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ABSTRACT

Context. Weak gravitational lensing, which results from the bending of light by matter along the line of sight, is a potent tool for
exploring large-scale structures, particularly in quantifying non-Gaussianities. It is a pivotal objective for upcoming surveys. In the
realm of current and forthcoming full-sky weak-lensing surveys, convergence maps, which represent a line-of-sight integration of the
matter density field up to the source redshift, facilitate field-level inference. This provides an advantageous avenue for cosmological
exploration. Traditional two-point statistics fall short of capturing non-Gaussianities, necessitating the use of higher-order statistics to
extract this crucial information. Among the various available higher-order statistics, the wavelet ℓ1-norm has proven its efficiency in
inferring cosmology. However, the lack of a robust theoretical framework mandates reliance on simulations, which demand substantial
resources and time.
Aims. Our novel approach introduces a theoretical prediction of the wavelet ℓ1-norm for weak-lensing convergence maps that is
grounded in the principles of large-deviation theory. This method builds upon recent work and offers a theoretical prescription for
an aperture mass one-point probability density function.
Methods. We present for the first time a theoretical prediction of the wavelet ℓ1-norm for convergence maps that is derived from the
theoretical prediction of their one-point probability distribution. Additionally, we explored the cosmological dependence of this pre-
diction and validated the results on simulations.
Results. A comparison of our predicted wavelet ℓ1-norm with simulations demonstrates a high level of accuracy in the weakly non-
linear regime. Moreover, we show its ability to capture cosmological dependence. This paves the way for a more robust and efficient
parameter-inference process.

Key words. gravitational lensing: weak – cosmology: miscellaneous – cosmology: theory – dark matter –
large-scale structure of Universe

1. Introduction

Our current comprehension of the genesis of the large-scale
structure (Peebles 1980) posits that it emerged through gravita-
tional instability driven by primordial fluctuations in matter den-
sity. Realistic models detailing the structure formation prescribe
an initial spectrum of perturbations that reflected the primordial
spectrum, characterised by small fluctuations at large scales. In
a Lambda-Cold Dark Matter (LCDM) Universe, the variance of
the density fluctuations, denoted by σ(R)2, is inversely propor-
tional to (some power of) the scales so that at small scales, the
variance is large, and non-linear effects become important.

Hence, there are two limiting regimes: the linear regime,
which is characterised by σ2(R) ≪ 1, and the non-linear regime,
which is given by σ2(R) ≫ 1. In particular, when the primordial
density fluctuations are Gaussian, then they remain Gaussian in
the subsequent linear regime, and Fourier modes evolve indepen-
dently. However, the coupling between different Fourier modes
becomes significant and plays a pivotal role in modifying the
statistical properties, which manifest as higher-order connected
correlations in the non-linear regime (Bernardeau et al. 2002).

⋆ Corresponding author; vilasini.tinnanerisreekanth@cea.fr

One of the powerful methods for probing these non-
linearities in the large-scale structure (hereafter LSS) is to study
the distortions in distant images of galaxies. Distortions are
caused by gravitational lensing, which is the phenomenon that
bends the photon paths through massive objects, such as galax-
ies or galaxy clusters. Weak gravitational lensing denotes that
except for rare cases of strong lensing, these distortions are often
subtle and require a statistical analysis over a vast number of
galaxies for a signal to be detected. The analysis of these distor-
tions provides a unique opportunity to investigate the distribution
of matter in the Universe and infer cosmological parameters.
For a more comprehensive review of weak lensing, we refer to
Mandelbaum (2018); Kilbinger (2018), and Kilbinger (2015).

In this era of precision cosmology, with past, present, and
future surveys such as the Canada-France-Hawaii Telescope
Lensing Survey (CFHTLenS) (Heymans et al. 2012), the Hyper
Suprime-Cam (HSC) (Mandelbaum & Collaboration 2017),
Euclid (Laureijs et al. 2011), Legacy Survey of Space and Time
(LSST) (Ivezić et al. 2019), we now have access to the non-
Gaussian part of cosmological signals, which are induced by
the non-linear evolution of the structures on small scales. All
of these experiments consider weak gravitational lensing to be a
key probe, jointly with galaxy clustering, for exploring the cur-
rently unanswered questions in cosmology, such as the neutrino

A80, page 1 of 11
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202450061
https://orcid.org/0009-0008-3885-5131
https://orcid.org/0000-0002-3037-0032
https://orcid.org/0000-0003-1060-3959
https://orcid.org/0000-0003-2177-7794
mailto:vilasini.tinnanerisreekanth@cea.fr
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Sreekanth, V. T., et al.: A&A, 691, A80 (2024)

mass sum (Lesgourgues & Pastor 2012; Li et al. 2019), the nature
of dark energy, and dark matter (Huterer 2010), and it offers sub-
stantial constraints on standard cosmological parameters such as
the mean matter density and the amplitude of matter fluctuations
(Troxel & Ishak 2015).

The conventional approach to inferring the cosmology from
the data involves the computation of the two-point statistics,
which has been employed with remarkable success (Munshi et al.
2008; Kilbinger 2015; Bartelmann & Maturi 2017; Hildebrandt
et al. 2017; Euclid Collaboration 2024; Loureiro et al. 2023;
Ingoglia et al. 2022). However, it is not sufficient when we wish
to probe non-Gaussianities (Weinberg et al. 2013). This limita-
tion arises from the construction of the power spectrum, which
considers information solely from the norm of wave vectors
while neglecting phase information, thereby discarding a sig-
nificant aspect of structural details. Consequently, this approach
must be complemented with an alternative higher-order statistic
than can effectively capture the non-Gaussian features embed-
ded in the structure. Higher-order statistics such as peak counts
(Kruse & Schneider 1999; Liu et al. 2015a,b; Lin & Kilbinger
2015; Peel et al. 2017; Ajani et al. 2020), higher moments (Petri
2016; Peel et al. 2018; Gatti et al. 2020), the Minkowski func-
tional (Kratochvil et al. 2012; Parroni et al. 2020), three-point
statistics (Takada & Jain 2004; Semboloni et al. 2011; Rizzato
et al. 2019), and wavelet and scattering transform (Ajani et al.
2021; Cheng & Ménard 2021) can better probe the non-Gaussian
structure of the Universe and provide additional constraints on
the cosmological parameters. Another example was given in
Ajani et al. (2021), who employed the starlet ℓ1-norm, which
has the advantage of being easy to measure and was claimed to
encompass even more cosmological information than the power
spectrum or peak and void counts in the setting considered. The
ℓ1-norm of a starlet, which is a type of wavelet that uses B3-
spline, offers an efficient multi-scale computation of all map
pixels including the under- and over-density distribution, which
partially probe similar information to peak and void counts.

