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Abstract: This paper presents the particularities in optimal control of the uranium extraction-
scrubbing operation in the PUREX process. The control problem requires optimally stabilizing
the system at a desired solvent saturation level, guaranteeing constraints, disturbance rejection,
and adapting to set point variations. A qualified simulator named PAREX was developed by the
French Alternative Energies and Atomic Energy Commission (CEA) to simulate liquid-liquid
extraction operations in the PUREX process. However, since the mathematical model is complex
and is described by a system of nonlinear, stiff, high-dimensional differential-algebraic equations
(DAE), applying optimal control methods will lead to a large-scale nonlinear programming
problem with a huge computational burden. In this work, we propose a solution using a
neural network to predict the process outputs using the history of measurements. This neural
network architecture, which employs the long short-term memory (LSTM), linear regression and
logistic regression networks, allows for reducing the number of state variables, thus reducing the
complexity of the optimization problems in the control scheme. Based on this neural network,
an adaptive optimal control scheme based on nonlinear model predictive control (NMPC)
and moving horizon estimation (MHE) is developed. We use the particle swarm optimization
algorithm to solve online optimization problems of NMPC and MHE. The algorithm is validated
with simulations using a model that capture important dynamics of the process. This choice
is because of confidential regulations of data obtained from the PAREX simulator. Simulation
results show that the proposed adaptive optimal control scheme satisfies the requirements of
the control problem.

Keywords: Particle Swarm Optimization, Nonlinear Model Predictive Control, Nonlinear
Moving Horizon Estimation, PUREX, PAREX, Liquid-liquid Extraction

1. INTRODUCTION

1.1 Motivation

The PUREX process, an acronym for ”Plutonium, Ura-
nium, Reduction, EXtraction,” was developed to recover
uranium and plutonium from spent nuclear fuels, which
is composed of 95% uranium, 1% plutonium, and 4%
high radioactive toxic waste (the ultimate waste). This
process offers a high-purity U-Pu recovery and recycling,
reducing the ultimate waste volume and thus contributing
to sustainable nuclear energy development. The overall
control objective is quickly driving the process to achieve
a desired solvent saturation level, guarantee constraints,
adapt to disturbances, and set point variations.

PAREX is a simulation program developed by the French
Alternative Energies and Atomic Energy Commission
(CEA). It can simulate liquid-liquid extraction operations

⋆ The authors thank ORANO for partial financial support for the
project.

within the PUREX process. As reported in Bisson et al.
(2016), PAREX is currently used in the nuclear fuel repro-
cessing industry for process optimization, troubleshooting,
and safety analysis. PAREX offers valuable insights into
process dynamics and enables the applicability of model-
based control approaches.

This work continues the studies of developing the adap-
tive nonlinear model predictive control for the uranium
extraction-scrubbing operation in the PUREX process (Vo
et al. (2023a)) and (Vo et al. (2023b)). We aim to exploit
the benefits of the qualified PAREX simulator in the
control scheme to satisfy the control objectives and con-
straints introduced above. However, it requires high-level
security controls when developing an ANN replicate of
PAREX because PAREX and its data is strictly protected.
Therefore, in this first study, we propose a mathematical
model that captures the main dynamics of the process,
then use it to illustrate and study the developed control
strategy in multiple simulations. Note that the proposed



algorithm can be generalized to PAREX without any lim-
itation.

From our previous studies (Vo et al. (2023a) and Vo et al.
(2023b)), it has been noticed that the process model is
high dimensional and has 128 states. However, from the
practical process point of view, only two state variables
have vital roles in the control problem. Therefore, if we can
reduce the number of variables in the process model, we
can reduce the complexity of the control problem, which
is the motivation of this paper.

Our main idea is to develop an artificial neural network
(ANN) to predict the essential state variables based on
available measurements. Then, this ANN is embedded as
a predictor in the Nonlinear Model Predictive Controller
(NMPC) and as an estimator in the Moving Horizon Esti-
mator (MHE). Furthermore, integrating NMPC and MHE
allows us to have an adaptive control scheme in which any
unmeasured disturbances can be estimated and updated to
the controller. To solve the NMPC and MHE optimization
problems, we use Particle Swarm Optimization (PSO), a
derivative-free optimum searching method. Discussion on
these topics can be found in (Vo et al. (2023b)) and the
references therein.

