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Abstract
A general phenomenon that the edge localized modes (ELMs) can be effectively mitigated
with the enhanced coherent modes (CMs) has been observed on EAST. For this phenomenon,
the experimental statistical analysis and electromagnetic (EM) simulations have been
performed. There is a threshold value of the CM intensity in the experiments, which plays a
key role in ELMs mitigation. Through the ELITE and conventional BOUT++ analysis, we
found that when the insignificant ELM and enhanced CM co-exist, the pedestal is located in
unstable P–B region and the ELM is relatively large. The simulation results only using the
experimental profiles without considering other factors cannot reproduce the no significant
ELM experiment. The CM enhances the edge turbulence, which can control ELMs. Therefore,
the effects of CM are considered to explain the ELM mitigation. Modifying the three-field
reduced model in BOUT++, an imposed perturbation is added as the CM. The simulation
results indicate that: without the CM, the ELM size belongs to the relative large ELM region;
after considering the CM, the ELM is mitigated and the energy loss is reduced by about
44.5%. Analysis shows that the CM enhances the three-wave nonlinear interactions in the
pedestal and reduces the phase coherence time (PCT) between the pressure and potential,
which lead the perturbation to tend to be ‘multiple-mode’ coupling. The competition of free
energy between the multiple modes leads to the lack of obvious filament structures and the
decreased energy loss. The above reveals that there is a competitive relationship between
turbulence and ELMs, and the CM-enhanced turbulence can effectively reduce ELM energy
loss. In addition, through the parameter scanning, there is a threshold of the amplitude A,
which is consistent with the statistical results in the experiments.

Keywords: ELM mitigation, nonlinear interaction, phase coherence time (PCT), coherent
mode (CM)
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1. Introduction

Since the first discovery of the high-confinement regime
(H-mode) in 1982 [1], ELMs have been a hot topic for the
study of fusion energy. The H-mode has the characteristics of
higher temperature and density at the core of the plasma, while
forming an edge transport barrier at the boundary [2]. This
results in the steep pressure gradients and large bootstrap cur-
rents in the pedestal, which drives the instabilities of the peel-
ing–ballooning (P–B) mode and cause the ELMs burst [3–5].
The ELM quasi-periodic bursts generate a large amount of heat
and particles pulsing out of the last closed flux surface (LCFS)
and into the scrape-off layer (SOL). The impulsive heat flux
can cause the erosion and damage of the plasma-facing compo-
nents (PFCs), especially the divertor target plates. Therefore,
understanding the physics of edge turbulence and controlling
the ELMs are very important issues.

Nowadays, many effective techniques have been developed
to mitigate ELMs, such as resonance magnetic perturbations
(RMPs) [6, 7], low-hybrid waves (LHWs) heating [8–10], pel-
let injection [11], supersonic molecular beam injection (SMBI)
[12] and so on. The main idea of these control methods is to
produce some disturbances at the boundary of plasma, such as
magnetic field, density, etc. In particular, there are two possi-
ble mechanisms of LHW ELM mitigation proposed by EAST
and HL-2A. The experiment in EAST reveals that the ELM
mitigation is the result of the changing edge magnetic topol-
ogy, induced by helical current filaments (HCFs) in SOL due
to LHWs, just like RMPs [8, 13]. In HL-2A, the ELM mitiga-
tion is mainly caused by the enhanced CM or edge turbulence,
generated by LHWs inducing a reduced E × B velocity shear
rate in the pedestal [10]. In fact, the both phenomena are not
directly related to LHW, and the improving edge turbulence
plays a key role in the ELM mitigation.

The CMs have been discovered at the boundary of plasma in
tokamak devices [14]. When CM is present, it is often accom-
panied by the ELM mitigation and suppression. The edge
turbulence can be effectively enhanced by the CM [15–20],
which plays a key role in the reduction of ELMing energy
loss. There are many kinds of CMs, such as the quasi-coherent
mode (QCM) in C-Mod [21, 22] dominated by resistive bal-
looning mode (RBM) and drift-Alfven wave (DAW), the high-
frequency coherent (HFC) mode in DIII-D [23] driven by
kinetic ballooning mode (KBM), the edge harmonic oscillation
(EHO) in DIII-D [24] and JET [25] related to the edge pressure
or pressure gradient, the weakly coherent mode (WCM) in C-
Mod [26] and ASDEX Upgrade [27, 28] driven by a drift-wave
instability, etc.

Recently, we found a general phenomenon in EAST exper-
imental research: when the intensity of CM is strong enough,
the ELM can be effectively mitigated. This CM is mainly the
density fluctuation and driven by the pressure gradient [15].
Based on the experiment of EAST, this paper will analyze
the physical mechanisms of the ELM mitigation by the CM-
enhanced turbulence in EAST. The BOUT++ framework is a
good tool to study the tokamak edge plasma physics, which has
successfully simulated the ELM crash process [29–31]. Based
on this framework, the turbulence models containing the effect

of RMP [32], HCFs [13] and pellet injection [33] have been
well developed respectively, to explain the ELM mitigation.
Now, we extend the three-field two-fluid turbulence model of
BOUT++ by adding the CM perturbation to analyze the effects
of CM on ELM mitigation.

The organization of this paper is as follows. The exper-
iment phenomena, simulation setups and the ELM size are
introduced in section 2. The physics model and the construc-
tion of the CM are described in section 3. In section 4, the
impacts of the CM are simulated and analyzed. The under-
standing of the ELM mitigation mechanism by CM is also
discussed. In section 5, we discuss the effects of the CM
with different parameters, scanning the amplitude, phase and
toroidal spectrum. The last section is the summary.