The probability distribution function (hereafter PDF) of the
weak-lensing convergence map (κ) serves as another valuable
repository of cosmological information that has drawn much
interest in recent years, with many theoretical and numeri-
cal works, including (Bernardeau & Valageas 2000; Liu &
Madhavacheril 2019; Barthelemy et al. 2021). The convergence
field κ represents the weighted projection of matter density fluc-
tuations along the line of sight, and its higher-order correlations
offer a promising avenue for addressing challenges inherent
in standard weak-lensing analyses, particularly those related to
degeneracies in the two-point correlation function (2PCF).

The one-point κ-PDF statistic, obtained by quantifying
smoothed κ field values within predefined apertures or cells,
presents a practical advantage as its measure is rather simple.
This simplicity contrasts with other non-Gaussian probes used
for studying the weak-lensing convergence field, such as the bis-
pectrum (which involves counting triangular configurations) or
Minkowski functionals (a topological measurement). Previous
research has successfully devised a precise theoretical model,
grounded in large deviation theory (LDT), for both the cumu-
lant generating function and the PDF of the lensing κ field as
well as the aperture mass (Barthelemy et al. 2021). Notably, this
one-point PDF can be directly linked to the wavelet coefficients
at different scales (Ajani et al. 2021).

We emphasise that similar to the convergence PDF, all of
the above-mentioned non-Gaussian statistics that probe devia-
tions from Gaussian behaviour are also commonly computed
using convergence maps. However, these convergence maps are

not observed directly and are reconstructed from reduced shear
maps. Since their first detection two decades ago (Bacon et al.
2000; Kaiser et al. 2000; Waerbeke et al. 2000), shear maps
have been a powerful cosmological probe. However, due to its
spin-2 nature, it is rather difficult to obtain higher-order sum-
mary statistics from shear. While convergence maps in principle
contain the same information as shear maps (Schneider et al.
2002; Shi et al. 2011), the compression of the lensing signal is
greater in convergence maps than in the shear field, resulting in
an easier extraction and reduced computational costs, with the
caveat that the reconstruction of the convergence maps is not per-
fectly solved and is a very complex ill-defined inverse problem.
Convergence maps emerge as a novel tool, potentially offering
additional constraints that complement those derived from the
shear field. However, accessing this information is not straight-
forward and implies the use of a reconstruction method (or mass
inversion). In particular, we note that due to the non-Gaussian
nature of the weak-lensing signal at small scales, it may not be
optimal to employ mass-inversion methods with smoothing or
de-noising for regularisation (Starck et al. 2021; Jeffrey et al.
2020).

The objective of this paper is to present for the first time
the prediction1 of the wavelet ℓ1-norm derived from theoreti-
cal predictions of the PDF of convergence maps. The paper is
organised as follows: in Sect. 2.1, we begin by revisiting weak-
lensing convergence, followed by an introduction to the wavelets
and wavelet ℓ1-norm in Sect. 2. This is followed by the intro-
duction of the LDT formalism for the κ-PDF and extending this
to the wavelet coefficients in Sect. 3. Section 3.3 derives this
wavelet ℓ1-norm for the wavelet coefficients from theory. Sub-
sequently, we present and discuss the results in Sect. 4, and we
conclude by summarising our findings in Sect. 5.

2. Wavelet ℓ1-norm: Definition and measurements

We first introduce in this section the expression for the conver-
gence maps and then define the wavelets and the wavelet ℓ1-norm
more generally to relate it to the PDF.

2.1. Convergence maps

We start with the expression for convergence, which is given
by the projection of density along the comoving coordinates,
weighted by a lensing kernel involving the comoving distances.
It is given by (Mellier 1999)

κ(ϑ) =
∫ χs

0
dχω(χ, χs)δ(χ,Dϑ), (1)

where χ is the comoving radial distance (χs the radial distance
of the source) that depends on the cosmological model, andD is
the comoving angular distance, given by

D(χ) ≡



sin(
√

Kχ)
√

K
for K > 0

χ for K = 0

sinh(
√
−Kχ)

√
−K

for K < 0

, (2)

1 Code publicly available at GitHub: https://github.com/
vilasinits/LDT_2cell_l1_norm
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with K the constant space curvature. The lensing kernel ω is
defined as

ω(χ, χs) =
3Ωm H2

0

2 c2

D(χ)D(χs − χ)
D(χs)

(1 + z(χ)), (3)

where c is the speed of light, Ωm is the matter density parame-
ter, and H0 is the value of the hubble constant at redshift z = 0.
The shear field γ(θ), which can be directly interpreted from the
observation, is related to the weak-lensing convergence κ through
mass inversion (Starck et al. 2006; Martinet et al. 2015). The
convergence mass maps are in principle only constructed up to
a mass sheet degeneracy. However, constructing a mass map by
convolving the κ map with a radically symmetrical compensated
filter makes the statistics insensitive to mass sheet degeneracy.

2.2. Wavelets

A wavelet transform enables us to decompose an image κ into
different maps called wavelet coefficients wθ j , that is, Wκ ={
wθ1 , . . . , wθ j , . . . wθJ

}
where θ j is the angular scale, and θJ is

the largest scale used in the analysis. The wavelet coefficients
are the values of the wavelet scales at the pixel coordinates (x,
y). Considering a wavelet function Υ, and noting Υθ j,x,y(m, n) =

Υ

(
m−x
θ j
, n−y
θ j

)
the dilated wavelet function at scale θ j and at spatial

location (x, y), the wavelet coefficients wθ j are computed as the
inner products

wθ j (x, y) = < κ,Υθ j,x,y > (4)

=
∑

m

∑
n

κ(m, n)Υ
(

m − x
θ j

,
n − y
θ j

)
.

The wavelet function Υ is often chosen to be derived from
the difference of two resolutions, for example as Υ(x, y) =
4ξ(2x, 2y) − ξ(x, y) as used in the starlet wavelet transform
(Starck et al. 2015), where the function ξ is called the scaling
function, typically a low-pass filter. In our case, we write the
wavelet coefficients as

wθ j (x, y) =< κ, ξθ j+1,x,y > − < κ, ξθ j,x,y >, (5)

with ξθ j,x,y(m, n) = ξ
(

m−x
θ j
, n−y
θ j

)
. Employing dyadic scales, i.e.

θ j = 2 j−1θ1, enables us to have very fast algorithms through the
use of a filter bank (see Starck et al. 2015 for more details).

