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Abstract—Industry 4.0, involving technological advances such
as the Internet of Things, artificial intelligence, and autonomous
robotics, promises to bring great benefits and outstanding in-
novations to traditional manufacturing. To make this vision a
reality, one key challenge consists in harmonizing and adapting
these new technologies to the industrial environment. However,
there are two major obstacles. First, the technologies, divided
into information technologies (IT) and operational technologies
(OT), are not interoperable by default, making the IT and OT
convergence a complex and uneasy problem. Second, deploying
an Industry 4.0 system requires the participation of experts from
different domains who have different technical vocabularies and
knowledge. Therefore, communication and collaboration between
these experts can be complicated, and every misunderstanding
may cause the failure of a part or the whole system. Regarding the
mentioned obstacles, this paper shares our successful experiences
and approaches in an industrial waste management case study
of the project OTPaaS. In detail, we have applied standardized
modeling approaches, more specifically, the asset administration
shell (AAS) digital twins models, for the interoperability between
IT and OT involved in the system and used model-driven
engineering (MDE) techniques to automate the translation of
data models between the different stakeholders in the project.

Index Terms—Industry 4.0, Model-Driven Engineering, Asset
Administration Shell, Papyrus for Manufacturing, OTPaaS

I. INTRODUCTION

The emergence of technologies in Industry 4.0 provides
advanced production tools that consequently involve new pro-
duction models to maximize the tools’ potential. Indeed, the
industry has witnessed a shift from the hierarchical pyramid
defined by ISA-95 to the network-structured model promoted
in RAMI 4.0. On the one hand, ISA-95 systematically or-
ganizes the components of an industrial system into five
levels based on their technologies and business objectives
[1]. From low to high, they are Field Device, Control
Device, Station, Work Center and Enterprise. The first
three levels use operational technologies (OT)—hardware and
software specialized and dedicated to some specific production
purposes—to manipulate industrial devices, resources, and

processes. The last two levels manage enterprise information
and business applications with information technologies (IT).
On the other hand, RAMI 4.0 tends to flexibly view all
components involved in a production as connected elements
[2]. This flexibility removes the separation between the OT
and IT layers and reaches toward the IT/OT convergence. It
promises to improve the speed of data exchanges between
components and the system’s resistance to partial failure, thus
enhancing production performance and productivity.

In addition to the opportunity, the IT/OT convergence im-
plies interoperability challenges. First is the incompatibility
between IT and OT. In detail, hardware and software built
for OT must follow strict and hard standards to be robust
and reliable against tough industrial environments; however,
software built for IT is more flexible, modular, and less con-
strained. Literally, OT and IT are not designed to satisfy each
other’s conditions; thus, they can not collaborate by default.
The second obstacle in IT/OT convergence relates to human
factors. Indeed, an Industry 4.0 system is composed of many
technologies, involving the contributions of different experts
from different domains with different technical knowledge.
Engineering a part or the whole of such a system requires
effective communication and exchanges between these experts
since every misunderstanding during the development phase
may cause system failures at operation time.

Regarding the IT and OT interoperability challenge, a
solution is to use Asset Administration Shell (AAS) digital
twins (DT) to bridge IT and OT. DT refers to a "set of digital
models" representing a "target entity with data connections
that enable convergence between the physical and digital
states at an appropriate rate of synchronization" [3], [4].
AAS is an industrial-grade standard promoted by the Industrial
Digital Twin Association (IDTA)1. Thus, the DTs based on the
AAS standard, or AAS DTs, can satisfy OT requirements and

1https://industrialdigitaltwin.org/en/
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are widely accepted by the industrial community. They are
also extensible and adaptive to IT applications. In practice,
AAS DTs can represent all manufacturing assets of the OT
layer and expose their aspects to the IT layer. Consequently, IT
applications can interact with the manufacturing assets through
their AAS DTs. Moreover, to facilitate the communication and
collaboration between the AAS DTs development team and
the other technical providers, this research proposes adopt-
ing model-driven engineering (MDE) techniques to engineer
AAS DTs. While MDE abstraction is about using models to
represent the manufacturing assets with easy-understandable
graphic designs, MDE automation allows the development
team to generate code and implement AAS DTs rapidly.