2. Experimental phenomena and simulation setup

2.1. The experiment and analysis

The ELM mitigation accompanied by the CMs has already
been discovered in several tokamak devices. On EAST, the
existence of CM inside the pedestal region is a universal phe-
nomenon, with a wide range of plasma parameters and various
auxiliary heating methods [34]. The experiment that ELMs are
mitigated or even completely suppressed with the enhanced
CM has already been observed in EAST, just as shown in
figure 1. Shot #77741 is a H-mode discharge achieved by about
2 MW LHW and 1 MW ECRH heating. In the whole discharge
process, the basic parameters are changed little, including the
plasma current Ip ∼ 0.46 MA, stored energy W ∼ 155 kJ,
poloidal beta βp ∼ 1.2, safe factor q95 ∼ 5.9 and line-average
density ne ∼ 3.7 × 1019 m−3. Figure 1(d) gives a time trace
of the Dα signal, which can characterize the edge radiation
emission and the activity of the instabilities in the pedestal.
Figure 1(e) shows the spectrum of the density fluctuations in
the pedestal measured by the Doppler backscattering (DBS)
[35, 36]. There is a CM with frequency about 15–20 kHz.
Figure 1( f ) is the time trace of the CM and turbulence inten-
sity, which is obtained from the average of power spectral den-
sity (PSD) in different frequency ranges. It can be clearly seen
that the turbulence is enhanced by the enhancement of CM.
Figure 1(g) plots the evolution of ELM size and CM intensity
during the ELM mitigation and suppression, respectively. The
experimental ELM sizes are obtained from the magnetic per-
turbation signal [37–39], which can be used to estimate the
energy loss during ELM crash.

The CM is enhanced obviously after about 4.1 s due to
the changing heating, meanwhile the ELM is effectively sup-
pressed. As for this CM, analysis has showed that the appear-
ance of the CM is closely related to the pedestal electron
pressure, and suggests that the mode is a kind of pressure-
driven instability [15]. The CM could regulate the edge tur-
bulence, then the ELM was mitigated or even suppressed with
the CM-enhanced turbulence.

Figures 1(h)–(k) display the other two discharges, in which
the plasma parameters are similar to the shot #77741. The
spectrum of the CM for shot #77730 is shown in figure 1(h).
Figure 1(i) represents the time evolution of the ELM size and
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Figure 1. Time traces for the EAST H-mode discharges. Panels (a)–(g) is the parameters of shot #77741: (a) the plasma current Ip and
stored energy W; (b) the poloidal beta βp and edge safety factor q95; (c) the auxiliary heating power; (d) the Dα signal and line-averaged
density; (e) the density fluctuation spectrogram measured by DBS; ( f ) the intensity of the CM and the turbulence; (g) the ELM size and CM
intensity during 3.66 s–3.77 s and 4.66 s–4.79 s. The panel (h) is the density fluctuation spectrogram in shot #77730, and panel (i) gives the
ELM size and the CM intensity in shot #77730. (j) and (k) Are the same figures for shot #77743. Here, the ELM size is obtained from the
magnetic perturbation signal.

the CM intensity. It is clearly shown that the ELM is effectively
mitigated by the enhanced CM. Figures 1(j) and (k) are the
same plot for the shot #77743. The strong correlation between
the increase of fluctuation intensity and the ELM mitigation is
observed here from all these plasma discharges.

In order to obtain a clear relationship between the ELM size
and the CM intensity, the statistical analysis [16, 40] is per-
formed in the EAST experiments. The statistical results of the
discharges are shown in figure 2, and one symbol represents
one single ELM. It illustrates that there is a threshold value of
the CM intensity for ELM mitigation, only beyond which the
ELM can be mitigated. What’s more, the P–B mode pedestal
stability analysis with the ELITE code [41] has been shown
in figure 3. The calculation is based on the kinetic equilibrium
[42] of the shot #77741 at 5.1 s, when the enhanced CM and
ELM suppression co-exist. It indicates that the pedestal in the
ELM suppression region with the enhanced CM is located out-
side the P–B boundary (near the corner). Therefore, the sim-
ulation results only considering the experimental profiles are
not consistent with the insignificant ELM experiment. There
must be some other key factors missed, such as the interactions
between the CM and ELMs [14].

Figure 2. Statistical analysis of the EAST experiments for the
relation between the ELM size and the CM intensity.

2.2. Physics model and simulation setup

In this paper, the three-field two-fluid reduced MHD model are
used to simulate the P–B mode instability. This model includes
the physical effects of diamagnetic drift, E × B drift, resistiv-
ity, and hyper-resistivity. A set of equations which describe the
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Figure 3. Pedestal PBM stability diagram calculated with the
ELITE code. The color bar shows the PBM growth rate γ,
normalized to half of the ion diamagnetic drift frequency, ω∗i/2.

evolution of the perturbed variables, vorticity �̃, pressure p̃,
and parallel magnetic vector potential Ã||, are written as [29]

∂�̃

∂t
+ υE · ∇�̃ = B∇‖J‖ + 2

−→
b0 × κ0 · ∇p̃ (1)

∂ p̃
∂t

+ υE · ∇P = 0 (2)

∂Ã‖
∂t

= −∇‖Φ +
η

μ0
∇2

⊥Ã‖ −
ηH

μ0
∇4

⊥Ã‖ (3)

�̃ =
n0mi

B

(
∇2

⊥φ̃+
1

n0Zie
∇2

⊥ p̃i +
∇n0

n0
· ∇φ̃

)
(4)

J‖ = J‖0 −
1
μ0

∇2
⊥Ã‖, υE =

1
B0

(b0 ×∇⊥Φ). (5)

Where Φ is the electro-static potential, Φ = φ̃+Φ0, and
P = p̃+ P0. ∇‖F = B∂‖(F/B) for any F, ∂‖ = ∂0