A wavelet acts as a mathematical function localised in both
the spatial and the Fourier domains, and it is thus suitable
for analysing the lensing signal structures at various scales.
An important advantage of the wavelet analysis compared to a
standard multi-resolution analysis through the use of a set of
Gaussian functions of different sizes is that it decorrelates the
information. As an example, Ajani et al. (2023) have shown that
the covariance matrix derived from a wavelet peak-count analy-
sis was almost diagonal, and neglecting the off-diagonal terms
has little impact on the cosmological parameter estimation. This
would not be the case with a multi-scale Gaussian analysis. Other
advantages are that very fast algorithms exist that allow us to
compute all scales with a low complexity, and also that wavelet
functions are exactly equivalent to traditional weak-lensing aper-
ture mass functions, which have been used for decades (Leonard
et al. 2012) (the aperture mass is just the convergence or shear
within a compensated filter, which is one property of wavelets).

Several statistics have been derived from wavelet coefficients in
the past, such as cumulants (up to order 6) (Fageot et al. 2014) or
peak counts (Ajani et al. 2020). It has recently been shown (Ajani
et al. 2021) that the ℓ1-norm of the wavelet scales is very efficient
in constraining cosmological parameters. Ajani et al. (2023) used
a toy model that incorporated a mock source catalogue for weak
lensing and a mock lens catalogue for galaxy clustering sourced
from the cosmo-SLICS (Harnois-Déraps et al. 2019) simula-
tions to mimic the KiDS-1000 data survey properties described
in Giblin et al. (2018) and Hildebrandt et al. (2021). The study
examined forecasts of the matter density parameter Ωm, the mat-
ter fluctuation amplitude σ8, the dark energy equation of state
w0, and the reduced Hubble constant h. It was observed that the
wavelet ℓ1-norm performed better than peaks, multi-scale peaks,
or a combination thereof (Ajani et al. 2023). Therefore, we pro-
pose to build a theory for the wavelet ℓ1-norm that can be used
to constrain the cosmological parameters of upcoming surveys.

2.3. Wavelet ℓ1-norm

To measure the wavelet ℓ1-norm from a κ map, we first obtained
the wavelet scale by convolving the map with the wavelet
function, as given in Eq. (5).

We then computed a histogram of the values of the wavelet
scale at each pixel coordinate, wθ j (x, y), using a specific binning
with bin edges denoted {Bi}1≤i≤N .

We then obtained the normalised2 wavelet ℓ1-norm by
extracting the ℓ1-norm of the histogram such that

ℓ
θ j,i
1 =

#coe f (S θ j ,i)∑
k=1

|S θ j,i[k]| /N/∆B, (6)

where the set of coefficients at scale θ j and amplitude bin i,
S θ j,i =

{
wθ j / wθ j (x, y) ∈ [Bi, Bi+1]

}
, depicts the wavelet coeffi-

cients wθ j with an amplitude within the bin [Bi, Bi+1], the pixel
indices are given by (x, y), N is the total number of pixels, and
∆B is the uniform bin width. In other words, for each bin, the
number of pixels k that fall in the bin was collected, and the abso-
lute values of these pixels were summed to obtain the ℓ1-norm at
this bin i.

As we already highlighted before, this definition enabled us
to gather the data represented by the absolute values of every
pixel of the map, rather than solely describing it through the
identification of local minima or maxima. This has the advan-
tage of being a multi-scale approach. In addition, the robustness
of ℓ1-norm statistics has also been well established for decades
in the statistical literature (Huber 1987; Giné et al. 2003).

The ℓ1-norm of the wavelet coefficients can be directly
related to the PDF of the wavelet coefficients via the following
relation:

ℓ
θ j,i
1 = P(w j)i × |Bi|, (7)

which states that the ℓ1-norm for a given scale j and at a given
bin i (Bi) can be related to its PDF by multiplying the PDF value
of the bin i by the absolute value of the bin i.

2 In the literature, the common practice has been to use a non-
normalised version of the ℓ1-norm, but to facilitate comparison with
prediction and simulation, we chose to normalise this quantity. For the
sake of simplicity, we call it ℓ1-norm.
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Fig. 1. Probability density function and ℓ1-norm for a Gaussian distribution (blue) and the non-Gaussian distribution (orange). On the left, we
present the PDF for the two distributions, and on the right, we display the derived ℓ1-norm of these PDFs. The peak heights are the same for a
Gaussian distribution, but this does not hold for a non-Gaussian PDF.

2.4. Gaussian ℓ1-norm

We studied the anticipated wavelet ℓ1-norm expected from a
Gaussian distribution. The generic shape of a wavelet ℓ1-norm
obtained from a Gaussian PDF,

P(x) =
1

σ
√

2π
exp

(
−

1
2

( x − µ
σ

)2
)
, (8)

with a mean µ = 0 and σ = 0.1 using the relation shown in
Eq. (7) is demonstrated in Fig. 1.

The heights of the two peaks obtained for the wavelet ℓ1-
norm for the Gaussian (solid blue line) distribution are equal, as
expected. Because the Universe evolves, however, non-linearities
develop, which means that the convergence field κ that we are
interested in can no longer be modelled using a Gaussian model.
These non-linearities would lead to an asymmetry that would
also be evident from the peaks of the wavelet ℓ1-norm, which
will no longer correspond. This is demonstrated in Fig. 1 for
a testcase scenario, where we applied a non-linear exponential
transformation to the Gaussian field to obtain a non-Gaussian
field (solid orange line) and obtained the PDF and the ℓ1-norm.
We emphasise that the usual way to extract this non-linear
information is either by relying on heavy N-body simulations
or by using an approximation, as was done in Tessore et al.
(2023). With LDT, we now have a theoretically motivated way to
obtain the PDF in the mildly non-linear regime, with which we
show that we can also obtain the wavelet ℓ1-norm in the mildly
non-linear regime.

3. Formalism of the large deviation theory

We applied the LDT to the convergence field. LDT, as explored
in earlier works (Varadhan 1984), examines the rate at which the
probabilities of specific events exponentially decrease as a key
parameter of the problem varies. To derive the wavelet ℓ1-norm
based on the LDT formalism, we first need to recapitulate how
the PDF is obtained from the LDT formalism.

3.1. Large deviation theory for the matter field

The application of LDT to the field of Large Scale Structure cos-
mology has systematically been developed in recent years and is

applied in the specific context of cosmic shear observations in
this work. (Bernardeau & Reimberg 2016) clarified the applica-
tion of the theory to the cosmological density field, establishing
its link to earlier studies focused on cumulant calculations and
modelling the matter PDF through perturbation theory and
spherical collapse dynamics (Valageas 2002; Bernardeau et al.
2014b). Barthelemy et al. (2020) then provided an LDT-based
prediction for the top-hat-filtered weak-lensing convergence PDF
on mildly non-linear scales, building upon earlier work by
(Bernardeau & Valageas 2000).

