
HAL Id: cea-04772235
https://cea.hal.science/cea-04772235v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preliminary integration of vortex within the OpenPiton
platform

Davy Million, César Fuguet, Adrian Evans, Jonathan Balkind, Frédéric Pétrot

To cite this version:
Davy Million, César Fuguet, Adrian Evans, Jonathan Balkind, Frédéric Pétrot. Preliminary integra-
tion of vortex within the OpenPiton platform. 2024 Vortex Workshop co-located with MICRO 2024,
Nov 2024, Austin, United States. �cea-04772235�

https://cea.hal.science/cea-04772235v1
https://hal.archives-ouvertes.fr


Preliminary Integration of Vortex within the OpenPiton Platform
Davy Million

davy.million@cea.fr
Univ. Grenoble Alpes, CEA, List

F-38000 Grenoble, France

César Fuguet
cesar.fuguettortolero@cea.fr

Univ. Grenoble Alpes, CEA, List
F-38000 Grenoble, France

Adrian Evans
adrian.evans@cea.fr

Univ. Grenoble Alpes, CEA, List
F-38000 Grenoble, France

Jonathan Balkind
jbalkind@ucsb.edu

University of California, Santa Barbara
Santa Barbara, USA

Frédéric Petrot
frederic.petrot@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, TIMA
F-38000 Grenoble, France

CCS Concepts
• Computer systems organization→ Processors and memory
architectures.

Keywords
Cache Memory, GPU, NoC, RISC-V, Open-Source Hardware

ACM Reference Format:
Davy Million, César Fuguet, Adrian Evans, Jonathan Balkind, and Frédéric
Petrot. 2024. Preliminary Integration of Vortex within the OpenPiton Plat-
form. In 2024 Vortex Workshop co-located with MICRO 2024, November 3rd,
2024, Austin, US. ACM, New York, NY, USA, 2 pages.

1 Introduction
One approach to scaling performance is the adoption of hetero-
geneous architectures which tightly integrate CPUs, GPUs and
specialized accelerators. These systems can be divided into two
categories, those with Coherent Interconnects and those without. In
the former, all compute units have a "single view" of the shared
memory, simplifying the programming model. In the latter, the
programmer must ensure each compute unit accesses the most re-
cent version of data, using mechanisms such as fences and explicit
flushing of caches. Due to the high data bandwidth required by
GPUs, traditional hardware-based cache coherency mechanisms do
not scale, thus there is active research on relaxed coherency strate-
gies [4]. This research requires access to multi-core, heterogeneous
compute platforms able to execute meaningful benchmarks and
where the RTL can be modified to evaluate new solutions.

OpenPiton [5] is a widely-used many-core, open-source re-
search platform which can boot SMP Linux. It contains tiles which
consist of a CPU core, a private L1 cache, an additional private
L1.5 cache, a slice of a distributed L2 cache and Network-on-Chip
(NoC) routers. Coherency between the L1.5 and L2 caches is main-
tained using a directory-based MESI protocol. It initially used an
OpenSPARC core [5], but has been extended to other CPU including
RISC-V [6]. Accelerators such as the NVIDIA Deep Learning Accel-
erator [6] and eFPGAs [2] have been integrated with OpenPiton.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Vortex-2024, November 3rd, 2024, Austin, US
© 2024 Copyright held by the owner/author(s).

Core (CVA6)

L1D L1I

L1.5
NoC1 NoC2 NoC3

Routers

L2
NoC1 NoC2 NoC3

CVA6
Tile

OpenPiton
P-Mesh

64-bit

A
X
I4

  
 1

2
8

AXI-Lite

64P
-M

e
sh

 N
o

C
C

h
a
n

n
e
ls

AXI
P-Mesh
Bridge

Vortex
GPGPU

Config
Status
Regs

L1D$

L1I$

Vortex
Tile

P-Mesh
AXI-lite
Bridge

Figure 1: High-Level Integration of Vortex into OpenPiton

Vortex [3] is an open-source (GP-)GPUwhich is based on RISC-V
ISA extensions. It has many configuration parameters, including
the number of warps per core, number of threads per warp, size of
the caches, etc. Vortex has a complete software stack, relying on
the PoCL [7] framework and LLVM to produce a RISC-V binary
from OpenCL sources.