‖ + b̃ ·∇,
∂0
‖ = b0 · ∇, b̃= B̃/B = ∂‖Ã‖ × b0/B. F0 represents the zero

order equilibrium quantity and F̃ represents the perturbation.
k0 = b0 · ∇b0 is the curvature vector. In the equation (4),
the second term on the right side represents the ion diamag-
netic effect, which embodies the ‘two-fluid’. A field-aligned
flux coordinate system (x, y, z) [43] is adopted in our simula-
tion, which is derived from the orthogonal toroidal coordinate
system (ψ, θ, ζ). The relationship between the two coordinate
systems is in equation (6). Here ν(ψ, θ) = B · �ζ/B · �θ =
Bζhθ/BθR is the local field-line pitch, and hθ = 1/|�θ| is the
scale factor for θ.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = ψ − ψ0,

y = θ,

z = ς −
∫ θ

θ0

ν (ψ, θ) dθ·

(6)

In order to investigate the effects of CM on the ELM mit-
igation, we also choose the kinetic equilibrium of the EAST
H-mode discharge #77741 at 5.1 s to analyze. This discharge
is the upper single null divertor configuration as shown in

figure 4. The area between the two black curves in figure 4(a)
is the simulation domain with both pedestal and SOL regions,
which ranges from the normalized poloidal flux ψ = 0.8 to
ψ = 1.05. The spatial resolution of the mesh is (Nx, Ny, Nz) =
(260, 64, 64). The red curve is the last closed flux surface
(LCFS), and the magenta line is the vacuum vessel of EAST
device. Figures 4(b)–(d) give the initial equilibrium profiles
(P0, n0, T i0, Te0) used in the simulation. No impurities are con-
sidered and the quasi-neutral condition is used, i.e. ni0 = ne0.
Boundary conditions are �̃ = 0, ∇2

⊥Ã‖ = 0, ∂ p̃/∂ψ = 0 and
∂φ̃/∂ψ = 0 on inner and outer boundaries, and there are no
additional sources in the whole simulation process. To improve
the efficiency of the calculation, only 1/5th of the torus is sim-
ulated [43]. In theory, the simulation results will not change
fundamentally if the simulation domain changes, such as using
1/2th or 1/3th of the tours. Resistivity, hyper-resistivity, and
parallel ion viscosity are chosen to be S = μ0R0VA/η = 108,
SH = μ0R0

3VA/ηH = 1014, and μi|| = 0.1ωAR2 for the typical
pedestal plasmas [29, 30, 44]. As for the equilibrium electric
field, the flow balance condition is used, Er0 = �Pi0/(n0Zie)
[29, 30, 45], with ion pressure Pi0 = P0/2.

2.3. Energy loss and parameter selection of the simulation

Based on the physics model and the simulation setups men-
tioned in the previous section, a series of simulation results
are presented. Figure 5(a) shows the dependence of the linear
growth rate on the toroidal mode number, including the ideal
P–B mode and diamagnetic drift. The positive growth rate
indicates that the pedestal is unstable, which is the same as the
result of the ELITE analysis in figure 3. The time evolution
of the perturbed pressure and ELM size of the nonlinear
simulation are plotted in figure 5(b). The perturbed pressure
is obtained at the peak pressure gradient region of the outer
mid-plane. The ELM size is the ratio of the ELM energy loss
to the pedestal stored energy [29, 44], according to dimensions
of integral, defined as Δ1D

ELM(t) = ΔW1D
ped/W1D

ped =
∫ Rout

Rin
(P0 −

P(t)ξ)dR/
∫ Rout

Rin
P0 dR and Δ3D

ELM(t) = ΔW3D
ped/W3D

ped =
∫ Rout

Rin
dR∮

J dθ dξ
(
P0 − P(t)ξ

)
/(PpedVplasma), respectively. Where,

Δ1D
ELM is the radial one-dimensional integral result at the

outer mid-plane and Δ3D
ELM is the three-dimensional full-

space integral result. The whole ELM crash process can be
divided into three stages [44] from the trace of ELM size: (1)
the linear growing phase of the P–B mode; (2) the ELM burst-
ing process and a buildup as a turbulence transport process;
(3) the nonlinear saturation phase. The ELM size eventually
reaches about Δ1D

ELM ∼ 2.88% in figure 5(b), which belongs
to the relative large ELM region. This result is inconsistent
with the experiment. In addition, the scanning results of the
resistivity, hyper-resistivity, and parallel ion viscosity are
shown in figure 6. Here, a dimensionless hyper-Lundquist
parameter is defined as αH = S/SH = ηH/(R0

2η), which can
characterize the hyper-resistivity. Due to the insensitivity
of the ELM size to the resistivity in today’s modestly sized
tokamaks and ITER [30], the values of these parameters are
all selected in the insensitive regions for our simulations (the
vertical dotted lines in figure 6). Using this set of typical
plasma pedestal parameters, the CM-induced ELM mitigation
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Figure 4. (a) EAST geometry and simulation domain: the red curve is the last closed flux surface, the black curves are the inner and outer
boundaries, the 64 poloidal blue curves represent the simulation grids, and the magenta curve is the vacuum vessel. (b) The pressure profile.
(c) The density profile (ni0 = ne0). (d) The electron temperature and ion temperature.

is insensitive to these parameters. This suggests that the
inconsistency with the experiment is not the problem of
parameter values. Therefore, we include the effect of the CM
in the expectation that the ELM can be effectively mitigated.

2.4. The spectrum of the CM

CMs have been found in many experiments on EAST and
are often accompanied by the ELM mitigation [16, 46, 47].
It is believed that CMs can regulate the edge particle trans-
port [10, 16, 20], which play a role in the pedestal dynamics.
The frequency spectrogram of the pressure fluctuation from
the nonlinear simulation [31, 48] is shown in figure 7, which
clearly shows a characteristic of the CM. The peak of the black
solid curve between the two black dashed lines is the CM with
the frequency about 14–22 kHz and the center frequency is
18 kHz. The frequency of the CM is in good agreement with
the experiments in figure 1. The red dashed curve only repre-
sents the spectrum of the background broadband turbulence,
which is obtained by filtering out the CM frequency [49, 50].
It is important to point out that this CM is generated by the
profile auto-evolution (i.e. after the ELM crash).