The Long Short-term Memory (LSTM) neural network,
which was first proposed by Hochreiter and Schmidhuber
(1997), is a common choice for time series prediction ap-
plications. Therefore, it is a good solution for approximat-
ing system dynamics, allowing the application of model-
based control techniques such as NMPC. The applicabil-
ity of LSTM in developing NMPC was comprehensively
discussed by Jung et al. (2023). Note that our ANN ar-
chitecture is based on the LSTM and linear and logistic
regression networks. As will be discussed later in the paper,
the ANN is designed based on the particularities of the
control problem.

1.2 Contributions and Paper Organization

This paper introduces an ANN-based adaptive con-
trol strategy tailored to the PUREX process’s uranium
extraction-scrubbing operation. The ANN architecture is
developed based on LSTM, linear, and logistic regression
networks. The ANN serves as a predictor and estimator
in the control strategy, which integrates non-linear Model
Predictive Control and moving Horizon Estimation and is
implemented using particle Swarm Optimization. Briefly,
our main contributions are:

• propose a dynamical model that captures the primary
attributes of the uranium extraction-scrubbing opera-
tion in the PUREX process. In this paper, this model
is used to develop and study the ANN-based adaptive
MPC algorithm since the data sourced from PAREX
is confidentially protected;

• develop an ANN that can predict the process out-
puts based on previous measurements. This ANN
allows making predictions directly from the available
measurements, which has significant advantages com-
pared to the original state space approach because, in
this process, not all the state values can be measured
online;

• propose an adaptive control strategy that optimally
drive the system to work at a desired solvent satura-
tion level while guaranteeing constraints satisfaction
(e.g., uranium concentration in the fission product,
equipment limits) and adapting to parameters uncer-
tainties (i.e., variation in the fresh solvent flow rate).
In addition, ANN allows for reducing the number of
decision variables in the MHE optimization problem;

• study the efficiency of the proposed control strategy
through simulations.

Notations: Vectors are denoted by bold lowercase letters
and matrices are denoted by capital letters. I, 0 denotes
identity and zero matrices of appropriate dimensions. xn

denotes the nth element of x. xn:m denotes a vector slice
from the nth to mth (included) elements of x. ∥x∥Q :=

xTQx. Nm:n := {i ∈ N|m ≤ i < n}.

2. URANIUM EXTRACTION-SCRUBBING
OPERATION

2.1 Mathematical Model

Fig. 1 shows the uranium-scrubbing operation’s principle
consisting of 16 cascaded mixer settlers. In this work, we
propose a model that captures the main dynamics of the
qualified model in PAREX. This model is structured as
a system of nonlinear, stiff, high-dimensional differential-
algebraic equations (DAE). It adheres to mass balances
and assumptions such as constant element densities, im-
miscible aqueous and organic phases, perfect mixing, and
interfacial mass transfer derived from the double film
theory. The main difference is that it uses a simplified
distribution modulus, while PAREX’s qualified modulus
is derived from practical data. Notations for system pa-
rameters are detailed in Fig. 1 and Tab. 1 while equation
(5) describes the primary extraction mechanism:

Table 1. System parameters.

Notation Description

A, O Aqueous and organic flow rates.
V , W Aqueous and organic volumes.
KU , KH Equilibrium constants for U and H.
kU , kH Mass transfer coefficients for U , H.
a, o Related to aqueous and organic phase.
M, D Related to mixer and settler.
[·] Concentration.

n Related to stage n of the process.

in Related to inputs to stage n.

i Related to concentrations at the interface.

∗ Related to concentrations at equilibrium.