A more detailed derivation of the specific equations used is
presented in the Appendix A. In this section, we recall the main
equation with which we derive the wavelet ℓ1-norm prediction.

Application of LDT in cosmology involves three main steps.
The first step is the derivation of the rate function, which is
directly obtained from the first principles of cosmology. Using
the contraction principle in the LDT formalism, we can connect
the statistics of the late-time non-linear densities to the earlier-
time density field when the most likely mapping between the
two is known. Previous works have shown that assuming spher-
ical collapse for this mapping provides us with a very accurate
prediction for cosmic field PDF (density, velocity, convergence,
etc.).

In particular, the result for convergence reads

P(κ) =
∫ +i∞

−i∞

dλ
2πi

exp(−λκ + ϕκ,θ(λ)), (9)

where P(κ) is the PDF of the convergence field κ, and ϕκ,θ is
the cumulant generating function (CGF) of the field κ at angular
scale θ. The derivation of the CGF in the above equation and the
PDF from there is explained in more detail in the Appendix A.

3.2. Extension to wavelet coefficients

From the PDF, we can now compute the ℓ1-norm. As described
in the Sect. 2, a wavelet can be written as a function of scaling
functions. Although various wavelet filters exists in literature, we
employed a function of concentric disks to construct the wavelet
filter Υθ1 .

The scaling function ξ is then given by a spherical top-hat
filter and is given by

ξ̂θi = 2J1(θil)/(θil), (10)
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Fig. 2. Compensated filter (solid black line), derived through the differ-
ence of two top-hat filters at different scales, as described in Eqs. (5) and
(10). The solid blue and orange lines represent the individual spherical
filters obtained at radii θ1 and θ2 = 2θ1, respectively. For visualisation
purposes, the compensated filter is multiplied by −1.

where J1 is the first Bessel function of the first kind. This is
applied, as shown in Eq. (5), to obtain our compensated filter.
In Fig. 2 we show the compensated filter (solid black line) we
used, which is given as a function of two scaling functions (solid
orange and blue lines) at different scales.

We applied the LDT formalism described previously to the
wavelet coefficients described in Eq. (5) and obtained the PDF
of the wavelet coefficients (wθ1 ) by using the scales θ1, θ2 = 2θ1
as

P(wθ1 ) =
∫ +i∞

−i∞

dλ
2πi

exp
(
−λwθ1 + ϕwθ1 (λ)

)
. (11)

We refer to the Appendix A for more details about the deriva-
tion of the CGF in the above equation and the resulting PDF.
We emphasise that wθ1 is essentially the standard aperture mass
defined on the convergence field using the difference of two
top-hat filters, as was discussed previously.

3.3. Wavelet ℓ1-norm predicted via large deviation theory

In the previous sections, we showed that the LDT formalism can
be applied to derive the PDF of the wavelet coefficients. We
derive the wavelet ℓ1-norm from the PDF of the wavelet coeffi-
cients P(wθ1 ) here. This wavelet ℓ1-norm given in Eq. (6), which
is the sum of the absolute values of the pixels in each bin, is
equivalent to multiplying the counts/PDF value by the absolute
value of the bin to which it corresponds, as given in Eq. (7).
Extending this to the PDF of the wavelet coefficients from the
LDT formalism, we obtain the final equation for bin i,

ℓi
1 = Pi(wθ1 ) × |wi

θ1
|. (12)

As a first approximation, we assume that the PDF is
Gaussian, which is the case when we consider large scales or
early times in the standard model of cosmology. In the subse-
quent section, we first obtain the ℓ1-norm for a Gaussian case and
then highlight the motivation to go beyond Gaussian models.

4. Comparing ℓ1-norm prediction to simulations

4.1. Measurements from simulation

To demonstrate the accuracy of the theory for realistic surveys,
we compared our prediction results with fthe ull-sky simulations
of Takahashi et al. (2017) to avoid additional errors from small-
scale patch sizes. The simulations of Takahashi et al. (2017)
provide full-sky lensing maps at a fixed cosmology3 each for
two grid resolutions: 40962 and 81922. The data sets include the
full-sky maps at intervals of 150 h−1 comoving radial distance
from redshifts z = 0.05–5.3. We used the simulated convergence
maps that are directly provided as products of these simulations.
The convergence maps were smoothed as a direct convolution of
the convergence map with the wavelet filter at a given angular
scale. After we obtained the filtered field, we measured the sum
of the absolute values of the pixels of the smoothed κ mass map
in linearly spaced bins of the range of κ to obtain the wavelet
ℓ1-norm.

4.2. Obtaining the prediction

To obtain the prediction of the wavelet ℓ1-norm for each of the
cosmologies used here, we first used CAMB (Lewis & Challi-
nor 2011) to obtain the linear and non-linear (Halofit takahashi
(Takahashi et al. 2012)) matter power spectra. We also used
CAMB to obtain the comoving radial distances χ(z). The density
CGF (Eq. (A.9)) was calculated for redshift slices between z = 0
and the source redshift zs using the full Halofit power spectrum
as input. These projected CGFs were then rescaled by the mea-
sured variance σ2

Map,sim (see the Appendix A for more details),
before going through an inverse Laplace transform to obtain the
final PDF. This predicted PDF was used to derive the predicted
wavelet ℓ1-norm as given in Eq. (12).

4.3. Validating the prediction with simulation

In Figures 3 and 4, we show the predicted wavelet ℓ1-norm
and the one measured from the simulated convergence map
for different source redshifts zs ≈ 1.2, 1.4, and 2.0 at θ = 20′
and for different scales θ = 15′, 18′, and 20′ at source redshift
zs = 1.423, respectively. In the bottom panels, we show the resid-
uals. For comparison, we display the PDF and the residuals of
a Gaussian distribution (dash-dotted line) with the same mean
and variance as the simulation. The Gaussian PDF was obtained
using Eq. (8), and the ℓ1-norm was derived as explained pre-
viously in Eq. (12). In both plots, the x-axis for the residuals
is scaled by the standard deviation. The shaded regions in the
colours correspond to the 3σ region obtained from the error bars.

The error bars were obtained by taking the standard deviation
of the values of the wavelet ℓ1-norm for ten different patches of
the full-sky Takahashi map in each of the bins.

We first concentrated on the Gaussian curves. The Gaussian
prediction is a clear mismatch, as expected, because the measure-
ments show a clear asymmetry for the Gaussian model, which by
definition is symmetric.