3. Construction of the CM physical model

In general, the boundary plasma turbulence and transport
determine the edge energy loss. In section 2.3, the ELM size
is not consistent with the experiment. Therefore, the impact of
the CM needs to be considered and analyzed. In this section,

the modeled CM is added into the three-field two-fluid module
of BOUT++.

3.1. Physics model

To account for the effect of the CM, the three-field two-fluid
model is modified within the assumption that the density fluc-
tuations is dominant in this CM. Here the perturbation of CM
is artificially constructed, not automatically generated as in
section 2.3, aiming to interact with the ELM. The form of the
equations (1), (2) and (4) changed by the CM is written as

∂�̃

∂t
+ υE · ∇�̃ = B0∇‖J‖ + 2�b0 × κ0 · ∇

(
p̃+ P̃CM

)
, (7)

∂ p̃
∂t

+ υE · ∇P + υE · ∇P̃CM = 0, (8)

�̃ =
n0Mi

B0

[
∇2

⊥φ̃+
1

n0Zie
∇2

⊥
(

p̃i + P̃CM
)
+

∇n0

n0
· ∇φ̃

]
.

(9)
In order to consider the CM effect, the additional terms

with respect to the quantity p̃CM are introduced in the evo-
lution equations of vorticity �̃, pressure p̃ as the source and
convection terms, respectively. The p̃CM represents the pres-
sure perturbation of the CM, which can effectively affect the
pedestal dynamics. The detailed construction process of p̃CM

will be described in section 3.2. It is worth clarifying that the
main reason for this modification is that the boundary insta-
bility of EAST is mainly measured from density fluctuations,
which is presented as pressure in our model.
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Figure 5. (a) Linear growth rate versus toroidal mode spectrum: the ideal MHD model in black square, and the diamagnetic stabilization
model in red circle; (b) the perturbed pressure and ELM size evolution during the simulation. The growth rates are normalized to the Alfven
frequency ωA = 2.28 × 106 s−1.

Figure 6. The growth rate of the n = 20 eigenmode versus various parameters with the resistivity effect: (a) the resistivity η (the red star is
the spritzer resist), (b) the dimensionless hyper-Lundquist parameter αH with η = 10−8μ0R0VA, (c) the ion parallel viscosity μi|| with η =
10−8μ0R0VA. In all the simulations, η = 10−8μ0R0VA, αH = 10−6 and μi|| = 0.1 (the vertical dotted lines).

3.2. Construction of P̃CM

In the experiment, it is found that the CM improves the edge
turbulence, then the ELM is mitigated by the CM-enhanced
turbulence [10, 15]. Therefore, the impacts of the CM are nec-
essary to be discussed. First, in the case of section 2.3, the
evolution of the simulated electrostatic potential perturbation
eδφ/Te0 and magnetic fluctuation b1/b0 near the peak pres-
sure gradient at the outer mid-plane are given in figure 8. The
electrostatic potential perturbation is more than four orders
of magnitude larger than the magnetic fluctuation, and the

average value in the nonlinear saturation phase are about:
eδφ/Te0 = 0.356 and b1/b0 = 1.4 × 10−5. Since δn ∼ δφ [51],
the disturbance is mainly density fluctuation, which meets the
assumption of the physical model in section 3.1. Therefore,
we assume a finite-amplitude pressure fluctuation as the per-
turbation of the CM ( p̃CM). According to the measurements by
the reflectometry, the p̃CM is ∼10−2P0 [15]. Here the finite-
amplitude pressure means that it is large enough in the linear
growing phase, but small enough not to dominant the nonlinear
evolution phase.

6
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Figure 7. The frequency spectra of the pressure fluctuation from the
nonlinear phase: the black solid curve is the spectra including both
the CM and the background broadband turbulence, and the red
dashed curve is only the spectra of broadband turbulence, while the
CM frequency is filtered.

Figure 8. The comparison of the normalized electrostatic
fluctuation eδφ/Te0 and magnetic fluctuation b1/b0.

Figure 9 illustrates the perturbation characteristics of the
case in section 2.3 during the nonlinear saturation phase. The
panel (a) shows the normalized amplitude of the pressure fluc-
tuations Pkz vs the toroidal mode number, and panel (b) gives
the phase spectrum over a time period, which is random for the
toroidal mode n, here written as θ = Θ(n). These spectrums
cannot be measured in the experiment and will be used in the
construction of the CM. In figure 9(a), the spectrum Pkz which
has a dominant mode of n = 10 (black open circle), is obtained
from the CM in section 2.3. This spectrum is used to construct
CM in section 4, to ensure that the ELM and CM have a strong
enough interaction. While the spectrums of dominant mode
n = 20 (red triangle) and broadband (blue square) are arti-
ficially constructed for the parametric scans in the section 5.
What’s more, the zonal background of the CM is partially fil-
tered out, i.e. Pkz(n= 0)= 0, in order to keep the initial input P0

consistent with the kinetic equilibrium and not affect the stabil-
ity of the P–B modes. Notice that this constructed p̃CM is a 3D

pressure perturbation, which already contains the information
of the CM.

In EAST, the characteristics of CM in the experiment have
been studied in reference [16]. The poloidal asymmetry of the
local poloidal wavenumber for the CM has been observed and
has been explained by assuming that the mode is flute-like, i.e.
k|| ∼ 0 [16]. Therefore, the distribution of CM parallel to the
magnetic field is expressed by Gaussian function in the simu-
lation [19, 51]. In the experiment, the toroidal mode number of
the CM has been estimated to be n = 12–17 based on the flute-
like assumption, correspondingly, n = 10 in the simulation of
section 2.3 (shown in figure 9(a)). In addition, the poloidal dis-
tribution of the CM density fluctuation amplitude presents a
ballooning-like structure in the experiment [16].

