with a label
corresponding to its class category (e.g., pedestrian, car,
roads), and, therefore, providing fine-grained details of the
surroundings. Presently, semantic segmentation is predomi-
nantly tackled using deep neural networks including [1]–[6],
and serve as the foundational structures for other various
3D processes, such as 3D detection, thereby making it
an integral component of perception algorithms and the
center of our focus. Although very rich in information,
3D point sets present by nature several challenges, such
as an unstructured format, sparsity (presence of gaps and
empty regions leading to incomplete scans), and size and
complexity (contain a significant number of points). These
characteristics make processing and understanding 3D point
clouds computationally expensive, and rather challenging for
real-time applications.
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Fig. 1: With a 20Hz acquisition sensor on nuScenes, only
SalsaNext can be executed in real-time on RTX4090 and
Jetson AGX Orin. Yet, its mIoU falls behind the other models
which are far from real-time execution on Jetson platforms.

As safety is a top priority for autonomous mobile sys-
tems, it is required that 3D perception modules achieve
high semantic segmentation accuracy and low latency at
the same time, as such systems require real-time decision
makings. However, hardware and computation resources in
many robotic applications are constrained by the system
form factor, power consumption, and heat dissipation, which
makes it challenging for complex, and highly resource-
dependent 3D semantic segmentation neural networks.

Further, hardware acceleration of embedded computing
platforms has played a vital role in revolutionizing deep
learning into practice. For example, NVIDIA Jetson plat-
forms provide a recognized performance for running neu-
ral networks for applications that involve image classifi-
cation, and object detection, while being energy efficient,
lightweight, and compact. Such systems can be easily inte-
grated in mobile autonomous and robotic systems provided
that they can achieve good performance in real-time. A
few previous studies have employed Jetson platforms for
semantic segmentation on the AGX Xavier [7]. Furthermore,
existing benchmarks primarily address point cloud classifi-
cation [8], object detection [9], or image semantic segmen-
tation [10]. Therefore, we provide in this work a benchmark
of 3D point cloud semantic segmentation networks on the
Jetson AGX Orin and AGX Xavier on large-scale outdoor
datasets: SemanticKITTI [11] and nuScenes [12].

To ensure a fair benchmark, we develop a framework
for neural networks on point clouds designed for high-end
and embedded GPUs. In this framework, we reproduce all
the networks and align their training protocols and data
augmentations by adopting best practices from [1], [13],



[14]. The framework is also tailored for seamless deployment
on Jetson platforms, making it suitable for practical use
cases. This paper primarily focuses on the benchmark results
achieved through it, however, it will be released in the future.

II. RELATED WORK

A. 3D Semantic Segmentation Methods

3D semantic scene labeling is vital for mobile autonomous
and robotic systems. It involves classifying raw 3D points
obtained from the system’s sensors to provide fine-grained
scene semantics. Related methods are usually divided into:

Projection-based methods. These methods are built on
top of the image segmentation field (with a focus on CNN
architectures used to segment RGB images) and target 3D
point clouds acquired by rotating LiDARs. They project
points onto different views for the purpose of working
entirely on 2D feature maps [4], [15], [16].

Point-based methods. Such approaches focus on directly
processing points [1], [6], [13] instead of projecting onto in-
termediate representations. They are effective for dense input
point clouds, but fall behind other methods for sparse outdoor
ones, apart from [1] that reveals impressive capabilities in
predicting sparse outdoor points. Recently, there have been
a shift towards transformer-based architectures [17], [18].

Sparse convolution-based methods. Various works ex-
ploit the sparsity in point clouds to perform sparse convo-
lutions that discard entirely empty point cloud regions in
the computation, thereby reducing memory consumption and
computational expenses [2], [19], [20] while preserving the
effectiveness of output predictions.

Fusion-based methods. To improve semantic segmenta-
tion, such methods either combine the advantages of different
point representations and views from a single input (3D
LiDAR data) [3], [14] or fuse different inputs from different
sensors (camera and LiDAR) [21], and benefit from their
different advantages.

