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Abstract: Environment perception is crucial for the safe navigation of vehicles and robots to detect
obstacles in their surroundings. It is also of paramount interest for navigation of human beings
in reduced visibility conditions. Obstacle avoidance systems typically combine multiple sensing
technologies (i.e., LiDAR, radar, ultrasound and visual) to detect various types of obstacles under
different lighting and weather conditions, with the drawbacks of a given technology being offset by
others. These systems require powerful computational capability to fuse the mass of data, which limits
their use to high-end vehicles and robots. INSPEX delivers a low-power, small-size and lightweight
environment perception system that is compatible with portable and/or wearable applications.
This requires miniaturizing and optimizing existing range sensors of different technologies to meet
the user’s requirements in terms of obstacle detection capabilities. These sensors consist of a
LiDAR, a time-of-flight sensor, an ultrasound and an ultra-wideband radar with measurement ranges
respectively of 10 m, 4 m, 2 m and 10 m. Integration of a data fusion technique is also required to
build a model of the user’s surroundings and provide feedback about the localization of harmful
obstacles. As primary demonstrator, the INSPEX device will be fixed on a white cane.

Keywords: ultrasound; LiDAR; ultra-wideband radar; environment perception; data fusion; portable
device; smart system; visually impaired and blind (VIB); wearable; portable
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1. Introduction

Obstacle avoidance systems for autonomous vehicles fuse multiple range sensing technologies
(i.e., LiDAR, radar and ultrasound) and visual to detect different types of obstacles over various lighting
and weather conditions. Range sensor data are combined with the vehicle orientation (obtained for
instance from an inertial measurement unit and/or compass) and navigation subsystems. These obstacle
avoidance systems are power hungry and require powerful computational capability, which limits
their use to high-end vehicles and robots.

INSPEX, which stands for “INtegrated smart SPatial Exploration system”, is a H2020 project
that intends to make obstacle detection capabilities available as a personal portable and/or wearable
multi-sensors miniaturized low power device. Thanks to the different range sensing technologies
embedded (i.e., ultrasound, LiDAR, depth camera, ultra-wideband radar), the INSPEX device detects,
localizes and warns about obstacles under various environmental conditions, in indoor/outdoor
environments, with static and mobile obstacles. Applications of the device comprise safer human
navigation in reduced visibility conditions (e.g., for first responders and fire brigades), small robot/drone
obstacle avoidance systems and navigation for the visually and mobility impaired people.

As primary demonstrator, we will plug the INSPEX device on a white cane for Visually Impaired
and Blind people (referred as VIB people in the paper). With a slight modification of the arrangement
of the sensors, it could become a wearable device attached on the person. The INSPEX device will
detect obstacles over the whole person height and provide audio feedback about harmful obstacles in
the user’s environment. In this way, it will improve the user’s mobility confidence and reduce injuries,
especially at waist and head levels [1]. The device will offer a “safety cocoon” to its user: it will provide
feedback only when obstacles enter the safety zone. It will limit the cognitive load [2] that is usually
observed with standard smart white canes that provide feedback as soon as they detect an obstacle.
Figure 1 summarizes the INSPEX project primary demonstrator (left). It also illustrates the “safety
cocoon” concept (right).
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Figure 1. Left: primary demonstrator. Right: safety cocoon offered by the INSPEX system.

The primary goal of INSPEX is to optimize the range sensors embedded in a portable device that
detects obstacles in its surroundings. To provide realistic constraints, the smart white cane application
was chosen. Therefore, the range sensors must be optimized in size, weight and power consumption
to make them compliant with the system requirement derived from the user’s needs and expectation
expressed in terms of size, weight and lifespan between two battery recharges. This encapsulates the
main results presented in the present paper.

The rest of the paper is organized as follows. Section 2 shortly reviews the related work.
Then, Section 3 deals with INSPEX methodology. It summarizes user’s needs and the main system
requirements, in particular regarding the characteristics of the different range sensors. A subsection is
dedicated on the compliance to the General Data Protection Regulation (GDPR) [3]. Section 4 shows
the optimization achieved in the course of the project for each range sensor. Section 5 shows how
the fusion of measurements from different range sensors enriches the knowledge about obstacles and
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the free-space in front of the device. Section 6 summarizes the main achievements from a sensor
perspective and provides future work directions.

2. Related Work

Among the different aids to help VIB people in their daily commute, the most accepted and largely
used one still seems to be the traditional white cane, even if it is not sufficient to for a safe mobility of
its user. Indeed, it does not detect obstacles at waist, chest or head level. To answer the traditional
white cane limitations, electronic white canes have been developed in the last decades and some
solutions already exist on the market [4]. Moreover, many research projects address these systems
from various point-of-views, ranging from the sensing aspects to the user’s feedback and warning,
but also embedded computing needs that depend on the sensing technologies. D. Dakopoulos and
G. Bourbakis [5] define Electronic Travel Aids (ETA) as “devices that transform information about the
environment that would normally be relayed through vision into a form that can be conveyed through
another sensory modality. They show that ETA are categorized depending on how the information
is gathered from the environment and how it is given back to the user (sound, vibration). They also
review 22 Electronic Travel Aids, 5 of them being already products at the time the paper was published
(2010). Some of these solutions have nothing to do with a white cane: glasses, helmets and belts have
also been proposed in the literature.