This paper aims to share the successful experiences and
lessons learned in using MDE techniques to automatically
engineer and generate AAS DTs in a real industrial waste
management use case. To the best of our knowledge, since
there are no shared experiences on this approach [5], this
research can be helpful to the public and private sectors.

The rest of this paper is organized as follows. Section II
introduces the industrial waste management use case. Section
III briefly presents the AAS standard and Papyrus for Man-
ufacturing (P4M), our proposed model-driven tool to develop
AAS DTs. Section IV details the methodology and steps
for engineering AAS DTs to bridge IT and OT in the case
study. Section V discusses our results and shares some lessons
learned. Finally, a brief conclusion sums up this paper.

II. APPLICATION CONTEXT

OTPaaS2 is a French national project involving 14 part-
ners from different disciplines: research institutes, technology
providers and industrial companies. The project aims to pro-
mote mature innovations for IT/OT convergence and to deploy
such technical advances in six real industrial use cases.

Industrial waste management is one use case of the OTPaaS
project. The goal is to automate the process of waste manage-
ment in a printing factory using autonomous mobile robots
(AMR). Traditionally, workers in this factory must manually
process the following sequence of actions: (1) go to a full
waste bin’s position, (2) take it to the waste deposal area, (3)
empty the waste bin, and (4) return it to the origin position.
Since the full waste bin may be heavy and the distance
between its position and the deposal area can be far, using
AMRs can significantly reduce human labor.

Regarding the above, several project stakeholders engaged
in this use case to produce a robust and intelligent solution:

• A stakeholder produces physical AMRs.
• A stakeholder deploys functionalities and features for

AMRs.
• A stakeholder generates the factory’s shop floor map

and populates it with navigable roads to support AMRs
calculating paths.

• A stakeholder produces the edge computing device.

2https://linkedin.com/company/otpaas/

• A stakeholder provides the Time-Sensitive Networking
solution for real-time communication at the OT layer.

• A stakeholder deploys a Unified Data Collector Service
(uDC)3 along with computing modules as the control
center to monitor AMR’s behaviors.

• A stakeholder provides AAS DTs that expose AMRs’
data to the control center and help AMRs manage the
missions received from mission managers (MG).

• A stakeholder provides MGs for factory workers to
generate missions to AMRs.

Due to the project’s confidentiality reasons, we cannot share
all the case study details, such as the factory’s identification.

III. BACKGROUND

This section presents AAS and P4M, which are the key
technologies to our AAS DTs engineering approach.

A. Asset Administration Shell
AAS is a multi-parted standard describing elements and

methods to implement an AAS DT. The first two parts contain
the fundamental information for every AAS DT. Part 1 defines
the structured meta-model to model manufacturing assets [6].
In simple words, it provides a set of concepts to describe the
different aspects of an asset as submodels. Each submodel has
submodel elements, which can be data elements, operation,
capability, entity, submodel element collection, submodel ele-
ment list, relationship element, and event. Part 2 proposes the
programming application interface (API) and methods for IT
applications to communicate with an AAS DT [7]. The other
parts are out of this paper’s scope.

Technically, an AAS DT comprises three basic elements:
an AAS information model containing all the submodels, a
network interface for data synchronization with its physical
twin, and another network interface for interaction with ex-
ternal applications. An AAS server is an application that can
host one or several AAS DTs.

B. Papyrus for Manufacturing
P4M is a toolset for implementing AAS DTs with the MDE

approach [8]. In detail, it proposes a graphical modeling envi-
ronment that includes diagram editors and supports various
diagram models. Moreover, it defines a new UML profile
translated from the AAS meta-model and proposes a new
diagram for AAS information models, called the AAS design
diagram (ADD), extended from the UML class diagram. P4M
users can design models, choose the network interfaces, and
generate an AAS server with the MDE automation feature.

Regarding data synchronization between an AAS DT and
its physical asset, P4M reuses the communication framework
from Eclipse BaSyx4 and extends it with more network pro-
tocols. The current version supports HTTP REST, OPC UA,
MQTT, WebSocket (WS), ROS, and ROS 2. For the network
interface with external applications, it supports HTTP REST,
OPC UA, and WS.