B. Embedded 3D Applications on Jetson Platforms

Some works target 3D point cloud applications on em-
bedded Jetson devices. For instance, [8] benchmarks Jetson
platforms, including Nano, TX1, and AGX Xavier, for 3D
point cloud classification, but only examines PointNet [6]
architecture on ModelNet-40, a 3D object-based synthetic
and small dataset. Similarly, [9] analyzes deep learning-based
3D object detectors on Jetson platforms (AGX Xavier and
Nano) by evaluating different YOLO versions. Additionally,
[22] presented a lightweight system for real-time 3D object
detection and tracking and evaluated it on the Jetson Orin
Nano. Thus, the implementation of various state-of-the-art
3D semantic segmentation methods on embedded computing
platforms has remained a challenge, and thus the primary
focus of our work. We target two Jetson platforms, AGX
Orin and AGX Xavier presented in Table I, as they provide
a balanced compromise between performance, efficiency,
and cost, with varying levels of performance, memory, and
power, making them suitable for benchmarking.

TABLE I: The targeted Jetson platforms specifications.

Version Jetson AGX Orin Jetson AGX Xavier
Performance 275 TOPS 32 TOPS

GPU
2048-core NVIDIA

Ampere architecture GPU
with 64 Tensor Cores

512-core NVIDIA
Volta architecture GPU
with 64 Tensor Cores

CPU
12-core Arm®

Cortex®-A78AE v8.2 64-bit
CPU 3MB L2 + 6MB L3

8-core NVIDIA Carmel
Arm®v8.2 64-bit CPU

8MB L2 + 4MB L3
Memory 64 GB 32 - 64 GB
Power 15W - 60W 10W - 30W

III. BENCHMARK SETUP
A. Datasets

We focus on the semantic segmentation task for real-
time applications—that is mobile autonomous and robotic
systems; thus, we target two large-scale datasets to study
outdoor semantic segmentation on SemanticKITTI [11] and
nuScenes [12] for the challenging perception application of
autonomous vehicles in real-time. The point cloud acqui-
sition sensors for those outdoor datasets are two different
LiDAR scanners that provide different point cloud character-
istics in terms of density/sparsity and total number of points.

B. Selected 3D Neural Networks

From each category presented in Section II-A we select a
method and create a lighter variant from its baseline model
for performance gains on embedded systems, and assess both
models’ performance on resource-constrained platforms:

From the projection-based methods, SalsaNext [4] pro-
vides a good trade-off between segmentation accuracy and
runtime when compared to other methods from this category;
it is developed based on the LiDAR range view image
obtained from the spherical projection [15], which is the
baseline of all projection-based methods.

We also consider WaffleIron [1] from the point-based
methods, a recent backbone that solely relies on dense 2D
convolutions and generic MLPs, making it less complicated
in terms of design choices than numerous other methods. It
also proved to be among the best performing in this category
on SemanticKITTI [11] and nuScenes [12]. Therefore, it is
worth investigating on embedded systems.

From the sparse convolution-based methods,
Minkowski [2] proposed the most generalized high-
dimensional sparse tensor computations that leverage the
sparsity in point clouds to lower memory consumption and
accelerate inference, while considering 3D convolutions
instead of 2D ones that suffer from loss in geometry and
topology. Other methods build on top of Minkowski [3], [19],
thereby making it suitable for benchmarking. For example,
SPVConv [3] incorporated the sparse 3D convolution with a
point-wise MLP to subsequently fuse the extracted features
from both levels together, to better classify small instances
and increase the overall accuracy. This fusion-based method
is also investigated.

C. Experimental Setup

We first train the models on NVIDIA GeForce RTX4090,
and then only test their inference on the embedded systems.