According to the characteristics of the CM measured in the
experiments, the construction of p̃CM is as follows:

P̃CM (x, y, z, A) = A f (z) · e
− (x−b1)2

2σ2
x

− (y−b2)2

2σ2
y , (10)

where A is the amplitude, defined as A = |p̃CM/P0|max. The
radial and poloidal distributions of CM are described by the
Gaussian function with the parameters b1 = 0.5, b2 = 0.39, σx

= 0.6 and σy = 0.1, which can ensure the CM is mainly dis-
tributed near the outer mid-plane and covers the pedestal. As
for the toroidal profile f (z), it is related to the toroidal mode
number n and the phase θ [16, 51], which can be obtained by
the following equation:

f (z) = [F (n, θ)]IFT. (11)

Where the symbol [ ]IFT means the calculation of the inverse
Fourier transform (IFT). The seed perturbation F(n, θ) is
defined as F(n, θ) = Pkz(n)e−iθ, here is Pkz(n) the normalized
pressure fluctuation spectrum and θ can be set to θ=Θ(n), just
as shown in figure 9. Ultimately, the expression for p̃CM can be
written as

P̃CM (x, y, z, A) = A · e
− (x−b1)2

2σ2
x

− (y−b2)2

2σ2
y

[
Pkz (n) e−iθ

]
IFT

. (12)

In this equation, p̃CM(x, y, z, A) depends on the variables
Pkz(n), θ and A. The impact of the CM is considered by adding
a source of the finite-amplitude pressure fluctuation, just as
shown in equations (7) and (8). Figure 10 gives an example
of the p̃CM structure constructed from the equation (12).
Figure 10(a) is the toroidal slice of the p̃CM fluctuation, and the
toroidal profile in figure 10(c) is obtained from the position of
the peak pressure gradient. Figure 10(b) is the poloidal slice,
and the fluctuation mainly locates at the low field side, just
like the ballooning structure shown in the experiment [16]. The
radial profile at the outer mid-plane is shown in figure 10(d).

4. Analysis for the impact of CM

In this section, the simulation results with the effects of CM
are presented and analyzed. In the simulation, the distribution
of CM ( p̃CM) is constructed using the equation (12), and the
specific parameters are as follows: (1) set Pkz(n) to the spec-
trum with the dominant mode n = 10 in figure 9(a); (2) set

7
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Figure 9. (a) The normalized pressure fluctuation Pkz vs toroidal mode number spectra; (b) the turbulent phase θ vs toroidal mode number.
Both of the spectrums are used to construct the CM.

Figure 10. The structure of p̃CM: (a) toroidal slice of the fluctuation of the pressure (the dashed black line is the location of the peak pressure
gradient); (b) poloidal slice of the fluctuation; (c) the toroidal profile at the peak pressure gradient; and (d) the radial profile at outer
mid-plane.

the turbulent phase θ = Θ(n) as shown in figure 9(b); and
(3) the amplitude is A = 10−2. Figure 11 shows the evolu-
tion of the ELM size Δ1D

ELM with (w/) and without (w/o) the
CM, and the ELM size Δ3D

ELM is plotted in the inset. It can
be seen that Δ1D

ELM is already saturated, but Δ3D
ELM is not.

This is mainly because the poloidal expansion of the pertur-
bation is very slow, and hard to get saturation. Fortunately, in
the experiments, the energy loss is usually calculated by radi-
ally integrating the pressure profile at the outer mid-plane with

ballooning characteristics [30], i.e. Δ1D
ELM. In the simulation,

most of the energy loss also occurs at the outer mid-plane due
to the mainly ballooning-like instability. Meanwhile, the col-
lapsed profiles will not get recovered as there is no additional
source in the simulation [44]. Therefore, the saturated Δ1D

ELM

can fully represent the total energy loss of the simulation. At
t = 2000τA, the ELM size w/o CM reaches about 2.88%,
and that w/ CM is about 1.60%. The ELM size is reduced by
approximately 44.5% after considering the CM. In addition,

8
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Figure 11. The time evolution of ELM size with and without the
CM.

scanning the resistivity and hyper-resistivity in the effective
range, the result of CM-induced ELM mitigation can also be
achieved, not only under the parameters of section 2.3.

The impact of CM is analyzed by covering the following
aspects: (1) the mode structure and spectrum during the non-
linear phase; (2) the nonlinear wave–wave interactions; and
(3) the phase coherence time (PCT).

4.1. The mode structure and mode spectrum

Figure 12 illustrates the comparison of the distribution of pres-
sure fluctuations w/ and w/o the CM. The radial distribution of
the RMS perturbed pressures at the outer mid-plane during the
later nonlinear phase 1400–1600τA are shown in figure 12(a).
The peak of the both RMS pressure fluctuations is near the
ψ = 0.95, which is the same position of the peak pressure
gradient. After considering the CM, the amplitude of the fluc-
tuation is about half of that without CM. Figure 12(b) gives
the time evolution of the RMS pressure fluctuations at the peak
pressure gradient region of the outer mid-plane. The fluctua-
tion w/ p̃CM is smaller, which implies that the ELM is mitigated
by the CM. It is worth noting that the case w/ CM enters the
nonlinear phase more quickly than the case w/o CM (shown at
the position of the black and red dashed lines). This is because
the initial perturbation is larger due to the CM, and the ampli-
tude of the fluctuation triggering the ELM crash can be reached
earlier.