Interface mass transfer Applying the double film theory
for uranium interfacial mass transfer, as illustrated in
Fig. 2, we have:

kaqU
(
[U ]aMn − [U ]aMi,n

)
= keqU

(
[U ]aMi,n − [U ]aM∗,n

)
, (1a)

kaqU
(
[U ]aMn − [U ]aMi,n

)
= kogU

(
[U ]oMi,n − [U ]oMn

)
. (1b)

In this work, we assume that the transfer resistance can
be neglectable, which can be expressed by using high mass
transfer coefficients:

kaqU = keqU = kogU ≫ 10−4 m/s, (2)
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Fig. 1. Uranium extraction-scrubbing operations using mixers-settlers (Vo et al. (2023a)).
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Fig. 2. Profile of aqueous uranium concentration in the
mixer, as derived with the two-film theory (Dinh et al.
(2008)).

hence, (1) can be rewritten as:

[U ]aMi,n = 0.5
(
[U ]aMn + [U ]aM∗,n

)
, (3a)

[U ]oMi,n = 0.5[U ]aMn + [U ]oMn − 0.5[U ]aM∗,n. (3b)

Similar relationships for nitric acid concentrations can be
obtained by replacing U with H in equations (1)-(3):

[H]aMi,n = 0.5
(
[H]aMn + [H]aM∗,n

)
, (4a)

[H]oMi,n = 0.5[H]aMn + [H]oMn − 0.5[H]aM∗,n. (4b)

Thermodynamic equilibrium The primary extraction
mechanism is given by:

UO2+
2 + 2NO−

3 + 2TBP
KU

⇌ UO2 (NO3)2 · TBP, (5a)

H+ +NO−
3 +TBP

KH

⇌ HNO3 · TBP. (5b)

At thermodynamic equilibrium condition, we have

[U ]oMi,n = KU [U ]aM∗,n[NO3]
aM
∗,n

2
[TBP ]oMfreei,n

2
, (6a)

[H]oMi,n = KH [H]aM∗,n[NO3]
aM
∗,n[TBP ]oMfreei,n, (6b)

where

[NO3]
aM
∗,n = 2[U ]aM∗,n + [H]aM∗,n, (7a)

[TBP ]oMtotn = [TBP ]oMfreei,n + 2[U ]oMi,n + [H]oMi,n , (7b)

which leads to

[TBP ]oMfreei,n =
2cn

bn +
√

b2n + 4ancn
, (8a)

where

an = 2KU [U ]aM∗,n
(
2[U ]aM∗,n + [H]aM∗,n

)2
, (8b)

bn = 1 +KH [H]aM∗,n
(
2[U ]aM∗,n + [H]aM∗,n

)
, (8c)

cn = [TBP ]oMtotn. (8d)

By substituting (3b), (4b), (7), and (8) to (6), and assume
that [TBP ]oMtotn = [TBP ]oMtotE for all stages, we obtain
algebraic equations of uranium and acid concentrations,
denoted by gUn , g

H
n , respectively:

gUn
(
[U ]aMn , [U ]oMn , [H]aMn , [H]oMn , [U ]aM∗,n, [H]aM∗,n

)
= 0, (9a)

gHn
(
[U ]aMn , [U ]oMn , [H]aMn , [H]oMn , [U ]aM∗,n, [H]aM∗,n

)
= 0. (9b)

Flowrate and volume model Consider the mixer-settler
model showed in Fig. 3, in the absence of monophasic reac-
tions (only extraction phenomenon). The input flowrates
and concentrations to the mixer of stage n are:

AM
n,i = AD

n+1, OM
n,i = OD

n−1, (10a)

[U ]aMn,in = [U ]aDn+1, [U ]oMn,in = [U ]oDn−1, (10b)

[H]aMn,in = [H]aDn+1, [H]oMn,in = [H]oDn−1. (10c)

Note that at the stages n ∈ {1, 8, 16}, we have:

OM
1,in = OE , A

M
8,i = AD

9 +AF , A
M
16,in = AE , (11a)

[U ]oM1,in = [H]oMn,in, [U ]aM16,in = 0, [H]aM16,in = [H]aqE , (11b)

[U ]aM8,in =
(
AF [U ]aqF +AD

9 [U ]aD9
)
/(AF +AD

9 ), (11c)

[H]aM8,in =
(
AF [U ]aqF +AD

9 [H]aD9
)
/(AF +AD

9 ). (11d)
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Fig. 3. Mixer-settler model Vo et al. (2023a).