For WaffleIron [1], the model is denoted as WI-L-F , with
L being the total number of layers and F the dimension
of point tokens generated from the embedding layer. This
embedding layer takes as input the low-level readily available
features at each point—e.g, LiDAR intensity, height and
range—and uses k = 16 neighbors to merge global and
local information around them to finally provide a point
cloud with an F -dimensional token associated with each
point. The obtained tokens will be updated L times by a
series of token-mixing and channel-mixing (a shared MLP
across each point) layers, with the core components of the
token-mixing part being a 2D projection along a main axis,
a features discretization on a 2D grid, and a feed-forward
network established with 2D dense convolutions. We adopt
the following configurations: (x, y) projection at all layers on
a 2D grid of cell size ρ = 40 cm for SemanticKITTI , and
a baseline sequence of (x, y), (x, z), and (y, z) projection
at layer l = 1, l = 2, and l = 3, respectively, repeated
until reaching l = L on a 2D grid of cell size ρ = 60 cm
for nuScenes. We assess the performance of two models of
WaffleIron, namely WI-48-256 and WI-12-128.

With regard to Minkowski [2], we use MinkowskiUNet42
(MinkNet), a widely recognized architecture and promi-
nently referred to in [1], [3], [19], [20] for 3D semantic
segmentation. We specify the dimensions of the stem, en-
coder, and decoder channels to 32, [32, 64, 128, 256], and
[256, 128, 96, 96], respectively. We set the voxel size to
5 cm on all datasets. Similarly, SPVCNN [3] is built upon
MinkowskiUNet42, by wrapping its residual sparse convo-
lution blocks with a high-resolution point-based branch. We
train two models of each network, with the second model
obtained by pruning 50% of all input and output channels of
the 3D sparse convolutions at every layer, that is respectively
MinkNet 0.5× and SPVCNN 0.5×.

As for SalsaNext [4] (SN), it first applies a spherical
projection of the point cloud by converting each point pi =
(x, y, z) via a mapping R3 → R2 to spherical coordinates,
and then to image coordinates, thereby generating a LiDAR’s
native range view image, with specified desired height and
width (h,w) of the image representation. Following [4] when
performing the projection, we store the 3D point coordinates
(x, y, z), the intensity value (i), and the range (r) as distinct
image channels. This results in an image with dimensions
[w×h×5], which is then fed to the same network originally
designed in [4]. We train this network with two variants of
the image size [2048 × 64 × 5] and [1024 × 64 × 5] on
SemanticKITTI, and [2048× 32× 5] and [1024× 32× 5] on
nuScenes, according to their corresponding sensor’s FoV.

D. Training Protocol

All models are reproduced and retrained through our
framework on a single NVIDIA GeForce RTX4090 GPU
with 24 GB of memory using AdamW optimizer for 45
epochs on SemanticKITTI [11] and nuScenes [12], with a
weight decay of 0.003, and a batch size of 3 (due to GPU
memory capacity). For the learning rate, we use a scheduler
with a linear warmup phase from 0 to 0.001 along the first 4

epochs and then a cosine annealing phase is used to decrease
it to 10−5 at the end of the last epoch. The objective loss
function used is a sum of the cross-entropy and the Lovász
loss. To prevent overfitting, we implement classical point
cloud augmentations: random rotation around the z-axis, ran-
dom flip of the direction of the x-axis and y-axis, and random
re-scaling. Following [1], [14], [21], we implement instance
cutmix on SemanticKITTI [11], specifically targeting rare-
class objects in order to enhance segmentation performance
on this dataset. The approach involves extracting instances
from the following classes: bicycle, motorcycle, person, bicy-
clist, and other vehicles. During training, we randomly select
up to 40 instances from each of the selected classes and apply
various random transformations, including rotation around
the z-axis, flipping along the x or y axes, and random re-
scaling for each instance. These instances are then placed at
random locations on roads, in parking areas, or on sidewalks.

E. Evaluation Metrics

To qualitatively evaluate the accuracy of the methods in
semantic predictions on different datasets, we use the mean
Intersection-over-Union (mIoU) over all evaluation classes.

In addition, we assess the performance of these methods
on the Jetson platforms by profiling them on the same group
of scans from each dataset and report their pre-processing
and post-processing times, their model inference time, and
their RAM and GPU memory consumption on different
power modes. We report the results on the MAXN power
mode (representing the limits of each Jetson platform without
any power budget) in Section IV. We omit the recordings on
the very first scan to allow for GPU warm-up and prevent
initial overheads on the CPU. We also evaluate each model’s
complexity in terms of the total number of parameters and the
mean of multiply-accumulate operations (MACs) and study
their effects on the overall performance. We also examine the
actual power consumption on the Jetson platforms by using
the tegrastats utility, a powerful tool that provides statistics
for Tegra-based devices. We measure the GPU and CPU
power usage and report the total consumption as their sum.