We then focused on the LDT prediction, which goes beyond
the Gaussian regime. In this case, the agreement between the
simulation and the predicted wavelet ℓ1-norm results is better
at the percent level (which corresponds to the simulation error
bars in the shaded area) within the 2σ region around zero on the
x-axis. This demonstrates the predictive accuracy of the results

3 http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_
raytracing/
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Fig. 3. Comparison of the predicted wavelet ℓ1-norm to the simulations
at different redshifts. Top panel: predicted (solid) ℓ1-norm as compared
to measurements in simulation (dots) for an inner radius θ1 = 20′ and
different source redshifts zs = 1.21, 1.43 and 2.05, displayed with blue,
orange, and green lines, respectively. The dash-dotted red lines show the
Gaussian prediction for reference. The vertical dotted and dot-dashed
lines correspond to the 1σ and 2σ regions around the mean of the
wθ1 for each of the cases considered. Bottom panel: residual of the
prediction relative to the simulation (dotted lines). For reference, the
dash-dotted plots illustrate the residual of the ℓ1-norm derived from the
Gaussian PDF with the same mean and variance as the simulation PDF.
The shaded region indicates the 3σ region around the error bars for
each redshift. The prediction agrees well with the measurements up to
approximately 2σ and remains within percent levels.

derived from the LDT formalism. It is important to note that this
2σ specification refers to the range on the x-axis and does not
represent error bars around the mean signal value.

These plots clearly show that LDT captures the asymmetry of
the two peaks well and therefore providees valuable information
about the non-Gaussianities. To better assess this aspect, we also
show in Table 1 the cumulants obtained for the three scales at
source redshift zs = 1.423. The cumulants shown here are the
variance (σ2) and reduced skewness (S 3), which, given that the
mean convergence is zero, were obtained as

σ2 = E
[
κ2

]
(13)

S 3 =
E[κ3]
σ4 , (14)

where

E[κn] =
∫

P(κ)κndκ. (15)

Table 1 shows that the variance from the prediction and
simulation for different scales matches perfectly, which we
expect given the re-scaling by the power spectrum that we per-
formed (see Appendix A). As expected from the formalism,
the reduced skewness (S 3) increases with decreasing smooth-
ing scale. We also note that the ℓ1-norm for the positive bins is

Fig. 4. Comparison of the predicted wavelet ℓ1-norm to the simulations
at different scales. Top panel: predicted (solid) ℓ1-norm as compared to
measurements in simulation (dots) for different inner radii θ1 = 15′, 18′,
and 20′ and a single source redshift zs = 1.43, displayed with blue,
orange, and green lines, respectively. The dash-dotted red lines show the
Gaussian prediction for reference. The vertical dotted and dot-dashed
lines correspond to the 1σ and 2σ regions around the mean of the wθ1
for each of the case considered. Bottom panel: residual of the prediction
relative to the simulation (dotted lines). For reference, the dash-dotted
plots illustrate the residual of the ℓ1-norm derived from the Gaussian
PDF with the same mean and variance as the simulation PDF. The
shaded region indicates the 3σ region around the error bars for each
inner radius. The prediction agrees well with the measurements up to
approximately 2σ and remains within percent levels.

Table 1. Cumulants (standard deviation σ, skewness S 3) obtained from
the PDF from the LDT prediction and the values obtained from the
Takahashi simulation at source redshift zs ≈ 2.05 for scales of 15, 18,
and 20 arcminutes.

Data σ2 × 10−5 S 3

Prediction 15′ 2.92 −26.3
Simulation 15′ 2.92 −42.8
Prediction 18′ 2.61 −25.94
Simulation 18′ 2.61 −38.2
Prediction 20′ 2.44 −25.7
Simulation 20′ 2.44 −35.4

Notes. The corresponding PDFs are shown in Figure 4.

not at all equal to the negative bins, suggesting how prominent
the non-Gaussian features of the mass map are in this regime.
Barthelemy et al. (2020) reported that the theoretical precision
that can be achieved is constrained by the mixing of scales
when integrating the density field along the line of sight since
highly non-linear scales are not precisely captured by the spher-
ical collapse formalism. Consequently, weak-lensing statistical
measures are often approached through more phenomenologi-
cal methods, such as halo models. These models are capable
of incorporating baryonic physics, which becomes crucial at
smaller scales, as highlighted by Mead et al. (2021). This is also
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evident in Figs. 3 and 4, where the level of accuracy increases
at higher redshifts and higher smoothing scales. To bypass this
issue, a rising approach is to use the so-called Bernardeau-
Nishimichi-Taruya (BNT) transform (Bernardeau et al. 2014a),
which enables more accurate theoretical predictions by narrow-
ing the range of physical scales that contribute to the signal.

4.4. Cosmology dependence of the probability distribution
function and the wavelet ℓ1-norm

In this section, we explore the cosmological dependence of
the predicted pdf of the wavelet coefficients and ℓ1-norm. We
emphasise that because the wavelet decomposition is analogous
to using an aperture mass map filtering, we henceforth also call
the PDF of the wavelet coefficients the aperture mass PDF. From
the equation of the rate function given in Eq. (A.7), the cos-
mology dependence of the aperture mass PDF in LDT enters
through the scale dependence of the non-linear power-spectrum,
the dynamics of the spherical collapse, and the lensing kernel.
Moreover, the presence of massive neutrinos, if any, also affects
the aperture mass as it enters the lensing kernel, as given in
Eq. (3) by contributing to the total matter density budget. All
of this inevitably means that the summary statistics are also
cosmology-dependent. In the context of applying LDT to predict
the wavelet ℓ1-norm and PDFs, based on the equations intro-
duced above, we assume that it should be able to efficiently
capture the cosmology dependence. The cosmology dependence
of the one-scale one-point convergence PDF was studied in detail
by Boyle et al. (2021), who showed that LDT captures the cos-
mology dependence very accurately. We extend this study for the
case of the PDF of the wavelet coefficients and the wavelet ℓ1-
norm of aperture mass maps. As for the one- scale case, the rate
function for the multi- scale also depends on the variance and the
dynamics of the spherical collapse, which means that the PDF
of the wavelet coefficients would also be expected to depend
(similarly) on the cosmology. Additionally, because the wavelet
ℓ1-norm is directly dependent on the PDF, we could naively
expect it to depend on the cosmology as well, and encapsulate
the dependence.