Applying total mass balances to the mixer tank, we have:

V̇ M
n = AM

n,i −
AM

n +OM
n

V M
n +WM

n

· V M
n , (12a)

ẆM
n = OM

n,i −
AM

n +OM
n

V M
n +WM

n

·WM
n . (12b)

The perfect mixing assumption mean V̇ M
n = ẆM

n = 0,
hence:

AM
n,iW

M
n = OM

n,iV
M
n . (13)



In addition, assume that there is no leakages in the system
and all mixer-settlers have the same volume, we have:

AM
n = AD

n , OM
n = OD

n , (14a)

V M
1 +WM

1 = V M
2 +WM

2 = · · · = V M
16 +WM

16 . (14b)

Mass balances of U and H Applying the mass balances
to uranium in the aqueous and organic phases in the mixer
tanks, we have:

[U̇ ]aMn =
(
An,i[U ]aqn,i −AM

n [U ]aMn − ΦU
n

)
/V M

n , (15a)

[U̇ ]oMn =
(
On,i[U ]ogn,i −OM

n [U ]oMn +ΦU
n

)
/WM

n , (15b)

ΦU
n =

6kUV
M
n

d

(
[U ]aMn − [U ]aMi,n

)
, (15c)

where ΦU
n denotes the uranium interfacial mass transfer

term, and by substituting (3a) to (15c), we have

ΦU
n =

3kUV
M
n

d

(
[U ]aMn − [U ]aM∗,n

)
. (15d)

Regarding the settler tanks, the mass balances equations
for uranium are given as

[U̇ ]aDn =
(
AM

n [U ]aMn −AD
n [U ]aDn

)
/V D

n , (16a)

[U̇ ]oDn =
(
OM

n [U ]oMn −OD
n [U ]oDn

)
/WD

n . (16b)

Mass balances equations for H+ can be obtained by
replacing U by H in (15)-(16).

State space representation From (9), (15), and (16) , the
process dynamical model can be represented as a system
of differential-algebraic equations as follow:

ẋ = fc(x,x
alg, u, q), (17a)

0 = g(x,xalg, u, q), (17b)

where

• x ∈ R128 is the vector of system states, i.e., uranium
and acid concentrations:

x1:16 = [[U ]aM1 [U ]aM2 . . . [U ]aM16 ]T ,
x17:32 = [[U ]oM1 [U ]oM2 . . . [U ]oM16 ]T ,
x33:48 = [[U ]aD1 [U ]aD2 . . . [U ]aD16 ]

T ,
x49:64 = [[U ]oD1 [U ]oD2 . . . [U ]oD16 ]

T ,
x65:80 = [[H]aM1 [U ]aM2 . . . [U ]aM16 ]T ,
x81:96 = [[H]oM1 [U ]aM2 . . . [U ]aM16 ]T ,
x97:112 = [[H]aD1 [U ]aM2 . . . [U ]aM16 ]T ,
x113:128 = [[H]oD1 [U ]aM2 . . . [U ]aM16 ]T ;

• xalg ∈ R32 is the vector of intermediate algebraic
variables, i.e., uranium and acid concentrations:

xalg
1:16 = [[U ]aM∗,1 [U ]aM∗,2 . . . [U ]aM∗,16]

T ,

xalg
17:32 = [[H]aM∗,1 [H]aM∗,2 . . . [H]aM∗,16]

T ;

• u = AF is the manipulated variable (the feed solution
flowrate);

• q = OE is the disturbance variable (the fresh solvent
flowrate);

• f ∈ R128 is the vector of mass balance equations;
• g ∈ R32 is the vector of algebraic equations;
• y := [U ]aD9 = x41 is the controlled variable (the
uranium concentration at the outlet of the scrubbing
stage);

• z := [U ]aD1 = x33 is the constrained variable (the
uranium concentration in the fission products).

Several factors drive this choice of the controlled variable:
i) not all the system states can be measured online; ii)
these measurements usually have high cost; iii) this partic-
ular variable’s value is compatible with our sensor’s mea-
surement range; and iv) analysis on the process dynamics
show that it is a good indicator for the solvent saturation
level. For convenience, we denote the discrete state space
model as

x(k + 1) = fd
(
x(k),xalg(k), u(k), q(k)

)
, (18a)

0 = g
(
x(k),xalg(k), u(k), q(k)

)
, (18b)

where x(k) := x(kT ), and T is the control sampling time
of the overall system.