Thanks to progress in microelectronics and computer science, new solutions have been explored or
are under development. This strong involvement of the scientific community is closely connected with
enhancing the mobility of VIB people. In fact, according to the World Health Organization observation
in 2018 [6], “1.3 billion people live with some form of vision impairment. With regards to distance
vision, 188.5 million people have mild vision impairment, 217 million have moderate to severe vision
impairment, and 36 million people are blind” [7].

Regarding perception of the environment, all sensors that are able to sense obstacles have been
implemented, together with appropriate Signal Processing. Ultrasounds are widely used [5,8]. because
of their low cost but their operating range is limited due to problems when operating with highly
reflective surfaces (e.g., smooth surfaces), with low incidence angle of the beam and when detecting
small openings (e.g., a narrow door) [9]. Infrared sensors are also reported in the literature [10,11] even
if they are seldom used. Optical and vision systems [12] seem appealing because they can offer obstacle
recognition functionality when associated to AI techniques [13]. Unfortunately, they suffer from a high
sensitivity to the natural ambient light. To improve their performance, they can be associated with
another sensing modality [14]. Electromagnetic sensors seem a viable solution and several ETA that
embed radar have been proposed recently, see [9] and references therein. They do not suffer from
the drawbacks of other sensing modalities. However, they require heavy signal processing to extract
useful information regarding the localization of the obstacle in the sensor field-of-view. Moreover, their
ability to detect an obstacle depends on the obstacle itself (e.g., size, shape, material, incidence angle).

Co-integration of several range sensing modalities seems a valid option to overcome the drawbacks
exhibited by each of sensor technology and improve the overall device detection capabilities. A few
solutions exist in the literature. For instance, [14] implements ultrasound sensors together with vision
based techniques to detect and recognize obstacles. INSPEX consortium adopted this multi-modality
sensing approach: ultrasound, LiDAR, depth camera (time-of-flight) and radar sensors are embedded
in an integrated device together with an IMU and computational capabilities from the consumer
market. A model of the user’s environment is built via the fusion of the range measurements using
SigmaFusion™ [15]. The environment is in the form of an occupancy grid [16]. This latter is composed
of disjoint cells, each one bearing a probability of occupancy in [0; 1] reflecting its likelihood of
being occupied by an obstacle. SigmaFusion implements a Bayesian fusion technique in a fully
revisited algorithm that performs computations using integer arithmetic only, making it suitable for
embedded devices.
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3. INSPEX Methodology

3.1. Overview

The design of a novel support for disable people must truly answer user’s needs and expectation
to ensure its acceptance and adoption. This requires an effective and ongoing dialogue between the
VIB community and the various professionals (incl. researchers and engineers) that develop and
provide ETA [17]. At the beginning of the project, the INSPEX consortium conducted interviews
in different European countries to collect users’ needs [18] requirements and expectation regarding
the development of a new ETA. Even if some of them would like a hand-free (wearable) device for
specific activities, most of interviewees prefer to keep the traditional white cane, and expand it with
new functionalities. Not surprisingly, and in accordance with other studies [17], end-users request a
non-stigmatizing, as much as possible unnoticeable and easy to carry device. This later aspect is of high
importance because of harm fatigue induced by a heavy device. They also expressed needs regarding
early warning (in the range of a few seconds) of nearby obstacles that they may collide with to slightly
and smoothly modify their trajectory. Taking into account the mean walking speed, this corresponds
to a detection range of a few meters. They also expressed difficulties in detecting particular obstacles,
for instance, parking barrier or bistro table at pelvis level, road sign at waist or head level.

We gathered the needs collected in six Personas that are fictional characters, representing various
profiles of the targeted end-user community [19]. These personas can be deeply described and analyzed
without any concern about privacy. From these Personas, we derived functional and non-functional
requirements together with their priority of implementation in the integrated prototypes that are
developed in the course of the INSPEX project. Note that the end-users’ requests advocate for pushing
constraints on the device integration aspects (especially size and weight) even further. This involves a
strong optimization of the sensor prototypes brought to the project by partners in power consumption
(to decrease the size of the battery) and in size to ease the system integration and decrease its weight.
Then, we derived the system requirements for the VIB application, and finally we proposed the system
architecture [20]. Figure 2 illustrates this methodology.
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To ensure the proper detection of different obstacles (in size, shape and material) in various
environmental conditions (including fog, snow, rain, direct sunlight) over the whole person’s height,
we implemented four range-sensing technologies in the INSPEX device, namely, ultrasound, LiDAR,
depth camera (time-of-flight) and radar. Figure 3 shows how these sensors are arranged to detect
obstacles over the whole person height. As can be seen, the different fields-of-view overlap to offset
drawbacks of one technology by another one. For instance, the “long-range LiDAR” is able to detect
obstacles far from the user thanks to its large measurement range. It will efficiently detect obstacles a
pelvis level (e.g., parking barrier or bistro table) because of its mechanical arrangement. However,
due do its narrow field-of-view, it will miss obstacles located at foot or waist levels. Moreover, in
case of bright direct sunlight, it may provide unreliable measurement. Lastly, it will miss glass
windows or glass doors. The ultra-wideband radar, even with its smaller measurement range, provides
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complementary information that offsets drawbacks of the long-range LiDAR. In addition, it can warns
the user in advance about obstacles at head level, as well as the ultrasound that aims upward and
detects nearby head-level obstacles.
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Table 1 summarizes the main system requirements from a sensing perspective as derived by the
partners from the users’ requirements and from the optimization of the sensors envisioned in the
course of the project. Note that the numerical values come from a breakdown of the weight, size
and detection range for the integrated device as expressed by the potential users. The power budget
assigned to each sensor comes from the device lifespan between two battery charges and from the
battery acceptable weight.