We are interested in obtaining the derivatives with respect to
cosmological parameters. We therefore need a simulation suite
that is available for different cosmologies. For this, we used the
cosmological massive neutrino simulations (MassiveNus) (Liu
et al. 2018) suite to determine how well the theory captures
the dependence on cosmology. These simulations were released
by the Columbia Lensing Group4. The MassiveNuS simulations
encompass 101 different cosmological models at source redshifts
zs = 0.5, 1.0, 1.5, 2.0, and 2.5 by varying three parameters: the
neutrino mass sum Mν, the total matter density Ωm, and the pri-
mordial power spectrum amplitude As. For each redshift, 10 000
distinct map realisations are generated through random rotation
and translation of the initial n-body box and are then stitched
together to reconstruct pseudo-independent light cones that are
unlikely to cross the same structures. Each κ map contains
5122 pixels, covering a total angular area of 12.25 square
degrees, spanning a range of ℓ ∈ [100, 37 000] with a pixel reso-
lution of 0.4 arcminutes. The wavelet ℓ1-norm is measured using
the same process as described previously in Sect. 4.1. Addition-
ally, the measurement of the PDF is derived from the histogram
of the binned and smoothed map. To obtain the derivatives, we
used a model with the parameters Ωm = 0.30, As = 2.1 × 10−9,
and Mν = 0.0 eV as the fiducial model (model 1b in Liu et al.

4 http://columbialensing.org/

Table 2. Cosmological parameters used to obtain the derivatives of the
PDF.

Parameters Lower bound Fiducial Upper bound

Ωm 0.28 0.3 0.31
As × 10−9 2.0 2.1 2.17
Mν 0.09 0.0 0.11

Fig. 5. Derivative of the PDF with respect to Mν (blue), Ωm (orange),
and As (green). The solid lines show the derivatives obtained from the
prediction, and the dotted lines show the derivatives from the simula-
tion. It is obtained at source redshift zs = 2 and inner radius θ1 = 22.5′.
The results for the simulation are obtained from the MassiveNus simu-
lation suite by averaging the results over 10 000 simulations.

(2018)) and obtained the derivatives of the PDF for each of the
parameters. The different parameters are shown in Table 2. The
outcomes are illustrated in Figures 5–6. For the derivative with
respect to Mν, we employed a model with the same Ωm and As
values, but with Mν = 0.0, eV and then computed the derivative.
However, it is important to note that due to resolution and finite
volume effects, the simulation power spectrum of the conver-
gence maps exhibits a deficit in power at high ℓ, which strongly
affects our results because of the scales we considered, and at
low ℓ, which invites caution when choosing our largest scales.
We typically tried to maintain a factor of 20 between the physi-
cal scale of the box and the largest physical scale probed by our
filters.

Figures 5 and 6 clearly show that the prediction effectively
captures the changes in cosmology and agrees well with the
results. The error bars were obtained by taking the error of the
mean of 3000 simulations, which were also used to obtain the
mean of the measurements.

As demonstrated in Boyle et al. (2021) for the case of a one-
cell PDF, our results here demonstrate that the theory captures
the effects of adding massive neutrinos to cosmology well and
extend the results to the PDF of the wavelet coefficients as well.

4.5. Reproducible research

In the spirit of open research, the code for reproducing the plots
in this paper is available at github. The part of this Python
code that computed the aperture mass/wavelet coefficient PDF
was inspired by the public Mathematica code L2DT used in
Barthelemy et al. (2021).
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Fig. 6. Derivative of the wavelet ℓ1-norm with respect to Mν (blue), Ωm
(orange), and As (green). The solid lines show the derivatives obtained
from the prediction, and the dotted lines show the derivatives from the
simulation. The predicted wavelet ℓ1-norm is derived from the predicted
PDF, as was explained in previous sections. It is obtained at source red-
shift zs = 2 and inner radius θ1 = 22.5′. The results for the simulation
are obtained from the MassiveNus simulation suite by averaging the
results over 10 000 simulations.

5. Discussion and conclusions

We have used the LDT to build upon previous work by
Barthelemy et al. (2021) and introduced a formalism to predict
the ℓ1-norm of the wavelet coefficients of the lensing field and
their cosmological dependence for any given redshift and scales
as long as they are in the mildly non-linear regime. The approach
of Barthelemy et al. (2021) incorporated geometric and time-
evolution aspects within the light cone by considering that the
correlations of the underlying matter density field along the line
of sight are negligible compared to transverse directions. This
Limber approximation enabled us to treat redshift slices as sta-
tistically independent. We found that the most likely non-linear
dynamics of the matter density field filtered in concentric disks
can be well approximated for small variances by the cylindrical
collapse model, thus allowing us to apply LDT in this context.
From there, because the wavelet ℓ1-norm can be directly related
to the multi-scale one-point statistics of the convergence, we
showedr that a theory-based prediction for the wavelet ℓ1-norm
is tractable.

The robust validation of our predictions against the simula-
tions is shown in Figs. 4 and 3. This highlighted the reliability
and applicability of our theoretical framework. Specifically, our
theory aligns with the simulations within a percent-level accu-
racy in the examined range of source redshifts zs ≈ 1−2 and
angular scales θ1≈ 15−20. This quantitative assessment affirms
the predictive precision of our model. Smaller scales or lower
redshifts would clearly lead to a larger departure between simu-
lations and theory.

Figure 6 further emphasises the cosmological dependencies
and the very good performance of the theoretical prediction
when compared with that of the simulation. Since the simula-
tions validated the theoretical predictions, this suggests that our
model can be applied to investigate a broad range of cosmologi-
cal parameters while bypassing the need for high-cost computing
resources and providing a theoretical tool for cosmology infer-
ence that is robust and fast, without loss of quality. This paves
the way for a more comprehensive and faster forecast analysis
based on theory without having to rely on expensive numerical

simulations. In addition, we noted in Figures 5 and 6 that there is
numerical noise in the simulation results (fitted lines). This can
lead to biases in parameter estimates when using the simulation
data. A theory-based approach has the added benefit of reducing
the artificial biases in the parameter inference, which was also
noted in Boyle et al. (2021).

Another point to be noted is that although lower source
redshifts are expected to generate more non-Gaussian infor-
mation, this also pushes the model deeper into the non-linear
regime. This effect can be mitigated by adjusting the smooth-
ing scale accordingly. We also emphasise the usefulness of the
wavelet coefficients of the convergence maps, instead of directly
using the convergence maps or the shear maps. Convergence
maps already reduce computational expense through a more
compressed lensing signal when compared to the shear map.
However, the use of the wavelet scales and/or coefficients pro-
vides us with a multi-scale analysis method that is well suited to
constraining the cosmology.

Moreover, wavelet coefficients are invariant under the mass
sheet degeneracy, which renders the link to the measured shear
data more straightforward.

More generally, one of the issues with the theoretical mod-
elling of weak lensing we currently face is the mixing of (non-
linear) scales that is inherent in such quantities projected along
the past light cone and makes standard perturbative approaches
inaccurate even at relatively large angular scales. (Bernardeau
et al. 2014a) To overcome this issue, an emerging method is the
BNT transform, which allows more precise theoretical predic-
tions by reducing the range of physical scales that contribute
to the signal. This can be applied in our context and enables
even more accurate predictions for analysing tomographic sur-
veys. An investigation of the performance of this approach is left
for future works, together with the impact of systematics, which
would require us to devise specific simulated data, as well as
additional theoretical development.