IV. BENCHMARK RESULTS AND DISCUSSIONS

A. General Overview

Table II reveals that largely reducing the complexity in
terms of #Params and #MACs yields lighter models without
substantial sacrifices in prediction accuracy (mIoU). Yet, this
only reduces the Inference time and has no influence on the
Pre-Processing phase. However, the amount of reduction is
not always correlated, as a 90% decrease in both #Params and
#MACs from WI-48-256 to WI-12-128 results in a decrease
of 85%–86% in Inference time on SemanticKITTI, and 70%–
83% on nuScenes across the different computing architec-
tures as depicted in Table III. Yet, a 75% decrease in #Params
and #MACs from MinkNet to MinkNet 0.5× only results in
a decrease of 2% in Inference time on the RTX4090, 22.9%
on AGX Orin, and 37.9% on AGX Xavier on SemanticKITTI
and less than 8% on nuScenes for all hardware architectures.
A similar trend is also observed when reducing SPVCNN to



TABLE II: Models’ complexity evaluated over 1000 scans from the validation set of SemanticKITTI and nuScenes using a
batch size of 1. *Values are directly obtained from [3].

Dataset SemanticKITTI [11] nuScenes [12]
#Points/Scan (Mean ± Std Dev) (90,465 ± 6,306) (22,180 ± 2,090)

Model Year Category #Params (M) #MACs (G) mIoU #MACs (G) mIoU

MinkNet [2]
2019 Sparse Conv-based

21.7 113.9* 64.3 22.2* 73.5
MinkNet 0.5× [2] 5.4 28.5 63.2 5.5 71.2

SN h×2048 [4]
2020 Projection-based

6.7 62.8 55.9 31.4 68.2
SN h×1024 [4] 6.7 31.4 54.4 15.7 69.2

SPVCNN [3]
2020 Fusion-based

21.8 118.6* 65.3 23.1* 72.6
SPVCNN 0.5× [3] 5.5 30 63.4 5.8 69.6

WI-48-256 [1]
2023 Point-based

6.8 457.1 65.8 122.4 76.1
WI-12-128 [1] 0.5 43.6 63.6 11.6 74.1

SPVCNN 0.5×. As for SalsaNext, a 50% #MACs reduction
from SN 64×2048 to SN 64×1024 results in almost a 50%
decrease in Inference time, particularly for SemanticKITTI,
but it is less significant for nuScenes.

Examining Fig. 1, Fig. 2 and Table III reveals that none
of the evaluated models yield satisfactory outcomes in terms
of total runtime on the embedded Jetson platforms apart
from SalsaNext that can run in or near real-time on the
AGX Orin and is the closest to achieving real-time execution
on the AGX Xavier; hence, it is the most efficient in
terms of semantic segmentation on the considered computing
architectures in comparison to WaffleIron, Minkowski, and
SPVCNN. However, SalsaNext falls behind all other methods
in terms of segmentation accuracy on both datasets.

In terms of power consumption, an analysis from Ta-
ble III indicates that the GPU consistently draws more
power than the CPU across all models on Jetson platforms.
Notably, sparse convolutions in Minkowski and SPVCNN
demonstrate increased efficiency, particularly on AGX Orin,
thereby showcasing its high performance for sparse models
due to its sparsity optimized Tensor cores. Additionally,
reducing model complexity in #Params and #MACs leads to
an overall decrease in power consumption, which is primarily
attributed to mitigated GPU power draw. With no power
budget (MAXN), both Jetson platforms never reach their
maximal theoretical power, as indicated in Table I.