Table 1. Initial system requirements from a sensing perspective for each sensing module.

Sensor
Characteristics Ultrasound Long-Range

LiDAR
Depth

Camera
Ultra-Wideband

Radar

Measurement range >1 m 10 m 4 m 4 m

Consumption <100 mW <200 mW <100 mW <600 mW

Size <50 cm3 <150 cm3 <100 cm3 <50 cm3

Weight <30 g <50 g <50 g <50 g

Field-of-view in [20◦, 40◦] < 5◦ >30◦ >50◦

3.2. INSPEX and Its Legal Compliance to the GDPR

The INSPEX device delivers to the user information about obstacles entering the “safety cocoon”
through his/her smartphone. Therefore, the consortium had to deal with the device’s compliance with
the GDPR (EU General Data Protection Regulation) [3].

This latter required first to identify the processing of personal data that are likely to fall under the
territorial and material scope of data protection rules. This lead to take into consideration the data
flows between the INSPEX device and the mobile application loaded on the user’s smartphone, as well
as the data flow generated when using the mobile application.
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The second step of the legal analysis consisted in identifying the actors (data controller, data
processor and all the other recipients) involved in the delivery of a service, for instance, a geolocalization
one. Other recipients refer for instance to the situation where the coordinates of the user are sent with
the smartphone IP address to the provider of a geolocalization service.

Then, the legal analysis focused on the rules applicable to the processing of personal data in
this context. This refers to the seven principles governing the processing of personal data, namely,
lawfulness, fairness and transparency, purpose limitation, data minimization, accuracy, storage
limitation, integrity and confidentiality, and accountability. It also refers to the general obligations
of data controller and processor (e.g., privacy by design and by default), to the security of personal
data, the necessity to perform a data protection impact assessment, without forgetting to implement
appropriate mechanisms and procedures to ensure the effectiveness of the data subject’s rights when
using the INSPEX device.

4. Optimization of Sensors and Their Results

Partners brought to the project: prototypes of an ultrasound, a long-range LiDAR, a depth camera
(time-of-flight) and an ultra-wideband radar.

We first characterized these modules using a common methodology: typical obstacles (e.g.,
bistro table, tree branch) were placed at predefined distances in from of the prototypes in controlled
environmental conditions. Tests in mobility were also conducted with the ultra-wideband radar.

Then, optimization of the prototypes was carried out to make them compliant with their
requirements in terms of measurement range, size, weight, and power consumption, see Table 1.

This optimization has been conducted by the prototype owner and it depends on the characteristic
that must be improved. Section 4.1, Section 4.2, Section 4.3, Section 4.4 present for each sensor
module, the prototype brought to the project, its optimized version and some characterization results
after optimization.

Note that the optimization phase has delivered a preliminary version and a final version of the
optimized modules. Only results for the final version are provided here. INSPEX partners also chose
to develop a stand-alone version of each module even if this increases the consumption, size and
weight of the overall integrated device. In this way, each module can extend its potential exploitation
routes. Lastly, the project delivers prototypes of the optimized sensor modules at TRL4 [21]. Therefore,
their cost is not considered in the present work, even if it will have a strong impact on the market
uptake of their more mature version.

4.1. Ultrasound Module

The ultrasound module must be designed to detect obstacles up to 1 m from the user, see Table 1.
The prototype brought to the project is compliant with its requirements in terms of range but its power
consumption is too high and its size and weight must be slightly decreased.

4.1.1. Ultrasound Prototype

The prototype brought to the project is depicted on Figure 4. Its weight is 44 g with a dimension
of 110 × 40 × 30 mm. The input power is equal to 400 mW. Its measurement range is less than 1 m,
which is not compliant with its requirements. Its field-of-view is larger than 25◦, which is sufficient to
cover the head level, see Figure 3.
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4.1.2. Optimized Module

The optimization activities addressed mainly the following aspects:

• Size reduction: the board initial area was halved by careful layout and component selection.
The transducers were changed to smaller ones (MA40 HIS from Murata);

• Power consumption: the whole bill of material was revised, in particular the power management
section and the microcontroller. Moreover, the firmware was optimized to switch on the different
subcircuits only when needed;

• The software algorithm for obstacle detection was changed from threshold-based to
cross-correlation-based, and optimized to run as fast as possible on the microcontroller in real-time.