3https://prosyst.fr/udc-unified-data-collector-l-acces-aux-donnees-pour-l-
usine-4-0/

4https://www.eclipse.dev/basyx/
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IV. AAS DIGITAL TWINS ENGINEERING

The methodology used to develop AAS DTs in the industrial
waste management use case is mini-waterfall, a version of
the well-known waterfall methodology [9]. Mini-waterfall
is a loop of five phases: (1) specification, (2) design, (3)
implementation, (4) testing, and (5) maintenance. Each loop
should be fast and time-limited. Figure 1 illustrates the mini-
waterfall methodology. In a sense, mini-waterfall inherits the
basic phases of the waterfall methodology; in another sense,
the concept of a loop of mini-waterfall is similar to the one
of a sprint of the agile/scrum methodology [10]. The reason
for choosing mini-waterfall relies on three points. First, the
simplicity and popularity of the waterfall’s five phases are
useful for this multidisciplinary project since the experts from
different domains can understand the AAS DTs development
easily. Second, AAS DTs are only one module constituting
the complete system; thus, their development should be light
and flexible to adapt to the changed requirements of the other
modules. Third, the AAS DTs’ development team members
do not have full-packed capabilities to practice agile/scrum.

Specification

Design

Implementation

Testing

Maintenance

Mini-Waterfall

Figure 1: The mini-waterfall methodology

The development team applies the MDE techniques and uses
the P4M tool in the design and implementation phases.

A. Specification

In the specification phase, the AAS DTs development team
studies and analyses all the input resources proposed by the
use case to clarify the needs and determine AAS DTs’ required
compositions. The input resources include:

• Description of the industrial waste management use case
• Part of the AMR datasheet proposed by its manufacturer
• Specification from the robotic stakeholder, including the

operations of AMRs on the shop floor and their detailed
hardware and software components

• Reports from project/use case/technical group meetings
that list the requirements of stakeholders and the expected
results from the project and use case

The following list details the four groups of requirements
(R) corresponding to four features to implement.
R1. An AMR must be able to expose some of its real-time

data to IT applications: the data are input for complex
computations, such as AMR monitoring.

R1.0. Technical data representation is a requirement to
present basic information identifying an AMR.

R1.1. Velocity representation is a requirement to present real-
time data related to the velocity of an AMR. Note that
the velocity of an AMR can have two parts: linear and
angular. Moreover, other practical information, such as
the average speed and velocity units, should be available.

R1.2. Battery representation is a requirement to present real-
time data related to the battery of an AMR, including
the voltage, current, percentage, and charging status.
Also, other practical information, such as the percentage
limit (maximal and minimal values) and the electricity
measurement units, should be available.
R1.2.0. Charging status representation is a require-
ment to present the battery’s four pre-defined charging
states: charging, discharging, non-charging, and full.

R1.3. Control representation is a requirement to present real-
time data related to the mode to control an AMR and
the controlling status.
R1.3.0. Drive mode representation is a requirement to
present the four pre-defined drive modes: autonomous,
human following, joystick, and web service.

R1.4. Localization representation is a requirement to present
real-time data related to the planar pose of an AMR,
specified by three coordinated information of x, y, and
theta. Moreover, other practical information, such as
coordinate units, should be available.
R1.4.0. Localization status representation is a require-
ment to present the four pre-defined states: unloaded,
stable, unstable, and lost.

R1.5. Load representation is a requirement to present real-
time data related to the waste bin that the AMR is
carrying, including the identification and the current
weight of the waste bin.

R1.6. Hardware components representation is a requirement
to present the information related to hardware com-
ponents integrated into an AMR. They are two com-
puters, seven cameras, one headlight, and one inertial
measurement unit (IMU). The state of some hardware
components (on or off) should be available.

R2. An AMR must be able to receive missions from MGs:
a mission includes an ordered list of tasks that an AMR
must operate.

R2.0. Current mission representation is a requirement to
present real-time data related to the mission that an
AMR is processing, including the state of the mission.

R2.1. Missions management is a requirement to manage a
list of missions and distribute them to an AMR. It also
includes the need to represent the basic information of
each mission, such as the mission’s name and identifi-
cation.