B. Pre-Processing Time

The Pre-Processing phase includes all prerequisite CPU
processes to prepare each input scan for network inference
on the GPU. It also encompasses Post-Processing; but, since
the latter is less significant, we adopt the Pre-Processing
naming convention. Numerous works including [1], [11],
[23], assess the runtime of a neural network by only con-
sidering its Inference time. For example, [23] ignores the
time needed in the initial voxelization step and the final
step of projecting voxel predictions back to the initial point
cloud. Similarly, [1] compares several backbones, including
WaffleIron, Minkowski, and SPVCNN in terms of Inference
time only and demonstrates that WaffleIron is comparable
to the other backbones on nuScenes and is slightly slower
(×1.7) than Minkowski on SemanticKITTI. Contrary to this,

we showcase, in addition to the Inference time, the impor-
tance of the Pre-Processing time. Table III depicts that the
Pre-Processing time of WaffleIron has a greater significance
than all other models on every dataset. For instance, it
is evaluated to be ×10.5, ×8.4, ×7.6 more than that of
Minkowski in the RTX4090, AGX Orin, and AGX Xavier
on SemanticKITTI respectively; a similar trend is observed
on nuScenes. Furthermore, it is observed that for WI-12-
128, the Pre-Processing time surpasses the Inference time
across every considered computing architecture and dataset.
Additionally, SalsaNext’s Pre-Processing duration constitutes
a substantial portion, ranging from 35% to 83% of its overall
runtime. Consequently, the significance of Pre-Processing
time is notable, as it largely contributes to the Total Runtime
and is crucial when assessing a model’s real-time execution.

Given that the Pre-Processing phase is mainly carried out
on the CPU, whereas the Inference occurs on the GPU, there
exists an opportunity to mitigate the overall system latency
through a pipeline approach, by overlapping input data Pre-
Processing and Inference computations, which can enhance
the system efficiency and potentially reduce the time required
for completing the entire computational workflow.

C. Model-specific Analysis

Minkowski and SPVCNN. Both pre-process input data
similarly, by applying a GPU sparse tensor quantization
that generates sparse tensors and converts the input into
unique hash keys and associated features. This proves to
be the fastest Pre-Processing in Table III. Further, MinkNet
Inference time on a single validation scan of SemanticKITTI
takes on average 166 ms and 266 ms on the AGX Orin and
AGX Xavier, respectively. As for SPVCNN, the added point-
wise MLP has an added overhead on the Inference of 43
ms and 63 ms on the Jetson platforms, respectively, which
is a non-satisfactory trade-off with the overall accuracy
gain of 1 mIoU on SemanticKITTI. Moreover, Minkowski
achieves better accuracy than SPVCNN on nuScenes with
faster Inference across all platforms. As illustrated in Fig. 1,
and Fig. 2, both models remain far from real-time execution
on embedded systems. Pruning 50% channels for each sparse
convolution layer leads to a 75% reduction in #Params and
#MACs (Table II), but only slightly improves Inference time



TABLE III: Performance metrics evaluated over 1000 scans from the SemanticKITTI and nuScenes validation sets using a
batch size of 1. Mean Total Runtime values are presented with a standard deviation not exceeding 10%. Peak GPU memory
is reported, with RAM usage not exceeding 45 MB on SemanticKITTI and 25 MB on nuScenes for all models.

mIoU Total Runtime (Pre-Processing + Inference) (ms) GPU Memory (MB) Total Power (CPU + GPU) (W)
% RTX4090 Orin MAXN Xavier MAXN RTX Orin Xavier Orin MAXN Xavier MAXN

Se
m

an
tic

K
IT

T
I

Va
lid

at
io

n
[1

1]

MinkNet [2] 64.3 71 ( 22 + 49) 211 ( 45 + 166) 332 ( 66 + 266) 467 542 542 20.2 (2.6 +17.6) 18.8 (2.5 +16.3)
MinkNet 0.5× [2] 63.2 70 ( 22 + 48) 171 ( 43 + 128) 223 ( 58 + 165) 194 266 266 16.6 (2.8 +13.8) 15.8 (2.9 +12.9)
SN 64×2048 [4] 55.9 36 ( 28 + 8) 109 ( 58 + 51) 218 ( 87 + 131) 498 471 365 20.6 (3.4 +17.2) 19.7 (3.0 +16.7)
SN 64×1024 [4] 54.4 30 ( 25 + 5) 84 ( 58 + 26) 147 ( 80 + 67) 331 320 198 17.1 (3.8 +13.3) 17.3 (3.8 +13.5)