The ultrasound module is composed of a main board, with the driving electronic, and a transducer
board, mounted on top of the main board, see Figure 5. The module features up to four transducers,
up to four ASICs, each one capable to drive one transmitter and read one receiver, an optional additional
analog front-end with all-pass filters, a temperature/humidity sensor to compensate the speed of sound,
a microcontroller from STM32 L4 family, and a power management section. On top of the transducer
board, a cone-shaped part may be mounted to increase the directivity and sensitivity.
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To measure the distance with respect to a target, we developed an algorithm based on
cross-correlation between the received signal and a fixed reference echo [22]. The algorithm runs in
real-time on the microcontroller at up to 25 measures per second (2-meter range) or 10 measures per
second (5-meter range).

4.1.3. Results for the Optimized Ultrasound Module

The optimized module characteristics are reported in Table 2 together with the prototype and
requirement ones. As can be seen, the optimized ultrasound module is compliant with its requirements
with no change in the field-of-view (≈25◦). The power consumption can be decreased via time
triggering techniques.
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Table 2. Comparison between the prototype and the optimized modules (ultrasound).

Characteristics Prototype Optimized (Designed) Requirements

Weight (g) 44 25 <30

Dimension (cm3) 11 × 4 × 3 5.5 × 4 × 2 = 44 <50

Power (mW) 400 70 <100

Range (m) <1 >5 >1

The measurement accuracy was characterized by placing the module in front of a wall, at known
distances. The reference distance was measured with a tape measure. Two transducers were used,
one for transmission and one for reception. Figure 6 shows the distance measurement error, with single
measurements (no averaging) and no further compensation: the error has a mean of 0.14 cm and
standard deviation of 0.51 cm, in a range from 35 cm up to 5 m.

In order to reach the 5-meter range the cone-shaped mask must be mounted, otherwise, the module
still works, but with its range reduced to 2 m. The cone-shaped mask has also the effect to reduce the
field-of-view (defined as −6 dB decrease of the sound pressure level [SPL]), from ± 80◦ without the
mask, to ± 20◦ with the mask, in both elevation and azimuth.
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The capability to detect different types of obstacles was characterized by placing obstacles of
different shapes and materials at the distance of 1 m from the sensor and measuring the intensity of the
received echo. Results are shown in Table 3, where the intensity is in arbitrary unit, proportional to the
SPL at receiver.

Table 3. Intensity of the received echo when obstacles are located at 1 m from the ultrasound module.

Shape Material Dimension Intensity (Arbitrary Unit)

Flat surface wall - 2450

Cylinder aluminum diam. 58 mm 535

Cylinder steel (painted) diam. 35 mm 390

Cylinder plastic diam. 18 mm 275

Cylinder plastic diam. 8 mm 205

Cylinder wood (painted) diam. 6 mm 125

Sphere expanded polystyrene diam. 244 mm 225

Sphere expanded polystyrene diam. 150 mm 125

Sphere expanded polystyrene diam. 100 mm 120
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4.2. Long-Range LiDAR

The long-range LiDAR module must be designed to detect obstacles up to 10 m from the user.
The prototype brought to the project is compliant in terms of range (25 m) but its components were not
optimized for weight (465 g), size (119 × 66 × 77 mm3) or power consumption (1.32 W).

4.2.1. Long-Range LiDAR Prototype

OnSemi designed this prototype. It comprises a single board with a pulsed laser diode and
collimation lens and an OnSemi photomultiplier with focusing lens. The focusing lens is coated
to reduce interference from light outside of the 905 nm wavelength. The board also contains an
FPGA for control of the detector and data processing. The board is powered through the mains
and communication is achieved through a specific computer program. The prototype is depicted on
Figure 7.
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Figure 7. Long-range LiDAR prototype brought to the project.

4.2.2. Optimized Module

As the range required is not as large as the original prototype, it was possible to reduce the power
consumption. This involved a redesign of the motherboard pre-amplification circuit. The size of the
optics was also substantially reduced compared with the original implementation.

The optimized module comprises a motherboard and an optics board to allow for different
configurations when integrated into the INSPEX device, see Figure 8. The motherboard contains a
microcontroller and an FPGA to drive the optics devices and to process the data and provide power
management. The optics board includes the laser diode and the silicon photomultiplier to detect
the returned laser signal. The lenses for focusing and collimating the beam can be added to the
board (Figure 8d) or integrated into the package. When working in stand-alone, communication is
achieved through a specially designed computer program. An additional Bluetooth module allows
data collection on a smartphone app.
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4.2.3. Results for the Optimized Long-Range LiDAR Module

The optimized module characteristics (design and measured) are reported in Table 4 together
with the prototype and requirement ones. We decreased the power consumption but not enough to
meet the module requirements. One solution is to implement duty cycling in the power manager of
the INSPEX device to decrease the mean power consumption. The other characteristics are consistent
with the requirements.