We conclude that the novel approach for obtaining the the-
oretical prediction of the wavelet ℓ1-norm summary statistic
proposed here presents several advantages in the realm of cos-
mological parameter inference: (i) it provides a fast (about one
minute) calculation, (ii) it does not rely on a heavy numerical
simulation, (iii) it captures the cosmology dependence well, and
(iv) the wavelet ℓ1-norm might lead to competitive or even tighter
constraints, as demonstrated by previous works. This promising
method might enable a comprehensive multi-scale analysis of
cosmic shear datasets in the mildly non-linear regime.

Data availability

The code for reproducing the plots in this paper is available at
https://github.com/vilasinits/LDT_2cell_l1_norm

Acknowledgements. This work was funded by the TITAN ERA Chair project
(contract no. 101086741) within the Horizon Europe Framework Program of
the European Commission, and the Agence Nationale de la Recherche (ANR-
22-CE31-0014-01 TOSCA and ANR-18-CE31-0009 SPHERES). A.B.’s work
is supported by the ORIGINS excellence cluster. We thank Jia Liu and the
Columbia Lensing group http://columbialensing.org) for making the
MassiveNus (Liu et al. 2018) simulations available. The creation of these sim-
ulations is supported through grants NSF AST-1210877, NSF AST-140041,
and NASA ATP-80NSSC18K1093. We thank New Mexico State University
(USA) and Instituto de Astrofisica de Andalucia CSIC (Spain) for hosting the
Skies & Universes site for cosmological simulation products. We also thank C.
Uhlemann, O. Friedrich, Lina Castiblanco, and Martin Kilbinger for insightful
discussions.

A80, page 8 of 11

https://github.com/vilasinits/LDT_2cell_l1_norm
http://columbialensing.org


Sreekanth, V. T., et al.: A&A, 691, A80 (2024)

References
Ajani, V., Peel, A., Pettorino, V., et al. 2020, Phys. Rev. D, 102, 103531
Ajani, V., Starck, J.-L., & Pettorino, V. 2021, A&A, 645, L11
Ajani, V., Harnois-Déraps, J., Pettorino, V., & Starck, J.-L. 2023, A&A, 672, L10
Bacon, D. J., Refregier, A. R., & Ellis, R. S. 2000, MNRAS, 318, 625
Bartelmann, M., & Maturi, M. 2017, Scholarpedia, 12, 32440
Barthelemy, A., Codis, S., Uhlemann, C., Bernardeau, F., & Gavazzi, R. 2020,

MNRAS, 492, 3420
Barthelemy, A., Codis, S., & Bernardeau, F. 2021, MNRAS, 503, 5204
Bernardeau, F., & Reimberg, P. 2016, Phys. Rev. D, 94, 063520
Bernardeau, F., & Valageas, P. 2000, A&A, 364, 1
Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R. 2002, Phys. Rep.,

367, 1
Bernardeau, F., Nishimichi, T., & Taruya, A. 2014a, MNRAS, 445, 1526
Bernardeau, F., Pichon, C., & Codis, S. 2014b, Phys. Rev. D, 90, 103519
Boyle, A., Uhlemann, C., Friedrich, O., et al. 2021, MNRAS, 505, 2886
Cheng, S., & Ménard, B. 2021, MNRAS, 507, 1012
Euclid Collaboration (Deshpande, A. C., et al.) 2024, A&A, 684, A138
Fageot, J., Bostan, E., & Unser, M. 2014, in 2014 IEEE International Conference

on Image Processing (ICIP), 6096
Gatti, M., Chang, C., Friedrich, O., et al. 2020, MNRAS, 498, 4060
Giblin, B., Heymans, C., Harnois-Déraps, J., et al. 2018, MNRAS, 480, 5529
Giné, E., Mason, D. M., & Zaitsev, A. Y. 2003, Annal. Probab., 31, 719
Harnois-Déraps, J., Giblin, B., & Joachimi, B. 2019, A&A, 631, A160
Heymans, C., Van Waerbeke, L., Miller, L., et al. 2012, MNRAS, 427, 146
Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454
Hildebrandt, H., van den Busch, J. L., Wright, A. H., et al. 2021, A&A, 647,

A124
Huber, P. J. 1987, Comput. Stat. Data Anal., 5, 255
Huterer, D. 2010, Gen. Relativ. Gravit., 42, 2177
Ingoglia, L., Covone, G., Sereno, M., et al. 2022, MNRAS, 511, 1484
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Appendix A: Large Deviation Theory

A.1. LDT for the matter field

The computations detailed in this section draw heavily from the
formulations provided in Boyle et al. (2021) and Barthelemy
et al. (2021). Here, we will succinctly restate the key equa-
tions and direct the reader to the comprehensive treatments in
Boyle et al. (2021), Barthelemy et al. (2021), and Reimberg &
Bernardeau (2018).

The LDT, as explored in earlier works Varadhan (1984),
examines the rate at which the probabilities of specific events
diminish as a key parameter of the problem undergoes vari-
ation. Widely applied in various mathematical and theoretical
physics domains, this theory is particularly prominent in statisti-
cal physics, covering both equilibrium and non-equilibrium sys-
tems. For a detailed overview, readers are referred to Touchette
(2009).

The Large Deviation Principle (LDP) in the domain of Large
Scale Structure cosmology has been systematically developed in
recent years and will be applied in the specific context of cosmic
shear observations in this work. Bernardeau & Reimberg (2016)
clarified the application of the theory to the cosmological density
field, establishing its link to earlier studies focused on cumulant
calculations and modelling the matter PDF through perturba-
tion theory and spherical collapse dynamics (Valageas (2002);
Bernardeau et al. (2014b)). Barthelemy et al. (2020) provided an
LDT-based prediction for the top-hat-filtered weak-lensing con-
vergence PDF on mildly nonlinear scales, building upon earlier
work by Bernardeau & Valageas (2000).

The LDP applied to the matter density field relies on three
key aspects:

– Defining a rate function for variables in the initial field
configuration. In this context, we opt for Gaussian initial
conditions and establish their covariance matrix.

– Describing the relationship between the initial field con-
figuration (representing the mass profile) and the resulting
mass profile, based on 2D cylindrical collapse or a suitable
approximation.