SPVCNN [3] 65.3 85 ( 26 + 59) 252 ( 43 + 209) 389 ( 60 + 329) 585 657 657 20.2 (2.5 +17.7) 18.2 (2.2 +16.0)
SPVCNN 0.5× [3] 63.4 77 ( 21 + 56) 203 ( 43 + 160) 276 ( 61 + 215) 270 343 343 17.1 (2.8 +14.3) 16.1 (2.7 +13.4)

WI-48-256 [1] 65.8 370 (232 +138) 1,847 (381 +1,466) 3,010 (505 +2,505) 1,276 2,384 2,378 20.7 (1.5 +19.2) 15.1 (1.3 +13.8)
WI-12-128 [1] 63.6 251 (231 + 20) 565 (358 + 207) 840 (508 + 332) 629 1,186 1,178 14.1 (2.3 +11.8) 11.9 (2.3 + 9.6)

nu
Sc

en
es

Va
lid

at
io

n
[1

2]

MinkNet [2] 73.5 47 ( 8 + 39) 146 ( 22 + 124) 135 ( 34 + 101) 322 351 351 10.6 (2.8 + 7.8) 13.8 (3.2 +10.6)
MinkNet 0.5× [2] 71.2 47 ( 8 + 39) 142 ( 23 + 119) 126 ( 33 + 93) 101 128 128 7.4 (2.8 + 4.6) 9.6 (3.2 + 6.4)
SN 32×2048 [4] 68.2 13 ( 8 + 5) 50 ( 23 + 27) 111 ( 41 + 70) 329 317 196 21.7 (3.4 +18.3) 21.1 (3.2 +17.9)
SN 32×1024 [4] 69.2 13 ( 8 + 5) 48 ( 26 + 22) 74 ( 36 + 38) 180 240 113 17.5 (3.2 +14.3) 17.6 (3.5 +14.1)

SPVCNN [3] 72.6 57 ( 8 + 49) 169 ( 22 + 147) 172 ( 31 + 141) 356 383 383 12.4 (2.7 + 9.7) 13.3 (3.0 +10.3)
SPVCNN 0.5× [3] 69.6 58 ( 8 + 50) 169 ( 23 + 146) 157 ( 33 + 124) 122 149 149 10.3 (2.8 + 7.5) 10.0 (3.0 + 7.0)

WI-48-256 [1] 76.1 111 ( 64 + 47) 527 (114 + 413) 820 (157 + 663) 426 750 747 19.9 (2.1 +17.8) 16.2 (1.8 +14.4)
WI-12-128 [1] 74.1 73 ( 59 + 14) 181 ( 99 + 82) 264 (157 + 107) 186 349 349 12.9 (2.8 +10.1) 11.4 (2.9 + 8.5)

while significantly decreasing the mIoU. One approach to
accelerate Inference is by reducing the total number of con-
volution layers, though this lowers the network’s potential for
accurate predictions. To counteract accuracy loss, substantial
design modifications are needed for sparse convolutions and
the network overall, including adjustments to kernel size and
shape, voxels resolution, and channels dimension.

SalsaNext. This method achieves the fastest Inference
time, as shown in Fig. 1 and Fig. 2, with acceptable peak
GPU memory consumption but high power consumption
(see Table III). Projecting the 3D point cloud to a LiDAR
image requires significantly more CPU power than data Pre-
Processing in other methods. Reducing the projection image
width decreases total #MACs (see Table II) and accelerates
Inference time by about 50% on SemanticKITTI, but results
in a 1.5% decrease in mIoU. Conversely, smaller LiDAR
image sizes benefit nuScenes due to fewer points per scan.
However, SalsaNext often shows lower mIoU accuracy due
to the loss of 3D spatial features in projection. Additionally,
back-projecting to the original point cloud resolution using
K-nearest neighbors in Post-Processing leads to incorrect
class predictions for several neighboring points. Despite
being closest to real-time execution on embedded systems,
SalsaNext’s efficiency is accompanied by a reduced accuracy.