To evaluate the measurement, a single point measurement of a stationary object at a known
distance is performed. The laser diode (SPL PL90) is pulsed at 150 ps. A clock is started at the
initiation of the pulse. The detector is a MicroFC-10020. When a returned signal is detected, the clock is
stopped, the time-of-flight is stored and the distance is computed on the FPGA. The bias is computed
after the initial measurement and the measurement frequency can be decreased to reduce the power
consumption without a significant decrease in accuracy.

Table 4. Comparison between the prototype and the optimized module (long-range LiDAR).

Characteristics Prototype Optimized
(Design)

Optimized
(Measured) Requirements

Weight (g) 465 70 50 50

Dimension (cm3) 11.9 × 7.7 × 5.5 = 465.8 6 × 7.7 × 3 = 138.6 4.5 × 5.1 × 3 = 68.85 <150

Power (mW) 1320 500 400 100

Range (m) 25 10 10 10

4.3. Depth Camera

The depth camera (time-of-flight) module must be designed to detect obstacles within a volume
of 4.0 m length, 2.0 m height and 1 m width (0.5 m on each side of the user), in front of the user.
The module should be able to detect obstacles as small as 0.1 m x 0.1 m at a user speed of about 5 km/h.
It should measure reliably at day and night, and under different weather conditions, e.g., cloudy, foggy,
rainy, and snowy. Moreover, it should be as tolerant as possible to sunlight.

4.3.1. Depth Camera Prototype

As prototype, we chose the off-the-shelf evaluation kit epc635 from ESPROS Photonics
Corporation [23]. It is a fully assembled and tested camera system designed for the evaluation
of the epc635 time-of-flight imager with a resolution of 160 × 60 pixels that can achieve a frame
rate of up to 128fps with an absolute accuracy in the centimeter range after calibration and runtime
compensation [24]. While the long-range LiDAR delivers a unique measurement (i.e., a unique beam),
the epc635 imager produces a point cloud that covers a wider area space with a field-of-view of 56◦.

Preliminary measurements with the evaluation kit showed that the imager characteristics are
compliant with the depth camera requirements. They are not reported in the paper.

4.3.2. Optimized Module

The depth camera module has been designed “around” the epc635 time-of-flight imager as a
stack of three PCBs split by function, i.e., power supply, controller and LEDs driver (see Figure 9).
The optical part is based on a newly designed holder and commercial components, the whole module
being customized and optimized for the INSPEX application.
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4.3.3. Results for the Optimized Depth Camera Module

The optimized module characteristics are reported in Table 5 together with the prototype and
requirement ones. The power consumption slightly exceeds the module requirements and duty cycling
could be used to meet (in mean value) the requirements. The other characteristics are consistent with
the requirements, with a slightly better measurement range. The measured field-of-view is equal to
33.5◦ in elevation and 40◦ in azimuth.

Table 5. Comparison between the prototype and the optimized module (depth camera).

Characteristics Prototype Optimized Requirements

Weight (g) >100 50 50

Dimension (cm3) 9 × 7 × 5 = 315 5 × 4 × 3.8 = 76 <100

Power (mW) >1000 140 100

Range (m) >10 4.5 4

Figure 10 illustrates what the depth camera module “sees” when an obstacle is placed at 3 m
in a controlled environment. This result is obtained with calibration parameters that are stored in
the module. More tests are currently performed to fine-tune these parameters. Basically, the depth
camera (time-of-flight) module produces raw distance and amplitude values. Runtime compensation
and dynamic adjustment must be integrated in the module to work as expected under different
environmental conditions.
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4.4. Ultra-Wideband Radar

The ultra-wideband (UWB) radar module must be designed to detect obstacles up to 4 m from the
user. The prototype brought to the project was designed to operate at 4 GHz for breath monitoring
in intensive care units. Therefore, its characteristics are far from the module requirements: its size is
9 × 9 × 3.5 cm3, it weighs 200 g, and it has a power consumption of 825 mW.

4.4.1. Ultra-Wideband Radar Prototype

The prototype is depicted on Figure 11. It is made of a RF board connected to an antenna
board, a digital board connected to the RF board on the one side and to an external microcontroller
board through Serial Peripheral Interface (SPI) on the other side. The external microcontroller board
is a Nucleo 144 board (with a STM32F7 microcontroller). Lastly, a software driver interfaces the
external microcontroller board with a PC over an Ethernet physical interface and Transmission Control
Protocol/Internet Protocol (TCP/IP) and User Datagram Protocol/Internet Protocol (UDP/IP).