2.2 Process Dynamics Analysis and Problem Statement

Solvent Saturation An essential objective of the control
system is to ensure that the system operates at a desired
solvent saturation, which can be indicated by the aqueous
uranium concentration at stage 9’s settler. In general, a
higher saturation level offers a higher decontamination
towards fission products. However, there is a critical sit-
uation in which the solvent saturation is at maximum,
which is indicated as As2

F in Fig. 4. As solvent saturation
increases, the profile aqueous uranium concentration in the
settlers is shifted to the left, as illustrated in Fig. 5.

The over-saturation situation is usually unwanted since
it risks losing uranium to fission products, which reduces
our extraction efficiency (because we want to recover
as much uranium as possible). Therefore, in nominal
operation conditions, keeping the system operating in the
under-saturated condition is preferable, which allows a
safety margin towards the over-saturated region. However,
operating at a saturation condition is profitable in some
cases: we can quickly flush out other elements. Therefore,
the control system must also adapt to variations in the set
point and guarantee that not much uranium leaks into the
fission products.

As1
F As2

F

[U ]aD9,s1

[U ]aD9,s2

Solvent Saturation Condition

Under-saturation Over-saturation

Safety Margin

AF

[U]

[U ]aD9
[U ]aD1

Fig. 4. Steady state relationship of feed solution flow rates
and uranium concentrations.

Problem Statement The control problem is stated as fol-
lows: regarding the state space representation (17), design
an optimal control scheme that can regulate y = [U ]aD9
to the desired set point yset = [U ]aD9,set while adapting to
unknown disturbances. Additionally, multiple constraints
must be guaranteed during operation, such as aqueous
uranium concentration in the extraction raffinates [U ]aD1
(19a), overshoots (denoted by OS) (19b), control input
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Fig. 5. Profiles of aqueous uranium concentration in nom-
inal and critical cases.

magnitudes AF (19c), and rates of control inputs (19d).
The bounding values Amin

F , Amax
F , and ∆max

AF
are defined

based on the equipment limits, the flow sheet. In addition,
since the constraints (19a)-(19c) have vital impacts on
the overall control performance, we consider them as hard
constraints, and if necessary, we allow (19d) to be relaxed
to guarantee the others.

[U ]aD1 ≤ [U ]aD1,tol, (19a)

OS = y/yset − 1 ≤ OSmax, (19b)

Amin
F ≤ AF ≤ Amax

F , (19c)

|AF (k + 1)−AF (k)| ≤ ∆max
AF

. (19d)

Furthermore, we accept a steady state error of about 5%
of the set-point, i.e.,

e = |y − yset| ≤ 5%yset. (20)

3. ANN-BASED ADAPTIVE NMPC

This section presents the development of our proposed
ANN-based adaptive NMPC to stabilize the process out-
put y at a desired value yset. The overall control system
architecture is depicted in Fig. 6, where we first read mea-
surements from the process and estimate the disturbance
variable q̂(k). This action allows the controller to have
the best updates of the system parameters for further
predictions. Within the controller block, we first compute
the desired control input uset by solving the steady state
condition:

ẋ = fc(x,x
alg, u, q̂), (21a)

0 = g(x,xalg, u, q̂), (21b)

y = x41 = yset. (21c)

The optimal control input is then computed by the NMPC,
which uses an ANN as the predictor. Note that if we
keep the control input as constant, i.e., u = uset, and the
condition (20) holds, we switch off the NMPC and apply
directly uset to the system. This strategy helps to reduce
computation costs, especially when we are near the steady
state.

3.1 ANN architecture

Regarding the control problem stated in Sec. 2.2.2, to
implement the NMPC, two important outputs need to
be predicted: y := [U ]aD9 and z := [U ]aD1 , which are the
aqueous uranium concentrations in the settlers of stage 9
and 1, respectively. In addition, since z is involved only
in the constraint (19a), it is not necessary to predict

Set-point
Planner

ANN-based
NMPC or

Constant Controller

Real Plant

Virtual Plant

Parameter Estimator
(ANN-based MHE)

Controller

yset
uset

u = AF

ŷ = [U ]aD9

ym = [U ]aD9,m

q̂ = ÔE

yset

Fig. 6. Proposed neural network architecture.

precisely the value of z. Instead, we can use a binary
variable z̄, whose value is one if (19a) holds and is
zero otherwise. Furthermore, regarding the state space
representation (17), since y is the only online measurement
that is available in the system, we aim to predict y and z̄
based on the history of y, u := AF , and p := OE :

y(k + 1) = fy (θ(k)) , (22a)

z̄(k + 1) = fz̄ (θ(k)) , (22b)

where the input vector θ(k) is defined as:

θ(k) :=

 {y(i)}ki=k−N

{u(i)}ki=k−N

{q(i)}ki=k−N

 . (22c)

The length of vector θ(k) is nθ = 3N . Recall that AF

and OE are the feed solution and fresh solvent flowrates,
respectively.