– Using these foundations to express observable quantities,
like a map created with a specific filter, as functional expres-
sions that depend on both the final and initial mass profile.
A LDP for matter densities at multiple scales (indexed by

i) {ρϵi }, 1 ≤ i ≤ N with joint PDF Pϵ({ρϵi }) is satisfied if the
following limit exists

ψ{ρϵi }({ρ
ϵ
i }) = − lim

ϵ→0
ϵ log[Pϵ({ρϵi })]. (A.1)

If such limit exists, ψ{ρϵi } is called the rate function.
Here, ϵ is a driving parameter, indicating the set of random

variables linked to a specific evolutionary process. For the matter
density field at a single scale, this parameter reflects its variance,
marking time from initial stages to later times. In joint statistics
involving concentric disks of matter, the common driving param-
eter can be selected as the variance at any radius or scale. This
consistency arises because all variances behave the same as they
approach zero. In this limit, they directly scale with the square
of the growth rate of structure in the linear regime.

If LDP holds for the random variable ρi, then Varadhan’s
theorem allows us to connect its Scaled Cumulant Generating
Function (SCGF) φρi to the rate function ψρi through a Legendre-
Fenchel transform

φ{ρi}({λi}) = sup
{ρi}

[∑
i

λiρi − ψ{ρi}({ρi})
]
. (A.2)

This Legendre-Fenchel transform reduces to Legendre transform
if the rate function is convex

φ{ρi}({λi}) =
∑

i

λiρi − ψ{ρi}({ρi}), (A.3)

where λi and ρi are one by one related via the stationary
condition

λk =
∂ψ{ρi}({ρi})

∂ρk
,∀k ∈ {1, . . . ,N}. (A.4)

Another consequence of the large-deviation principle is
the so-called contraction principle. This principle suggests that
when dealing with a set of random variables τi following a large
deviation principle LDP and connected to ρi through the con-
tinuous mapping f , the rate function of ρi can be determined as
follows

ψ{ρi}({ρi}) = inf
{τi}: f ({τi})={ρi}

ψ{τi}({τi}). (A.5)

In more tangible terms, this statement suggests that an uncom-
mon change in the behavior of ρi is predominantly influenced by
the most probable variation among all unlikely changes in τi.

In the context of cosmology, if we take ρk to denote the late-
time densities, then τ̄k, the most likely initial field configuration,
is obtained through the most probable mapping between the lin-
ear and late-time fields. In 2D, this most likely dynamics is given
by cylindrical collapse, which is known to be well-fitted by

ζ(τ̄k) = ρk =
(
1 −

τ̄k

ν

)−ν
. (A.6)

The choice of ν as 1.4 is made to match the calculated value of
the third-order skewness of the matter density contrast in cylin-
ders from perturbation theory, as presented in Uhlemann et al.
(2018). The standard result for spherical collapse dynamics in 1
to 3D can be found in Mukhanov (2005).

Now that we know the most likely connection between initial
conditions and the late-time field configuration, we can compute
the rate function for the late-time density field. It is expressed as
follows

ψ(ρi) =
σ2

R1

2

∑
k, j

Ξk j(τi)τ̄kτ̄ j. (A.7)

Here, σ2
R1

is the driving parameter and is determined by the
variance within the largest disk R1. Ξk j is the inverse covariance
matrix between the linear density field inside the initial disks of
radii Rkρ

1/2
k .

A.2. Applying LDT to aperture mass PDF

Following Barthelemy et al. (2021), an accurate modelling of
the top-hat smoothed weak lensing convergence can be obtained
(Limber) approximating that the convergence field is an assem-
bly of statistically independent infinitely long cylinders of the
underlying matter density contrast. Those cylinders are centred
on slices along the line of sight, and they reduce to those 2D
slices as illustrated in Fig. A.1. This means that the cumulants
can be written as

〈
Mp

ap
〉

c =

∫ χs

0
dχω(χ, χs)

〈
(δ<D(χ)θ2 − δ<D(χ)θ1 )p〉

c, (A.8)
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Fig. A.1. Schematic view of the procedure to obtain the aperture mass
map following (Barthelemy et al. 2021). The projected quantities can be
inferred as a superposition of the underlying 3D density field along the
line of sight.

where δ<D(χ)θ2 − δ<D(χ)θ1 is a random variable that defines the
slope between two concentric disks of radii D(χ)θ2 and D(χ)θ1
at comoving radial distance χ. This simplifies the problem
greatly, now having to calculate just the one-point statistics
related to the density slope within each two-dimensional slice
along the line of sight.

As is explained in Appendix A of Barthelemy et al. (2021),
the choice of driving parameter is not predicted by theory and
is left as a free parameter. However, when computing the joint
statistics of the density fields at different scales, this choice pre-
vents us from imposing correct quadratic contributions in the
CGF. This leads us to use the full non-linear prescription com-
ing from the Halofit to model the non-linear covariance. In this
paper, we use the Halofit-Takahashi version Takahashi et al.
(2012) to compute the covariances.

Now using Eq. (A.3), and Eq. (A.7), and since we need the
density slope between two concentric disks, we get the SCGF as

φδ2−δ1 (λ) = φδ1,δ2 (−λ, λ) (A.9)

To ensure that this choice does not lead to any discrepancies
with the numerical simulations, we also rescale the projected
CGF given in Eq. (A.3) with the measured variance σ2

Map,sim

instead of the one computed from Halofit σ2
Map,h f it as is given

below

ϕMap (λ) =
σ2

Map,h f it

σ2
Map,sim

ϕMap

λ σ2
Map,sim

σ2
Map,h f it

 (A.10)

Once the CGF of individual slices is obtained, we can use
Eq. (A.8) to get the CGF (the details of this derivation is given
in Barthelemy et al. (2021)) of the lensing aperture mass as

ϕκ,θ1,θ2 (λ) =
∫ χs

0
dχwp(χ, χs)ϕδ1,δ2,Map (w(χ, χs)λ,D(χ)θ1,D(χ)θ2).

(A.11)

After calculating the CGF, the inverse Laplace transform can
be used to obtain the convergence PDF

P(κ) =
∫ +i∞

−i∞

dλ
2πi

exp(−λκ + ϕκ,θ(λ)). (A.12)

As described in more detail in Barthelemy et al. (2021), the
inverse Laplace transform we need to perform assumes that the
CGF is defined in the complex plane along the path of integra-
tion. Unfortunately, the use of numerical results for the matter
power spectra prevents us to perform this continuation from the
real axis. As a result, we use an informed fit of the numerical
CGF along the real axis with a finite number of coefficients that
we then extend to the complex plane. This allows to perform the
previous integral.

Now that we have a PDF of the aperture mass map P(Map)/
alternatively the wavelet coefficients, we could use that to obtain
the wavelet ℓ1-norm using the Eq. (12) as demonstrated in the
Sect. 3.3.
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