After a static characterization phase of the UWB radar, we performed measurements in mobility
conditions. The radar is placed on a cart moving linearly towards the obstacle with a colliding trajectory.
The relative radial speed is about −0.15 m/s. The right drawing in Figure 11 shows the radar response
over time with three snapshots in the speed domain. The top left curve clearly shows the “approaching”
obstacle wavefront while the three other curves show how the speed can be exploited in the estimation
of colliding trajectories.Sensors 2019, 19, x FOR PEER REVIEW 12 of 18 
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4.4.2. Optimized Module

The ultra-wideband radar module is mainly an optimization in form factor and integration of the
initial prototype. It is made of three stacked boards, namely, the antenna board, the RF board and the
digital board, see Figure 12. The digital board has the FPGA and the SPI interface to the INSPEX main
computing platform. The module main characteristics are:

• 8 GHz operation (instead of 4 GHz for the prototype);
• Antenna: Azimuth beam 56◦ (3 dB), 118◦ (10 dB), Elevation beam 56◦ (3 dB), 118◦ (10 dB), linear,

vertical polarization;
• Up to 10 m range, 15 cm resolution, 200 Hz raw data refresh rate (acquisition rate);
• Non-ambiguous relative speed estimation over [−1.875, 1.875] m/s;
• Raw data baseband (I, Q) signal over the 64 distance bins (fast “channel” time axis);
• SPI interface to the general processing platform embedded in the overall device;
• Low-level signal Processing performed on the INSPEX main computing platform.
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4.4.2. Optimized Module 

The ultra-wideband radar module is mainly an optimization in form factor and integration of 
the initial prototype. It is made of three stacked boards, namely, the antenna board, the RF board and 
the digital board, see Figure 12. The digital board has the FPGA and the SPI interface to the INSPEX 
main computing platform. The module main characteristics are: 
• 8 GHz operation (instead of 4 GHz for the prototype); 
• Antenna: Azimuth beam 56° (3 dB), 118° (10 dB), Elevation beam 56° (3 dB), 118° (10 dB), linear, 

vertical polarization; 
• Up to 10 m range, 15 cm resolution, 200 Hz raw data refresh rate (acquisition rate); 
• Non-ambiguous relative speed estimation over [−1.875, 1.875] m/s; 
• Raw data baseband (I, Q) signal over the 64 distance bins (fast “channel” time axis);  
• SPI interface to the general processing platform embedded in the overall device; 
• Low-level signal Processing performed on the INSPEX main computing platform. 
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Figure 12. Ultra-wideband radar module. (a) Antenna board; (b) RF board; (c) digital board. Figure 12. Ultra-wideband radar module. (a) Antenna board; (b) RF board; (c) digital board.

4.4.3. Results

The optimized module characteristics are reported in Table 6 together with the prototype and
requirement ones. The power consumption exceeds the module requirements. However, this value
corresponds to the peak (measured) one. The field-of-view is equal to 56◦ in elevation and 56◦ in
azimuth (3-dB beam width), which is consistent with the requirements. The main underperformance is
the measurement range that is clearly less than expected.

Table 6. Comparison between the prototype and the optimized module (Ultra-wideband radar).

Characteristics Prototype Optimized Requirements

Weight (g) 200 25 <50

Dimension (cm3) 9 × 9 × 3.5 5.6 × 2 × 3 = 33.6 <50

Power (mW) 825 825 <600

Range (m) 3–5 2 4

Figure 13 shows a test result where the obstacle is a human person approaching the radar at a
walking speed from 2.2 m at time 3.5 s and moving away from 0.4 m at the same speed at time 6 s.
This example result can be straightforward compared to the characterization results of the prototype
for which a walking person was successfully detected up to 8 m away.
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The reduction of range between the prototype operating at 4 GHz and this optimized module
operating at 8 GHz is therefore in the order of 30 dB, which is explained as follows:

• The effective isotropic radiated power (EIRP) output power is reduced by 8 dB (~6 dB for the
integrated circuit itself and ~2 dB for the antenna with a larger elevation beam);

• The path loss is increased by 6 dB for the same distance since the frequency is doubled;
• The receiver antenna gain is reduced by 2 dB as for the transmitter one;
• The receiver noise is degraded by about 9 dB, which was measured for the ultra-wideband

integrated circuit.

In total, the estimated degradation of the optimized module versus the prototype in terms of
received signal to noise ratio, independently of the capability of the receiver static clutter rejection,
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is about 25 dB, which coincides with the human walking test case degradation. As a human body
has about 1 m2 RCS and obstacles as small as 0.01 m2 RCS shall be detected up to a few meters.
The range measurement of the optimized module cannot meet the Table 5 requirements, even with
further optimization.

5. Data Fusion to Build a Model of the Environment

Data acquired by the different range sensors are fused in real-time using the SigmaFusion™
technology [15] that builds an occupancy grid to model the device surroundings.

An occupancy grid, initially introduced by [16], is composed of a finite number of disjoint cells.
A probabilistic estimate of the possible state is assigned to each cell. A cell can have two possible states:
“occupied” or “empty”. It is considered occupied if an obstacle is present, partially or totally, in the
cell. It is considered empty otherwise. An obstacle can be any possible body in the scene, for example
cars, human beings, animals, plants, buildings, traffic signs, etc. The occupancy state of each cell is
estimated through a perception model evaluated for each measurement returned by the range sensors.
Since every sensor embodies uncertainties and errors, the estimation of each cell state incorporates
uncertainties. This uncertainty is represented through a probability of occupancy assigned to each cell,
hence the name occupancy grid. Bayesian fusion is applied to fuse measurements from different range
sensors. Note that even if this fusion process exhibits exponential complexity in its general formulation,
the “nearest target” hypothesis allows breaking down this complexity to a linear one. This hypothesis
means that we consider in the fusion process the smallest distance to an obstacle returned by a sensor,
the information the measurement might provide behind this nearest obstacle is not taken into account
to build the environment model.