R2.2. Tasks management is a requirement to manage a list
of tasks associated with each mission. It also includes
the need to represent the basic information of each task,
such as the task’s name and identification.

R3. The shop floor must be able to expose its geometric
data to AMRs: the data includes a global map and the
highlight positions on the map.



R3.0. Global map management is a requirement to manage
the global map of the shop floor. The map exists in the
format of a file; thus, it needs to present the information
about the file type, graph name, and last updated time.

R3.1. Zones management is required to manage the shop
floor’s highlighted locations. Each zone includes in-
formation about the zone’s name, type, and relative
positions on the map (x-axis, y-axis, and z-axis values).
R3.1.0. Zone-type representation is a requirement to
present the three pre-defined specific zone types: station,
waste bin, and deposit.

R4. A registry must provide information for establishing
the communication between an AMR and its AAS
DT: the information could relate to the endpoint of the
AMR if its AAS DT initiates the connection, or relate
to the endpoint of the AAS DT if the AMR initiates
the connection. The endpoint information includes the
address and port.

In addition to the above functional requirements, some
technical requirements (TR) are as follows.
TR1. The network protocol between AMRs and AAS DTs is

WebSocket (WS)
TR2. The network protocol between MGs and AMRs’ AAS

DTs is MQTT.
TR3. The network protocols between IT applications and

AMRs’ AAS DTs could be HTTP.
TR4. The network protocols between IT applications and

AMRs’ AAS DTs could be OPC UA.
TR5. A global map should be updated into the shop floor’s

AAS DT using WS.
TR6. An AMR always starts to establish the connection to its

AAS DT for the security issue at the OT layer.

B. Design

In the design phase, the AAS DTs development team defines
all AAS DTs and puts them as the center of an architecture
with other modules. The definition of AAS DTs relies on the
requirements resulting from the specification phase. Figure 2
illustrates the role of AAS DTs in the use case.

The AAS DTs development team determines two types
of AAS DTs: AAS AMR and AAS ShopFloor. In detail,
each AMR has its corresponding AAS AMR, and the shop
floor has its AAS ShopFloor. While AAS DTs run on a
server on the local computing level, also known as fog, IT
applications run on the global computing level or cloud that
requires Internet access. The communication between an AAS
DT and the cloud can be HTTP or OPC UA, depending on
the IT application. AMRs at the Internet of Things (IoT) level
communicate with AAS DTs using WS. An MG can be at IoT,
fog, or cloud to send missions to AAS AMRs. Moreover, the
development team names the module that generates a global
map as a cartography generator (CG). A CG can also be at
the IoT, fog, or cloud level to update cartography to the AAS
ShopFloor with WS. In this architecture, the AAS DTs are
rather in the middle of the OT and IT layers. Each AAS AMR
implies a mission management service (MMS) addressing the
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Figure 2: AAS DTs in the middle between OT and IT layers

requirement R2 defined in the specification phase. Also, the
AAS ShopFloor implies the AMR helper service (AHS) that
replies to the requirement R4.

To design AAS information models for the two AAS
DT types, the AAS DTs development team determines the
submodels and submodel elements that cover all require-
ments defined in the specification phase, as in Table I.
The first column of the table lists the requirements. The
second column shows the model element and its stereotype
for each requirement. Note that «AAS::AAS» presents the
stereotype AAS, «AAS::SM» presents the stereotype submodel,
«AAS::SMC» presents the stereotype submodel collection, and
«UML::Enumeration» presents the stereotype enumeration.
While the first three stereotypes are part of the AAS profile of
P4M, the last one is from the UML vocabulary. A requirement
may need more than one model element; for example, R1.0 is
covered by two submodels Nameplate and TechnicalProperties.
In this table, a blue cell means that the inside model element
is part of the AAS ShopFloor’s information model, and the
blank cell means that the inside model element is part of the
AAS AMR’s information model.

With the UML vocabulary and AAS profile, the AAS
DT developers can straightforwardly model most functional
requirements without considering technical ones. The only
exception is the case of R4. To recall, it has two options: (1)
the AAS ShopFloor provides the WS endpoint information of
AMRs, or (2) the AAS ShopFloor exposes the WS endpoint
information of AAS AMRs. While considering TR6, only the
second option is satisfied, then in the model, the submodel
Registry is designed to hold multiple AAS AMR Socket
submodel collections.