The ANN architecture is depicted in Fig. 7, in which fy is
a linear regression model cascaded with an LSTM, and fz̄
is a binary classification model:

fy (θ(k)) := Aθ(k) + fLSTM (θ(k)) , (23a)

fz̄ (θ(k)) := fLG (θ(k)) . (23b)

θ1

θ2

θNθ

...

Long
Short-Term
Memory
Network

Aθ

Logistic Regression
Network

fz̄(·)

Σ y

z̄

fy(·)

Fig. 7. Proposed neural network architecture.

The idea beyond fy is that we first predict y by the
linear regression model and then compensate for the linear
prediction errors using the LSTM network. The training
procedure for fy is described as follows:

(1) Run multiple simulations with the virtual plant, col-
lect measurement histories, and construct the input-
output sets X , Y1:



X :=
{
θ(i)

}Nsam

i=0
, Y1 :=

{
y(i)

}Nsam

i=0
, (24)

where Nsam is the number of data samples, θ(i), y(i)

denote the ith input-output sample, respectively;
(2) Train the linear regression model with X . In other

words, find A in (23a);
(3) For each sample i, compute the linear regression error

e
(i)
1 and construct the linear regression error set E1:

e
(i)
1 := y(i) −Aθ(i), E1 :=

{
e
(i)
1

}Nsam

i=0
; (25)

(4) Train the LSTM model with X and E1.
In addition, the logistic regression network fz̄ can be
trained using the input set X and the output set Y2:

Y2 :=
{
z̄(i)

}Nsam

i=0
. (26)

3.2 Adaptive NMPC design

To allow NMPC to have the ability to adapt to distur-
bances, which are unknown variations in the feed solution
flow rate (q = OE), we develop a Moving Horizon Esti-
mator to estimate this variable. This parameter estimator
plays an essential role in the control strategy, i.e., it always
allows the controller to be updated.

Parameter Estimator At time step k, denote q̂(j|k), ŷ(j|k)
the estimated values of q and y at time step j. Suppose
that we want to estimate Ne latest values of q, which are

denoted by {q̂(i|k)}k−1
i=k−Ne

, and assume that N+Ne latest

measurements {ym(i)}ki=k−N−Ne+1 are available. Then,

the best estimates of {q̂(i|k)}k−1
i=k−Ne

can be obtained by
solving the optimization problem:

min
{q̂(j|k)}k−1

j=k−Ne

k∑
j=k−Ne+1

λk−j (ŷ(j|k)− ym(j))
2
, (27a)

such that ∀j ∈ Nk−Ne:k−1:

ŷ(j + 1|k) = fy

(
θ̂(j|k)

)
, (27b)

θ̂(j|k) :=

 {ŷ(i|k)}jj−N

{u(i)}jj−N

{q̂(i|k)}jj−N

 , (27c)

θ̂ (k −Ne|k) :=

 {ym(i)}k−Ne

k−Ne−N

{u(i)}k−Ne

k−Ne−N

{q̂(i)}k−Ne

k−Ne−N

 , (27d)

where λ ∈ (0, 1) is the forgetting factor.

Remarks: The ANN-based MHE formulation developed
above has Ne decision variable. If the MHE is formulated
based on the discrete mathematical model (18), the opti-
mization problem will be:

min
x̂(k−Ne), {q̂(j|k)}k−1

j=k−Ne

k∑
j=k−Ne+1

λk−j (ŷ(j|k)− ym(j))
2
.