SigmaFusion™ revisited the occupancy grid algorithm to manipulate only integer numbers
instead of floating point ones, leading to the possibility to implement the Bayesian fusion algorithm
on a microcontroller. This change in the arithmetic paradigm makes occupancy grid computation
implementable on consumer market microcontroller instead of high-end processors.

Even if this paper is not centered on data fusion, we now show how fusion of data acquired
for different range sensing technologies improves the environment modeling. Figure 14 shows the
experiment setup. The preliminary INSPEX prototype is fixed on a white cane. It contains the
ultrasound sensor, the depth camera and the General Processing Platform on which data fusion is
performed using SigmaFusion™. Data are also stored to plot in 3D the scene that the sensors “see” and
how it is modeled with the fusion algorithm.

Figure 15 shows measurements of the ultrasound sensor (left) and of the depth camera (right)
plotted in 3D. The first one presents a cone-shape while the second one is a point cloud. The occupancy
grid computed with SigmaFusion™ from each sensor data is superposed on the measurement plots.
The cells in dark grey (light grey) encode a high (low) probability of occupancy while the cells in grey
correspond to the situation where the probability of occupancy is equal to 0.5, which means that we do
not know if the cell is empty or occupied. Note that the occupancy probability ranges over its full span,
ranging from 0 (empty–encoded in white on the plots) to 1 (occupied–conceded in black on the plots).

As can be seen, the occupancy grid computed from the depth camera measurements does not
provide information regarding the presence/absence of obstacles in some areas, typically, the ones
where no obstacle is found up to the maximum sensor range (for the actual experimental setup in
Figure 14, between the person and the walls). The occupancy grid computed from the ultrasound
and the depth camera measurements is provided in Figure 16. As can be seen, the areas with a low
probability of occupancy (encoded in light grey) are even lighter, which means that the probability of
“emptiness” has been reinforced. The cells with a high probability of occupancy are even darker which
means that the probability of occupancy has been reinforced. More noticeable are the cells located
between the person and the wall. The depth camera was not able to provide information regarding the
presence of an obstacle (in fact “out of range” was returned), leading to the probability 0.5, encoded
in grey. After fusion with the ultrasound measurement, these cells are encoded with a lighter grey,
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because the occupancy probability has decreased. This mechanism is even more reinforced when data
from the long-range LiDAR and from the ultra-wideband radar are taken into account in the fusion
process. Moreover, this “multi-technology” approach allows detecting obstacles in situations when a
single-technology obstacle detection device fails.
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6. Discussion, and Future Work Directions

The primary goal of INSPEX was to optimize the range sensors embedded in a portable device
to detect obstacles in the surrounding of the device. To provide realistic constraints, the smart white
cane application was chosen. Table 7 summarizes the characteristics of the four modules optimized in
the course of the project. The values that exceed the characteristics are highlighted in bold: the main
drawback is the measurement range for the ultra-wideband radar that is halved when compared to
its requirements. We explained and quantified this under-performance above. Improvement of this
module will require the redesign of the ASIC, which is currently out of the project timeframe.
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Power consumption figures correspond to peak measured values. The mean power consumption
value is decreased via an ad-hoc power management of the sensing modules designed using formal
methods [25]. Remind that we designed each sensor module as a stand-alone one for its partner’s
owner to explore other exploitation routes. Consequently, it embeds its own microcontroller with its
dedicated firmware (for sensor control, calibration, and data pre-treatment and treatment purposes)
and the power supply circuitry. An advanced version of the modules will be less consuming because
the firmware of each module will be ported on the INSPEX main computing platform, leading to the
remove of the dedicated microcontroller. Moreover, the INSPEX main computing platform delivers
the power supply to all the modules, therefore the associated circuitry will be removed from the
advanced modules.

Table 7. Sensing modules requirements vs. characteristics of the optimized modules.

Sensor
Characteristics

(Required/Achieved)
Ultrasound Long-Range

LiDAR
Depth

Camera
Ultra-Wideband

Radar

Measurement range (m) > 1/> 2 10/10 4/4.5 4/2

Consumption (mW) <100/100 <200/400 <100/140 <600/825

Size (cm3) <50/44 <150/138.6 <100/76 <50/33.5

Weight (g) <30/25 <50/50 <50/50 <50/25

Field-of-view in [20◦, 40◦]/25◦ <5◦/- >30◦/V33.5◦× H40◦ >50◦/V56◦× H56◦

The optimized modules have been delivered to the consortium and the final prototype is under
assembling. Its mockup is shown in Figure 17.

Information about obstacles entering the user’s “safety cocoon” (see Figure 1) are extracted from
the occupancy grid computed by SigmaFusion™ [15]. This information is sent to the user’s smartphone
via Bluetooth Low Energy (BLE). 3D spatial sound that provides a virtual image of the obstacle is
output to the user with an extra-auricular headset [26].