The time evolution of pressure perturbations in the cases w/
and w/o CM are shown in figure 13. The radial pressure pro-
files at the outer mid-plane at several time slices are displayed
in the figures 13(a) and (b). In the both cases, the profile gradu-
ally collapses inward and the radial expansion of ELM occurs.
However, it is clearly seen that the profile collapses only toψ∼
0.88 after considering the CM, which is shallower than the case
w/o CM. Figures 13(c) and (d) show the nonlinear evolution of
the different modes of pressure fluctuations for the two cases.
The linear growth phase (the blue shadow) w/o p̃CM is about
t = 240–480τA, and w/ p̃CM is t = 250–450τA. The lin-
ear phase w/ CM is shorter, which is due to the larger ini-
tial perturbation and the smaller saturation amplitude. Dur-
ing 850–1100τA (the yellow shadow), the average ampli-
tude of n = 0 mode is about 2.53 × 10−4 without CM and
8.65× 10−5 with CM. There is a larger zonal component in the

case w/o CM, which represents a larger energy loss. The non-
linear mode spectrum evolution for different cases are shown
in figures 13(e) and ( f ). We have chosen a time period of
160–800τA, including the linear and early nonlinear phases.
It is clearly shown that the p̃CM terms shift the mode spec-
trum of the linear phase, but have little effect on the nonlinear
phase. This is in accordance with the assumption in section 3.2
about the finite-amplitude pressure. In the case w/o CM, there
is a dominant mode n = 20 to trigger the ELM. However,
there are two clear modes (n = 15, 20) in the linear grow-
ing phase (magenta dashed box) for the case w/ CM, and both
modes have the similar amplitude, ultimately resulting in the
mitigation of ELM.

4.2. The bi-spectral analysis for wave–wave interaction

Bi-spectral analysis is a very useful signal processing tech-
nique for showing the nonlinear three-wave interactions
among the fluctuating quantities [52–54]. Here it is applied to
determine the degree of the nonlinear mode coupling between
the ELM and the CM. The method is described as follows.
The bi-spectrum B̂XYZ and the squared bi-coherence b̂2

XYZ of
the signals x(ζ), y(ζ) and z(ζ) are given by [54]

B̂XYZ (n1, n2) = X(n1)Y(n2)Z∗(n1 + n2). (13)

b̂2
XYZ (n1, n2) =

∣∣B̂XYZ (n1, n2)
∣∣2

|X(n1)Y(n2)|2|Z(n1 + n2)|2
, (14)

where X(n), Y(n) and Z(n) are the space Fourier transform of
x(ζ), y(ζ) and z(ζ) in the toroidal direction, respectively. Z∗(n)
is the conjugate of Z(n), and n is the toroidal mode number.
Here the auto-bispectrum is calculated, i.e. X(n) = Y(n) =
Z(n). The angle bracket indicates the ensemble average, which
is obtained from the simulated data at different times and loca-
tions. In this definition, the bi-spectrum measures the degree
of the nonlinear phase coherence among three waves of mode
numbers n1, n2 and n. The squared bi-coherence quantifies the
power fraction at the mode n = n1 + n2 due to the three-wave
coupling, revealing variations in the degree of the nonlinear
interactions among the three fluctuations, not related to the
amplitude of the mode.

Figure 14 shows the contour plots of squared auto-
bicoherence of the pressure fluctuations (b̂2

pn pn p∗n
(n1, n2)) dur-

ing 1000–1500τA for the cases w/ and w/o CM, respectively.
It can be seen that the bi-coherence values with the modes
(n1, n2) = (5, 5) and (10, −5) are larger in figure 14(a),
which implies that the significant level of the nonlinear inter-
actions is concentrated at these modes in the case w/o CM.
However, in the case w/ CM, there are some medium-n
modes, such as (n1, n2) = (15, −10), (25, −15), (25, −10),
(10, 10) and so on, coupled to the lower n modes, such as
n = 5, 10, 15 and 20 as shown in figure 14(b). By compar-
ison with figure 14(a), the red region is larger and the color
is darker in figure 14(b), which indicates that there are more
modes coupled and stronger nonlinear interactions in the case

9
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Figure 12. The results from simulated fluctuations: (a) the radial distribution of the root mean squared (RMS) perturbed pressure w/ and w/o
the CM at outer mid-plane in the time average of t = 1400–1600τA; (b) the time evolution of the RMS perturbed pressure for the same cases.

Figure 13. (a) Evolution of the radial pressure profile on the outer mid-plane at different time slices without the CM; (c) the time evolution
of the different toroidal modes without CM; (e) the evolution of normalized mode spectrum without CM in the time 160–800τA; the data in
(c) and (e) are taken from the same location. The (b), (d) and ( f ) are the same plot for the case with CM. The (e) and ( f ) have the same
color bar.

10
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Figure 14. The squared auto-bicoherence b̂2
pn pn p∗n

(n1, n2) of nonlinear P–B modes for different cases. (a) The case without CM; and (b) the
case with CM. The (a) and (b) have the same color bar.

Figure 15. Evolution of relative phase δϕ between perturbed pressure (p̃n) and perturbed potential (φ̃n). (a) n = 15 for with and without the
CM; (b) the same plot for n = 20. The dashed black line corresponds to δϕ = 0.

w/ CM [44, 55, 56]. The case w/o CM tends to be ‘single-
mode’, but that w/ CM tends to be ‘multiple-mode’ cou-
pling. The multiple-mode coupling can reduce the energy loss
effectively.

4.3. The relative phase and phase coherence time (PCT)

Typically, the growth of the perturbation amplitude depends
on both the linear drive and the nonlinear wave–wave inter-
actions. For the linear drive, both a sufficient growth rate and
an effective growth time are required. It is already clear that
the growth rate γ(n) has been changed by CM from the evo-
lution of pressure fluctuations in figure 13. Now, the effec-
tive growth time is analyzed. In our simulations, the linear

dominant mode is near the medium n-mode, and the instabil-
ity is mainly driven by the ballooning mode. Therefore, the
dependence of the perturbed energy on the curvature term is
written as [44]

∂Ṽ2
E×B,n

∂t
∝ −2R(inφ̂∗

nP̂nb0 × κ · ∇ζ) ∝ sin δϕ. (15)

Here, δϕ represents the relative phase between P̂n and φ̂n,
which is calculated by

δϕ (n,ψ, θ, t) = arg
[
P̂n (ψ, θ, t) /φ̂n (ψ, θ, t)

]
, δϕ ∈ (−π, π].