(28)

subject to process dynamics (18). In other words, we will
have to estimate the initial condition x̂ (k −Ne), which
increases the number of decision variables by 128 ≫ Ne.
Therefore, the optimization problem (3.2.1) requires a

much more significant computation cost. An alternative
approach was proposed in Vo et al. (2023b) where we
keep track of the error history ŷ − ym to decide which
should be the initial condition x̂ (k −Ne) for (3.2.1).
Therefore, we can see that the ANN allows us to make
predictions directly based on the measurements and reduce
the optimization problem’s complexity, hence enabling
practical implementation.

NMPC Design At time step k, denote {û(i|k)}k+Np−1
i=k

the sequence of predicted control inputs from time step k
to k + Np − 1. Here, Np denotes the prediction horizon
length. In addition, assume that over the prediction hori-
zon, q is constant, and its value equals q̂(k−1) := q̂(k−1|k)
computed by the parameter estimator. Next, denote ŷ(j|k)
the predicted value of y at time step j, the optimal pre-
dicted control inputs are obtained by solving the following
optimization problem:

min
{u(i|k)}k+Np−1

i=k

k+Np∑
j=k+1

wp [û(j|k)− yset]
2
+ wq ỹ

2 (Np|k)

+

k+Np−1∑
j=k

wr [û(j|k)− uset]
2

+

k+Np−1∑
j=k

ws [û(j|k)− û(j − 1|k)]2 (29a)

subject to process dynamics, i.e. ∀j ∈ Nk:k+Np−1:

ŷ(j + 1|k) = fy

(
θ̂(j|k)

)
, (29b)

z̄(j + 1|k) = fz̄

(
θ̂(j|k)

)
, (29c)

θ̂(j|k) :=

 {ŷ(i|k)}jk
{û(i)}jk

{q̂(i|k)}jk

 ; (29d)

constraints (19), i.e. ∀j ∈ Nk:k+Np−1:

z̄(j|k) = 1, (29e)

ŷ(j|k) ≤ yset (1 +OSmax) , (29f)

Amin
F ≤ û(j|k) ≤ Amax

F , (29g)

−∆max
AF

≤ û(j|k)− û(j − 1|k) ≤ ∆max
AF

; (29h)

and initial conditions:

û(k − 1|k) := u(k − 1), (29i)

ŷ(j|k) := ym(j) ∀j ∈ Nk−N :k−1, (29j)

q̂(i|k) := q̂(k − 1) ∀j ∈ Nk:k+Np−1. (29k)

Note that wp, wq, wr, ws are weight parameters.

The optimization problems in MHE and NMPC can be
solved using the extended PSO algorithm method devel-
oped in Vo et al. (2023b). The main extension lies in
handling the constraints (19). Briefly, whenever a candi-
date solution (a particle) violates the constraints, we re-
initialize it until all constraints are guaranteed. Detailed
discussion on this topic can be found in (Vo et al. (2023b)).

4. CASE STUDIES

This section presents studies of the ANN-based Adaptive
NMPC developed in Sec. 3. For simulation of the real and



virtual plant (cf. Fig. 6), we use the CasADi toolbox An-
dersson et al. (2019) with IDAS from SUNDIALS (Hind-
marsh et al. (2005), Gardner et al. (2022)) as the DAEs
solver. In addition, the ANNs are trained using scikit-learn
(Pedregosa et al. (2011)) and Tensorflow (Abadi et al.
(2015)). The NMPC and MHE weighting coefficients are
chosen heuristically. We will study 3 scenarios: i) the start-
up period, ii) the switching to the critical case, and iii) the
perturbed case. Simulation parameters are given in Tab. 2.

Table 2. Simulation parameters.

Parameter Value Parameter Value

T 0.5 h Ne 3 steps
OSmax 20% λ 0.9
ε 5% Np 3 steps
Nsam 4E6 samples wp = wq 1/yset
Train-Validation-Test 98%-1%-1% wr = ws 1/uset

4.1 Data generation and ANN training

For the simulations in this paper, we use the mathematical
model developed in Sec. 2.1 to generate data and train the
ANN. Firstly, we made several transient simulations with
different values of u and q. Then, we round all floating
values to the six decimal places. For N = 2, the training
data has about four million records. Since the data set is
big, we divide the train, validation, and test sets with a
ratio of 98%-1%-1%. The LSTM and logistic regression
networks parameters and training results are given in
Tab. 3.