Figure 3 illustrates the major part of an AAS AMR’s
information model. The AAS comprises eight submodels cor-
responding to eight aspects of an AAS AMR. Note that
for scope limitation and confidential reasons, the two sub-



Table I: Requirements coverage by AAS information models
Requirement «stereotype» Model Element

R1 «AAS::AAS» AAS AMR

R1.0 «AAS::SM» Nameplate
«AAS::SM» TechnicalProperties

R1.1 «AAS::SM» Velocity

R1.2 «AAS::SM» Battery

R1.2.0 «UML::Enumeration» ChargingStatus

R1.3 «AAS::SM» Control

R1.3.0 «UML::Enumeration» DriveMode

R1.4 «AAS::SM» Localization

R1.4.0 «UML::Enumeration» LocalizationStatus

R1.5 «AAS::SM» Load

R1.6

«AAS::SM» Hardware
«AAS::SMC» PCNavigation
«AAS::SMC» PCPerception
«AAS::SMC» Headlight
«AAS::SMC» Camera
«AAS::SMC» ICM
«UML::Enumeration» DeviceStatus

R2 «AAS::AAS» AAS AMR

R2.0 «AAS::SM» Plan

R2.1 «AAS::SMC» Mission

R2.2 «AAS::SMC» Task

R3 «AAS::AAS» ShopFloor

R3.0 «AAS::SM» Map
«AAS::SM» Cartography

R3.1 «AAS::SM» Zone

R3.1.0 «UML::Enumeration» ZoneType

R4 + TR6

«AAS::AAS» ShopFloor
«AAS::SM» Registry
«AAS::SMC» AASAMRSocket
«UML::Enumeration» AASStatus

models, Hardware and Nameplate, are not presented in this
paper. One typical submodel instance is Battery. It has nine
properties, four of which are dynamic and five are static.
Note that in the figures, static properties are underlined. The
values of the four dynamic properties (voltage, current,
percentage, and charging_status) are changeable and
updated with real-time data retrieved from the AMR. While
voltage, current, and percentage have float data values,
charging_status has one value of the enumeration Charg-
ingStatus. The value of the five static ones (unit_voltage,
unit_current, frequency_update, max_percentage, and
min_percentage) are constant. They aim to clarify the four
dynamic properties; for example, unit_voltage "V" shows
that the unit of the voltage’s value is volt. A submodel can
also have submodel collections as elements. For example, the
submodel Plan can have multiple Mission submodel collec-
tions; a Mission can have multiple Task submodel collections.

Figure 4 illustrates the AAS information model of the AAS
ShopFloor. The AAS comprises three submodels corresponding

to three aspects of the AAS ShopFloor. In detail, submodel
Nameplate provides the basic identification of the shop floor,
submodel Map presents the geometric aspect, and submodel
Registry represents an abstract registry storing information
of AMRs and AAS AMRs of the shop floor. A Map can
have multiple Zone submodel collections representing some
highlighted locations of the shop floor. A Registry can have
multiple AAS AMR Socket submodel collections representing
the WS endpoints of AAS AMRs.

The AAS DTs development team realises the design using
the design environment of P4M. Figure 5 is a screenshot of
the tool. In the model explorer window, developers can add,
remove and modify all model elements, such as submodel,
property, or enumeration. In the model editor window, devel-
opers input details to configure each model element.

C. Implementation

In the implementation phase, the AAS DTs development
team implements runnable AAS DTs from the model designs
resulting from the design phase. The two steps are as follows.

First, the developers profit from the code generation feature
of P4M: they generate a Java project from the designed models
with only one click. The project includes the basic skeleton of
well-organized Java code. Then, the developers can complete
the project with further configurations, such as the data source
detail. This fast, effective approach satisfies most R1, R3, and
R4 requirements.

The second step is necessary for the unsatisfied require-
ments from the first step. In detail, the AAS DT developers
realize manually the following features unsupported by P4M.