WaffleIron. Table III shows that WaffleIron mod-
els demonstrate strong qualitative performance on Se-
manticKITTI and nuScenes but have the highest total runtime
across all computing platforms and datasets. As illustrated in
Fig. 1, and Fig. 2, WaffleIron is significantly far from real-
time execution compared to other methods. Moreorver, it has
the highest peak GPU memory usage, particularly for WI-
48-256, but remains tolerated. Furthermore, WI-48-256 ranks
among the highest in power consumption on the AGX Orin,
especially for the GPU part. To reduce runtime and power
consumption, we implement WI-12-128, which achieves over
a 90% reduction in #Params and #MACs (see Table II) with
only a moderate drop in mIoU. Consequently, WI-12-128
offers faster Inference time, lower total power consumption,
and less than half the GPU memory consumption. How-
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MinkUNet42

SPVCNN_0.5x
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SalsaNext64x2048

SalsaNext64x1024

Fig. 2: mIoU vs. runtime SemanticKITTI (10Hz input sensor)

ever, its Pre-Processing time remains significant, primarily
dependent on the number of points per scan. The main
components of WaffleIron Pre-Processing that accumulate in
time are obtaining the index of corresponding 2D cell for
each point on the projected grid and the nearest neighbors
search, including constructing a kd-tree and querying neigh-
bors essential for the embedding layer, and for subsequent
upsampling. To accelerate Pre-Processing, parallelizing these
tasks on available CPU workers and finding alternatives
to neighborhood searches for point token generation are
potential solutions. Further improvements to the backbone
design are necessary to reduce the Inference time; otherwise,
WaffleIron cannot be embedded with real-time consideration.

We extend our investigation in point-based methods to
study a recent transformer-based architecture PTv3 [18].
It uses serialized neighbor mapping instead of KNN for
receptive field expansion and improves processing speed by
3× from PTv2 [17]. In Table IV, we compare it to WI-48-
256 on nuScenes, and it shows higher accuracy, comparable
Inference, but 3× higher Pre-Processing time. Pruning 50%
channels of its attention layers, PTv3 0.5× results in a
slightly lower runtime but maintains a 2.5× higher Pre-
Processing than WI-48-256 due to point cloud serialization.
This implies that PTv3 struggles for real-time execution, and
therefore is not investigated on Jetson embedded systems.



TABLE IV: PTv3 performance on NVIDIA RTX4090 GPU.
Point-based (nuScenes) Complexity Runtime

Methods mIoU Params MACs Pre-Proc Inference

WI-48-256 [1] 76.1 6.8M 122.4G 64 ms 47 ms

PTv3 [18] 78.5 15.3M 96.9G 198 ms 43 ms
PTv3 0.5× [18] 77.5 3.9M 24.3G 166 ms 35 ms

V. CONCLUSIONS

In this work, we benchmark various 3D neural networks
for outdoor semantic segmentation on Jetson embedded
platforms. Our assessment involves analysis on various per-
formance metrics, and the findings indicate the need of sub-
stantial adjustments in network designs to target embedded
systems. Our contribution lies in the critical evaluation of
various methodologies, drawing attention to the inherent
impracticalities. Given that a majority of robots and au-
tonomous vehicles rely on embedded platforms as their core
systems, it is noteworthy that prevailing methodologies in
3D perception are not predominantly tailored for deployment
on such platforms. Our analysis exposes the limitations of
these methodologies, pinpointing bottlenecks and advocating
for substantial redesigns. Notably, we underscore the signifi-
cance of Pre-Processing time, an aspect often overlooked by
existing methods, highlighting its potential to be more critical
than the Inference time itself. Particularly, our findings on
point-based methods reveal a lack in their real-time capa-
bility even on powerful hardware, mainly due to heavy Pre-
Processing. Sparse convolution-based demonstrate real-time
performance on high-end GPUs but not on embedded sys-
tems. Projection-based methods prove to be the most efficient
on embedded systems but at the cost of lower segmentation
accuracy. Thus, real-time and embedded LiDAR semantic
segmentation remains a challenge for autonomous systems.
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