Table 3. ANNs training information.

LSTM Logistic Regession

Hidden layers 2 2
Units per layer 10 50
Learning rate 1E-03 1E-03
Batch size 1024 1024
Epochs 13 5
Final training loss 4.47E-4 (MAE) 0.21 (Cross Entropy)
Final validation metric 4.47E-4 (MAE) 0.9 (Accuracy)

4.2 Start up period

The system’s initial condition is described as follows: We
assume that uranium is only sent to the system since t = 0.
In other words, before t = 0, only H and TBP are in the
process, with system parameters equal to their nominal
values. Furthermore, we assume that at t = 0, the system
is in a steady state (without uranium).

Simulation results of the start-up period are shown in
Fig. 8. It can be seen that the proposed control strategy
can effectively stabilize the system at the desired set point
while guaranteeing all the constraints (19). Compared to
the open loop controller, the controlled system signifi-
cantly improves the settling time, up to 5 times faster.
Furthermore, the switching condition (20) is active since
t = 8.5h, which allows to turn off NMPC for a lower
computation cost.
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Fig. 8. Simulation results of the start up period.

4.3 Critical case

To study the ability of the proposed control strategy to
adapt to variations in the set point value, we continue the
simulation in Fig. 8 and assume that yset increases to the
critical value [U ]aD9,s2 (cf. Fig. 4) at t = 25h and decrease

to its nominal value [U ]aD9,s1 since t = 100h. The simulation
result of this case is depicted in Fig. 9. It can be seen
that the controlled system can rapidly track the set point
values while guaranteeing all the constraints. Furthermore,
as expected, the uranium edge is shifted to the left when
the solvent saturation increases, as depicted in Fig. 10.
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Fig. 9. Simulation results when set point varies, i.e. switch-
ing to critical condition.
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Fig. 10. Profile of aqueous uranium concentration in set-
tlers at certain time steps of the simulation in Fig. 9.



4.4 Perturbed case

To study the disturbance rejection ability of the proposed
control strategy, we analyze the case in which there are
variations in the fresh solvent flow rate OE . The simulation
result for this case is shown in Fig. 11. It can be seen that
the developed ANN-based MHE is capable of estimating
the unknown disturbance, hence allowing the controller
to be always updated with the process. Consequently, the
controller can effectively adapt to unknown disturbances.

Additionally, we notice that there is always a delay of
around 0.5h for the ANN-based MHE to make a successful
estimation. This phenomenon can be explained by the
slow dynamics of the process and the nature of our
estimation algorithm. Regarding the MHE formulation
(27), the disturbance variable q is estimated based on the
output errors between the actual plant and its digital twin
ŷ − ym. However, since the process dynamics are slow, it
takes time for the effects of the disturbance to be reflected
in the output, i.e., the error ŷ − ym becomes sufficiently
large. As a consequence, there are delays in parameter
estimation. Furthermore, there are mismatches between
the NMPC prediction model and the actual plant within
these periods. Therefore, we noticed some violations at
certain time steps: 20, 40, and 60h.
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Fig. 11. Simulation results of the perturbed case. Note that
the first two subplots both show the behavior of [U ]aD9
over time, but at different scales.

5. CONCLUSIONS

This paper presents an ANN-based adaptive control strat-
egy for the uranium extraction-scrubbing operation in
the PUREX process. The ANN, which includes LSTM,
linear regression, and logistic regression networks, plays an
essential role in the control strategy. Specifically, it is the
predictor in the NMPC and the estimator in the MHE. The
integration of MHE and NMPC allows unknown variations
in the fresh solution flow rate to be estimated and updated
to the controller, hence an adaptive control scheme. The
MHE and NMPC optimization problems are solved by our
extended PSO algorithm, proposed in Vo et al. (2023b).

We have seen that the ANN helps reduce the complexity
of the MHE optimization problem, thus allowing online
implementation ability. Multiple simulation case studies
have shown that the developed control strategy is a can-
didate solution for our control problem: it can stabilize
the system at a desired set-point while guaranteeing all
the constraints, even in the critical condition or under un-
known disturbances. Future developments include studies
on other uncertainties handling (e.g., measurement noises
or model mismatches), online learning, stability, robust-
ness, and experimental implementation.
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