(16)
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Figure 16. The time evolution of ELM size for different CM cases. (a) The Δ1D
ELM of different turbulent amplitudes with θ = Θ(n) and

dominant mode n = 10: A = 0 (black curve), A = 10−5 (red curve), A = 10−3 (blue curve), A = 10−1 (green curve) and A = 100 (magenta
curve); (b) the Δ3D

ELM of the same cases in panel (a); (c) the final ELM size (Δ1D
ELM) vs the amplitude A spectrum, and (d) the PCT vs the

amplitude A of the dominated mode (the total time τ all = 2000τA). (e) The ELM size of different turbulent phases with A = 10−1 and n =
10: θ = π/4 (red curve), θ = 3π/4 (blue curve) and θ = Θ(n) (black curve); ( f ) the ELM size of different toroidal mode number spectrums
with A = 10−1 and θ = Θ(n): the dominant mode n = 10 (black curve), n = 20 (red curve) and broadband turbulence (blue curve). The inset
panels in (e) and ( f ) are Δ3D

ELM for the same cases.

The P̂n and φ̂n are the nth toroidal Fourier quantities of
the pressure and potential fluctuations, respectively. The rel-
ative phase δϕ can determine whether the ballooning modes
can obtain the free energy driven by the pressure gradient. The
mode amplitudes are increasing only when 0 < δϕ < π and
damping when −π < δϕ < 0. The time duration of mode
growth is called phase coherence time (PCT) τ c(n), and the
net increase of fluctuations during the linear phase is set to
γ(n)·τ c(n) [44, 56].

In this paper, the dominant mode during the linear growth
phase is near n = 20 in the case w/o the CM as shown
in figure 13(e). Consequently, the relative phase (δϕ) of the
modes n = 15, 20 are given in figure 15. After adding the
p̃CM terms, δϕ is oscillated more frequently and the time for
0 < δϕ < π is less than the case w/o CM during 200–450τA.
Therefore, the PCT (τ c) w/ CM becomes shorter, which results

in the smaller fluctuation amplitudes. This indicates that the
fluctuation extracts less free energy from the pressure gradient
and the ELM is mitigated effectively. What’s more, in the non-
linear phase (about 500–600τA) of both cases, δϕ oscillates
rapidly between positive and negative values caused by the
wave–wave interactions. Thus, there is no significant growth
of the mode amplitude in the nonlinear phase.

5. Factor analysis of the CM

Based on the previous analysis, it is clear that the CM plays
an important role in the ELM mitigation. In equation (12),
p̃CM has three decisive parameters: amplitude A, phase θ, and
spectrum Pkz(n). In order to find the optimal amount of pertur-
bation to mitigate the ELM, the three parameters are scanned.
We have divided the simulated cases into three groups: (1) set
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Figure 17. 2D auto-bicoherence b̂2
pn pn p∗n

(n1, n2) for different turbulent phases of CM: (a) θ = π/4; (b) θ = 3π/4; and (c) θ = Θ(n). The
amplitude A = 10−1 and the dominant mode n = 10. All the subgraphs have the same color bar.

Figure 18. The case with the CM for θ = Θ(n), A = 100 and the dominant mode n = 10. (a) The evolution of different toroidal modes;
(b) the evolution of the mode spectrum.

phase θ = Θ(n) and Pkz(n) to the spectra of dominant mode
n = 10 as shown in figure 9, and scan the amplitude: A =

0, 10−5, 10−3, 10−1 and 100; (2) set A = 10−1 and Pkz(n) to
the same as set in (1), then scan the phase: for different n
modes, θ = π/4, θ = 3π/4, and θ = Θ(n); (3) set A = 10−1

and θ = Θ(n), the spectrums Pkz(n) are scanned: the dominant
mode n = 10, n = 20 and the broadband turbulence, just as
shown in figure 9(a). The results of the simulations are shown
in figure 16.

Figure 16 gives the time evolution of the ELM size for
different parameters of p̃CM. In the figure 16(a), the results
of different amplitudes are shown. The red solid curve is the
ELM size of the amplitude A = 10−5 case, the blue, green and
magenta curves represent the A = 10−3, A = 10−1 and A =

1 cases, respectively. The black solid curve is the case w/o
CM in section 2.3, which is only used here for comparison.
It indicates that the ELM size has a strong correlation with
the amplitude A. By comparison, a significant difference in
the changing rate of the Δ3D

ELM appears during 800–1400τA

in the figure 16(b), and it can be divided into three cases: (1)

the amplitude is very small (A = 0 and A = 10−5), the chang-
ing rate is maximum; (2) using the finite-amplitude (A = 10−3

and A = 10−1), the changing rate is medium; and (3) when δp
∼ P0, i.e. A = 1, the changing rate is minimum. Figure 16(c)
gives the dependence of the final ELM size on the amplitude A,
and there is a threshold of the ELM mitigation in the magenta
region, which is consistent with the experimental statistical
results shown in figure 2. The ELM can be mitigated when
the amplitude is large enough. The larger the CM amplitude
is, the smaller the ELM size trends to be. The relation between
PCT and amplitude A in figure 16(d) is also consistent with
the ELM-size reduction in large CM amplitude, which indi-
cates that the large amplitude can reduce the growth time of
the perturbation and the ELM energy loss. Figure 16(e) shows
the ELM size for different phase cases. All of the three cases
start to enter the initial ELM crash phase at about t = 500τA.
The ELM size of the fixed phase θ = π/4 case is about 3.40%,
the θ= 3π/4 case is 1.68%, and the θ=Θ(n) case is 1.20%. We
can see that the different phases also have an important effect
on the energy loss, and the θ = π/4 case is about three times
as large as the θ = Θ(n) case. Figure 16( f ) reveals the impact
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of different toroidal mode spectrums, and the ELM sizes of
the three cases are eventually different. Although the different
spectrums Pkz(n) can cause some influence, its effect is smaller
compared to the amplitude A and phase θ.

In conclusion, it is clear form all the cases that the amplitude
A plays a key role and has a threshold value beyond which
the ELM size is reduced. This demonstrates that ELMs can
be mitigated when the edge perturbation is enhanced. What’s
more, the effect of the phase θ is probably very important in
our simulation when the amplitude A is determined, while the
spectrum Pkz(n) also has an effect and should not be neglected.