We present the first results of an integration of a single Vortex
core (intermediate version between 2.1 and 2.2) as a peripheral tile
on the edge of OpenPiton, as shown in Figure 1.

2 Hardware Architecture
OpenPiton’s NoC and coherence system are what constitutes the
P-Mesh. The NoC consists of three 64-bit full-duplex channels for
data and cache coherency messages. However, Vortex has an AXI-4
manager interface (128-bit bus) to communicate with main memory.
We used a simple AXI-4 to P-Mesh bridge, which is limited to one
outstanding transaction on the P-Mesh network. The Vortex core
was configured with 4 warps of 4 threads, a L1 instruction cache
and a L1 data cache of 16 KB with 128-bit cache lines. Vortex has
a AXI-4 Lite subordinate interface which is used to configure the
device by providing the starting address for the kernel and data
plus a control bit to start the processing.

Normally, Vortex has a dedicated private memory and the data
and kernel are copied here by a general purpose (GP) processor. In
our use model, Vortex and the GP processor (CVA6) use the same
shared memory, removing the need to copy data back and forth. In
this proof-of-concept, the CVA6 MMU is disabled and there is no
operating system, making it possible for the GP cores and Vortex
to share pointers.

https://orcid.org/0009-0008-9727-6762
https://orcid.org/0000-0003-0656-2023
https://orcid.org/0000-0002-2617-5007
https://orcid.org/0000-0003-1443-1373
https://orcid.org/0000-0003-0624-7373


Vortex-2024, November 3rd, 2024, Austin, US D. Million, C. Fuguet, A. Evans, J. Balkind, F. Pétrot

Vortex
Vecadd

Application

kernel.cpp

main.c

kernel.elf

payload.S

GCC-ASpayload.o

GCC RISC-V
vecadd_offload.elf

Host Compilation Flowsyscalls.o bsp.o

Custom Newlib

Host Application
(RISC-V CPU)

libvortex.a libc.a

Kernel Runtime

Clang/LLVM (Vortex)

Vortex
ELF2Binary

Script

kernel.bin

Vortex Compilation FlowVortex libc

inserted

...

vx_spawn.o

vx_start.o

...

Figure 2: Compilation Flow for Vortex with RISC-V GP Core
The version of Vortex being used includes a write-through L1

data cache. Vortex also supports L2 and L3 caches, but they were dis-
abled for this single core configuration. The AXI to P-Mesh bridge
provides IO-cache coherency, meaning that if Vortex modifies data,
the copies in the GP processor private caches are invalidated. The
reverse is not true, if the GP processor modifies data, there is cur-
rently no way to invalidate Vortex’s cache due to limitations of
both Vortex’s caches and the AXI to P-Mesh bridge.

3 Software Flow
For this prototype, a RISC-V bare-metal runtime was used for both
GP cores and Vortex core to provide a light libc library. Both the
device kernel and application are compiled separately (Figure 2).
The device binary (kernel.bin) is embedded as a fat binary in the
final executable (vecadd_offload.elf). This executable is loaded
into shared memory, and then a single GP executes themain() func-
tion which configures and starts the Vortex core. Vortex then starts
fetching code and data directly from shared memory. Currently,
the GP core polls a Vortex status register to identify the end of the
execution, although this could be managed by interrupts.

For benchmarking, we used the existing VecAdd C++ kernel
which takes two vectors, computes the sum and writes the result to
memory. We vary the number of vector entries to observe how per-
formance scales. To reduce the overhead, we manually inlined the
kernel operation in the runtime processing loop (Listing 1), remov-
ing the cost of a function call for each kernel evaluation. This change
is ad-hoc and prevents the invocation of other kernels. When com-
piled, this loop contains 23 instructions due to the complex index
calculations of blockIdx.x/y/z which can handle multi-dimensional
tensors, despite this problem being one dimensional.