• The number of model elements of an AAS information
model proposed by P4M is unchangeable at runtime, so it
is impossible to add more model elements. This limitation
impacts the R2 requirements, in which a running AAS
AMR may receive multiple missions and tasks. As the
solution, the developers code an extended module that
stores queues of missions and tasks.

• Regarding TR4, even though P4M already supports an
OPC UA communication protocol between assets and
AAS DTs, it proposes no OPC UA connector for the
side between AAS DTs and IT applications. Thus, the
developers improve the Java project generated by P4M
with an OPC UA client/server mode extension that allows
AAS DTs to write data to an external OPC UA Server
by using an identity token.

• To recall, TR6 requires that an AMR always initializes
the communication with its AAS AMR. Therefore, in
the WS client/server communication, the AMR plays the
client role, and AAS AMR plays the server role. Since
P4M only supports WS connector as the client mode by
default, the developers implement a module to turn an
AAS AMR into a WS server and wait for the connection
to start from its corresponding AMR.

After having runnable AAS DTs, the AAS DTs development
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<<property>> current: Float
<<property>> percentage: Float
<<property>> charging_status: ChangingStatus
<<property>> unit_voltage: String = "V"
<<property>> unit_current: String = "A"
<<property>> max_percentage: Float = "1.0"
<<property>> min_percentage: Float = "0.0"
<<property>> frequency_update: String = "2Hz"
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UNLOADED = -1
UNKNOWN = 0
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Figure 3: AAS design diagram of the major part of the AAS AMR’s information model

team packages them as a docker5 image to ensure they can run
on different operating systems (Linux, Windows, and MacOS).

D. Testing

In the testing phase, the AAS DTs development team defines
two strategies to validate the AAS DTs module. First, we pre-
pare a system for unit testing the module, as shown in Figure
6. The system includes two computers. The first computer
hosts six programs: (1) an AAS AMR, (2) an AAS ShopFloor,
(3) a Mosquito6 broker for the MQTT communication, (4)
one Python application playing as an MQTT MG, (5) another
Python application playing as a CG, and (6) another Python
application playing as an AMR. The second computer hosts

5https://www.docker.com/
6https://www.mosquitto.org/

three programs: (1) Postman7 to query data from the AAS
AMR via HTTP, (2) an open625418 server as an OPC UA
server to collect data from the AAS AMR via OPC UA
communication, and (3) UaExpert9 playing as an OPC UA
client to query data from the OPC UA server. For unit testing,
the Python applications on the first computer generate fake
data that Postman and UaExpert can verify on the second
computer. The AAS DTs development team tests each property
in the AAS DTs’ information model.

The second strategy to validate the AAS DTs module is
integration testing. In detail, the AAS DTs development team
uploads all resources related to the module, including docker

7https://www.postman.com/
8https://www.open62541.org/
9https://unified-automation.com/products/development-tools/uaexpert.html

https://www.docker.com/
https://www.mosquitto.org/
https://www.postman.com/
https://www.open62541.org/
https://unified-automation.com/products/development-tools/uaexpert.html


add AAS ShopFloor

0..*

<<AAS::SM>>
Map

kind=Instance

<<property>> mime_type: String
<<property>> graph_name: String
<<property>> last_update: String
<<property>> file: Blob
<<property>> file_max_size: String = "100MB"

<<AAS::SMC>>
Zone

kind=Instance

<<property>> name: String
<<property>> pos_x: Float
<<property>> pos_y: Float
<<property>> pos_z: Float
<<property>> type: ZoneType

<<AAS::AAS>>
AAS ShopFloor

kind=Instance

<<UML::Enumeration>>
AASStatus

kind=Instance

UNKNOWN = -1
OFF = 0
ON = 1

<<UML::Enumeration>>
ZoneType

kind=Instance

UNKNOWN = -1
BIN = 0
DEPOSIT = 1
STATION = 2

<<AAS::SM>>
Registry

kind=Instance

<<AAS::SMC>>
AASAMRSocket

kind=Instance

<<property>> robot_id: String
<<property>> address: String
<<property>> port: Integer
<<property>> status: AASStatus

0..*

<<AAS::SM>>
Nameplate

kind=Template

<<AAS::SM>>
Nameplate

kind=Instance

<<property>> factory: String = "Dupliprint"

Figure 4: AAS design diagram of the AAS ShopFloor’s information model

Figure 5: Screenshot of the P4M’s design environment, including model explorer (left) and model editor (right) windows

containing the AAS DTs, a user guide, and supported codes,
to a private cloud shared with other technical providers. Thus,
the technical providers can test their modules with the AAS
DTs module and return feedback. In the inverse sense, the
technical providers also send their resources to the AAS DTs
development team so we can test their modules on our side.