In the previous analysis, the influence of the phases is
very important with a determined amplitude, probably because
the phase alteration affects the wave–wave interactions and
changes the PCT. Thus, the nonlinear mode coupling is ana-
lyzed based on the cases in figure 16(e). The 2D auto-
bicoherence of different CM phases at the time average of
t = 1000–1800τA are shown in figure 17: the θ = π/4 case
is exhibited in the panel (a), θ = 3π/4 and θ = Θ(n) cases
are the panel (b) and (c). Compared to θ = π/4, there are
more medium and high n mode coupling in the θ = 3π/4 or
θ = Θ(n) case, which indicates that the nonlinear wave–wave
interactions become stronger and the PCT gets decreased dra-
matically. The more mode coupling leads to the lack of domi-
nant filamentary structures and smaller ELM energy loss [19,
44, 55, 57, 58]. In addition, the higher n modes appear in the
θ = Θ(n) case by comparing with θ = 3π/4 case. Finally,
it is found that the ELM size with θ = π/4 is larger than θ
= 3π/4, and the θ = 3π/4 case is larger than θ = Θ(n), i.e.
Δθ=π/4

ELM >Δθ=3π/4
ELM >Δθ=Θ(n)

ELM. The result is reason-
able that the ELM size of θ=Θ(n) is smaller. The random-like
phase Θ(n) comes from the simulation in section 2.3, in which
the CM is formed by the profile auto-evolution. Therefore, the
CM perturbation (p̃CM) of θ = Θ(n) is very close to the eigen-
mode. The θ = Θ(n) case is nearly in-phase with the pressure
perturbation, which is easy to get coupled, but that of θ = π/4
or 3π/4 case is likely out-of-phase, which is hard to be coupled.
Only when the CM phase and pressure phase are similarly in-
phase, the nonlinear interactions can be enhanced and the ELM
can be mitigated effectively.

As for the extreme case of CM amplitude A = 1, it is almost
impossible in reality. However, because the CM amplitude is
too large and almost at the same level as pressure P0, there
may be some interesting physical phenomena. Thus, it is inter-
esting to analyze the process of ELM crash with A = 1. The
evolution of the pressure perturbation with the CM for phase
θ = Θ(n) and amplitude A = 1 is shown in the figure 18.
Figure 18(a) is the time evolution of the fluctuation for dif-
ferent toroidal modes, and figure 18(b) is the mode spectrum
evolution. It can be seen that all modes are kept at the level of
the CM in the whole simulation, which means the nonlinear
dynamics are always dominated by the large CM perturbation,
which cannot happen in the A < 1 cases. Only the n = 0 mode
grows up slowly because of the lack of zonal component in
the constructed CM. When the amplitude of the n = 0 mode
increases large enough, the profile collapses and it enters the
nonlinear phase. This suggests that the zonal part of the per-
turbation plays a crucial role in the ELM crash [56]. The ELM

can only be triggered when the amplitude of n = 0 mode is
large enough. The presence of the CM leads to less free energy
redistributed to the n = 0 mode, and eventually the ELM is
effectively mitigated.

6. Summary

In EAST, the phenomenon that the ELMs are mitigated with
the enhanced CM has been observed. Through statistical anal-
ysis, a threshold of the CM intensity is found for ELM mit-
igation, and only above the threshold value can the ELM be
effectively mitigated. However, the results of ELITE analysis
show that the pedestal is located outside the P–B boundary
when the no ELM and the enhanced CM co-exist. The results
only considering the pedestal profiles are not consistent with
the experiment. Therefore, the effects of the enhanced CM are
considered to explain the mitigation of ELM.

The impact of the CM on ELMs are investigated using
the extended three-field two-fluid model in BOUT++ frame-
work. For simplicity, we assume that the CM is mainly the
perturbations of pressure due to the density gradient, which is
essentially consistent with the most of EAST experiments. To
incorporate the effect of the CM, the quantity p̃CM is intro-
duced in the model, as the additional convective and driv-
ing terms in the pressure and vorticity evolution equations in
equations (7)–(9). In the experiment, the CM is a flute-like
mode (i.e. k|| ∼ 0), and the poloidal distribution of the den-
sity fluctuation demonstrates a ballooning-like structure [16].
Based on these characteristics, the CM distribution p̃CM can be
described by equation (12) in the simulation.

The interactions between the ELM and CM are studied in
the paper. The simulations show that the CM is able to reduce
the ELM size by ∼44.5%, and the amplitude of pressure per-
turbation is dropped by about half in the nonlinear phase.
What’s more, the radial mode expansion is limited by the CM,
and the mode spectrum is explicitly shifted in the linear phase.
The physics mechanism of the ELM mitigation by CM can be
explained by the nonlinear wave–wave interactions. Through
the bi-spectral and the relative phase analysis, the nonlinear
interactions and mode coupling are stronger with the CM, and
the PCT becomes smaller. This indicates that more modes can
compete with the eigenmode for free energy and the turbu-
lence behaviors are changed, which leads to the obvious miti-
gation of the ELM. In addition, the parameters (A, θ and Pkz)
of the CM are scanned, and it is found that: (1) the impact of
the amplitude A is probably the most important, and A has a
clear threshold value to mitigate the ELM; (2) with a deter-
mined A, the phase θ plays a role, but the spectra Pkz(n) also
has some influences and cannot be ignored. The simulation
systematically investigates the interactions between ELM and
CM, which can provide support for the development of ELM
control technology.

Notice that this work mainly focuses on the ELM mitiga-
tion induced by the enhanced CM. The interactions between
ELMs and CMs are studied. However, in some experimen-
tal cases, the ELM is fully suppressed. There must be other
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factors missed in the ELM suppression, such as auxiliary heat-
ing, impurity and power deposition effects, which will be
investigated step by step in the future.
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