Listing 1: Vortex Runtime Processing Loop
// vx_spawn.c/process_threads () - runtime processing loop
for (task_id = ... ; task_id += threads_per_warp) {

blockIdx.x = task_id % gridDim.x; // blockIdx is global
blockIdx.y = (task_id / gridDim.x) % gridDim.y;
blockIdx.z = task_id / (gridDim.x * gridDim.y);
// instead of callback(arg) with callback = vecadd
dst_ptr[blockIdx.x] = src0_ptr[blockIdx.x] + \

src1_ptr[blockIdx.x];
}

4 Initial Performance Results
We compare the performance (vector elements / cycle) obtained
for the VecAdd kernel executing on the standalone Vortex platform
and on our new multicore platform, for different input vector sizes,
expressed in bytes (Figure 3). In the standalone platform, the exter-
nal memory is modeled with Ramulator1, which gives an average
1https://github.com/CMU-SAFARI/ramulator2

2048 4096 8192 16384 32768 65536
Vectors size (Bytes)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ad
d 

Op
er

at
io

n 
pe

r C
yc

le

OpenPiton+Vortex
Vortex Standalone

Figure 3: Performance of Inlined VecAdd versus Vector Size -
Standalone and Heterogeneous Platforms
latency of approximately 20 clocks, whereas in OpenPiton+Vortex
we observed the typical memory latency to be 20 or 220 cycles in
the case of a L2 hit or miss, respectively. The memory hierarchy
of the systems is different, but the comparison still highlights the
bottlenecks. In all runs, the cache was "warm" ; that is the kernel
was executed a first time, before the performance measurement.

The AXI to P-Mesh bridge requires an aknowledgement from
the L2 for any serialized write request, explaining the performance
difference below 16KB. The performance of the standalone system is
roughly constant with respect to the vector size. This suggests that
Vortex is able to mask the latency of the memory through a large
number of outstanding requests and its ability to overlap operations
in different warps. In our system, we see that the performance drops
for vector sizes above 16KB, which corresponds to the size of the
L1 data cache. When there are read misses, they are serialized
by the AXI to P-Mesh bridge which limits the throughput to one
outstanding read miss at a time.

5 Future Work and Conclusions
With our initial prototype, performance is limited for datasets ex-
ceeding the L1 cache size, due to the non-pipelined implementation
of the AXI to P-Mesh bridge. With a pipelined bridge, the perfor-
mance should match that of the standalone implementation.

Beyond this performance bottleneck, further work is required to
put in place a memory coherency scheme. At a minimum, Vortex
caches need to support a software invalidation mechanism. A step
further would consist of hardware cache coherency where Vortex
caches are invalidated by explicit messages from OpenPiton. With
the above enhancements, this prototype should provide a first step
towards an open-source heterogeneous CPU/GPU chiplet system,
as outlined in [1].

References
[1] Adrian Evans et al. 2024. Invited Paper : Open Source Heterogeneous Chiplet-based

Computing Architectures (to appear). In ICCAD 2024.
[2] Ang Li et al. 2023. Duet: Creating Harmony between Processors and Embedded

FPGAs. https://arxiv.org/abs/2301.02785
[3] Blaise Tine et al. 2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-

GraphicsResearch. (2021). https://arxiv.org/abs/2110.10857
[4] Johnathan Alsop et al. 2018. Spandex: A Flexible Interface for Efficient Heteroge-

neous Coherence. In International Symposium on Computer Architecture (ISCA).
[5] Jonathan Balkind et al. 2016. OpenPiton: An Open Source Manycore Research

Framework. In ASPLOS 2016.
[6] Jonathan Balkind et al. 2020. BYOC: A "Bring Your Own Core" Framework for

Heterogeneous-ISA Research. In ASPLOS 2020.
[7] Pekka Jääskeläinen et al. 2016. pocl: A Performance-Portable OpenCL Implemen-

tation. (2016). https://arxiv.org/abs/1611.07083

https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/abs/2301.02785
https://arxiv.org/abs/2110.10857
https://arxiv.org/abs/1611.07083

	1 Introduction
	2 Hardware Architecture
	3 Software Flow
	4 Initial Performance Results
	5 Future Work and Conclusions
	References