Note that for confidential reasons, the whole system testing
is out of the scope of this paper.

E. Maintenance

In the maintenance phase, the AAS DTs development team
waits for feedbacks from other technical providers and the use-
case initiators. If there is new major requirements added, the
AAS DTs development team will restart the loop of mini-
waterfall methodology to produce a new version. If there
is only minor requirements, the AAS DTs developers apply

adequate modifications. At the end of the project, there are
totally seven major versions. Each includes a docker image
containing the AAS server and other necessary materials
supporting the testing phase.

V. DISCUSSION AND LESSON LEARNED

Although the resulting AAS DTs and their engineering
process were effective, there are still three points to discuss.

• The P4M has not yet supported the submodel element
list, which is a part of the newest version (v3) of the
AAS Part 1. This omission is understandable since the
developments of the AAS standard and P4M are still
ongoing. For this reason, in this project’s context, the
AAS DTs development team cannot profit from the P4M
code generation feature to generate lists of missions and
tasks but must manually implement them.
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Figure 6: Architecture for unit testing

• The distributed concept of DTs—each AMR has one
corresponding AAS AMR, and AAS AMRs can run on
different host machines—can be a disadvantage for some
modules in the system. For example, since AAS AMR
manages the list of missions associated only with its
AMR, it is more difficult for an MG to create the kind
of mission involving multiple AMRs. Also, the control
center may need to collect data from multiple hosts
instead of a centralized server.

• As OTPaaS is not an open project, many details, such as
uDC, CG and MG designs, cannot be shared in this paper
without the permission of involved stakeholders. Also, the
choice of communication protocols between AAS DTs
and other modules depends on these stakeholders. For
example, the OPC UA client/server communication mode
is used between AAS AMRs and uDC, at the request of
the control tower development team. In this case, uDC
plays the role of OPC UA server, with an OPC UA
information model built on the basis of our AAS AMR
design and the I4AAS10 companion specification.

Three useful lessons learned from using AAS DTs and MDE
techniques in an industrial use case are as follows.

• Some special requirements, such as the security require-
ment TR6 presented in Section IV-A, demand the AAS
DT development team to modify the original workflow of
AAS DTs. To recall, instead of working as a WS client,
an AAS DT must be changed to function as a WS server.

• In an industrial project with many stakeholders from
various domains, developers should select a few basic and
easily understandable MDE diagrams rather than trying
to use them all. In practice, we found that the number and
complexity of diagrams may lead to misunderstandings.

10https://opcfoundation.org/markets-collaboration/i4aas/

• The MDE automation feature is quite helpful in ac-
celerating the production of the new product’s version.
Consequently, it can also speed up the work of the
related stakeholders since they can practice integration
tests sooner with their modules.

VI. CONCLUSION

This paper presents the practices of using the MDE ap-
proach in engineering AAS DTs for an industrial waste
management case study. By leveraging the MDE abstraction
and automation features, with the strong support of the P4M
tool, the development team can provide multiple versions,
thus effectively communicating with other stakeholders in the
OTPaaS project. The resulting AAS DTs connect high-level
applications and low-level assets, that is, to bridge IT and OT.

The AAS DTs development team has three plans to improve
the P4M tool. The first is adding more network protocols,
such as Profinet and Zenoh, so that P4M users can have more
network connector choices. The second is to upgrade P4M
to the latest AAS standard version. The third direction is to
combine with other model types, and the tool can generate
other forms of a target asset, such as a 3D visualization.

Regarding OTPaaS, the future step leverages federated
learning on this current system to resolve industrial problems
with the real-time data collected from AMRs and the other
factory assets.
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