Tests with the INSPEX integrated portable device will be conducted both in laboratory conditions
and with VIB people in realistic environments. The test results are not reported in the present paper
whose main objective was to present the optimization work carried out in parallel for each range
sensing technology integrated in the portable device.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 18 

 

Table 7. Sensing modules requirements vs. characteristics of the optimized modules. 

Sensor<break> 

Characteristics<break> 

(Required/Achieved) 

Ultrasound 
Long-range 

LiDAR 

Depth<break> 

Camera 

Ultra-

Wideband<break> 

Radar 

Measurement range 

(m) 
> 1 / > 2 10 / 10 4 / 4.5 4/2 

Consumption (mW) <100/100 <200/400 <100/140 <600/825 

Size (cm3) <50/44 <150/138.6 <100/76 <50/33.5  

Weight (g) <30/25 <50/50 <50/50 <50/25 

Field-of-view in [20°, 40°]/25° <5°/- >30°/V33.5°× H40° >50°/V56°× H56° 

The optimized modules have been delivered to the consortium and the final prototype is under 

assembling. Its mockup is shown in Figure 17. 

Information about obstacles entering the user’s “safety cocoon” (see Figure 1) are extracted from 

the occupancy grid computed by SigmaFusion™ [15]. This information is sent to the user’s 

smartphone via Bluetooth Low Energy (BLE). 3D spatial sound that provides a virtual image of the 

obstacle is output to the user with an extra-auricular headset [26]. 

Tests with the INSPEX integrated portable device will be conducted both in laboratory 

conditions and with VIB people in realistic environments. The test results are not reported in the 

present paper whose main objective was to present the optimization work carried out in parallel for 

each range sensing technology integrated in the portable device. 

 

Figure 17. Mockup of the integrated INSPEX device. 

Author Contributions: J. Foucault and S. Lesecq were in charge of the paper writing. They wrote sections 1 to 3 

and 6. They also reviewed and edited the paper. S. Lesecq also wrote section 5. G. Dudnik and M. Correvon 

developed the depth camera and contributed to section 4. They also designed and manufactured the INSPEX 

main computing platform for the embedded INSPEX device. R. O’Keeffe, C. Ó’Murchú and S. Buckley 

developed the long-range LiDAR and contributed to section 4. V. Di Palma, M. Passoni, F. Quaglia and A. di 

Matteo developed the ultrasound module and contributed to section 4. L. Ouvry developed the ultra-wideband 

radar and contributed to section 4. O. Debicki and N. Mareau developed the INSPEX device firmware and 

embedded data fusion algorithm. They are also the software architects, in strong cooperation with G. Dudnik 

and M. Correvon that were in charge of the hardware architecture. T. Rakotovao implemented the data fusion 

algorithm in the device and produced the results in Section 5. F. Birot and H. de Chaumont developed the 3D 

audio interface together with an advanced version of the audio extra-auricular headset. They contributed to the 

related work and discussion sections. They will be in charge of the tests of the device in real-life conditions with 

Visually Impaired and Blind people. J. Barrett, S. Rea and A. McGibney are in charge of the device integration 

and they perform the device reliability assessment. They contributed in the related work and discussion sections. 

R. Banach and J. Razavi designed the power manager using formal methods. They contributed in the 

introduction and discussion sections. 

Funding: INSPEX has received funding from the EU’s Horizon 2020 Research and Innovation Programme under 

grant agreement No 730953, and from the Swiss Secretariat for Education, Research and Innovation (SERI) under 

grant 16.0136 730953. 

Figure 17. Mockup of the integrated INSPEX device.

Author Contributions: J.F. and S.L. were in charge of the paper writing. They wrote Sections 1–3 and 6. They also
reviewed and edited the paper. S.L. also wrote Section 5. G.D. and M.C. developed the depth camera and
contributed to Section 4. They also designed and manufactured the INSPEX main computing platform for the
embedded INSPEX device. R.O., C.Ó. and S.B. developed the long-range LiDAR and contributed to Section 4.
V.D.P., M.P., F.Q. and A.d.M. developed the ultrasound module and contributed to Section 4. L.O. developed the
ultra-wideband radar and contributed to Section 4. O.D. and N.M. developed the INSPEX device firmware and
embedded data fusion algorithm. They are also the software architects, in strong cooperation with G.D. and M.C.
that were in charge of the hardware architecture. T.R. implemented the data fusion algorithm in the device and
produced the results in Section 5. J.H. is in charge of the legal aspects in INSPEX. He contributed to Section 3.2.
F.B. and H.d.C. developed the 3D audio interface together with an advanced version of the audio extra-auricular



Sensors 2019, 19, 4350 17 of 18

headset. They contributed to the related work and discussion sections. They will be in charge of the tests of the
device in real-life conditions with Visually Impaired and Blind people. J.B., S.R. and A.M. are in charge of the
device integration and they perform the device reliability assessment. They contributed in the related work and
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