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Abstract—As a knowledge acquisition theory, constructivism
describes information processing mechanisms behind infants’
cognitive development. When infants play with the world around
them, they exhibit amazing abilities to generate novel behaviors
in unseen situations and explore actively to learn the best while
lacking extrinsic rewards from the environment. These abilities
are critical to achieving autonomous intelligent agents (such as
robots). In this article, we seek to understand and replicate
some of the abilities in infants’ play and propose a computa-
tional framework based on the constructivist learning paradigm,
which enables sense-making and knowledge construction for
self-motivated agents. Furthermore, we evaluate the proposed
framework for solving the Small Loop Problem (SLP) and
compare its performance with reinforcement-based models. A
toolkit of Generating and Analyzing Interaction Traces (GAIT)
was introduced to report and explain the fine-grained learning
process and the formation of structured behaviors after each
decision-making. The result shows that the agent has successfully
learned to interact with its environment and avoid unfavorable
interactions by using regularities discovered through interaction.
Moreover, the proposed framework outperforms reinforcement-
based models in learning the goals and adapting behaviors in
interacting with dynamic environments.

Index Terms—sense-making, knowledge construction, cogni-
tive development, intrinsic motivation, constructivist learning
paradigm, sequential learning, self-adaptation

I. INTRODUCTION

Infants are excellent at playing [1]. During the initial phase
of cognitive development, they exhibit amazing abilities to
explore the environment actively and absorb new knowledge
flexibly to generate novel behaviors in being fun. [2]–[4].
These abilities set them apart from most advanced robots.
For most artificial agents (such as robots), learning approaches
heavily rely on the availability of prior knowledge and specific
goals proposed by the system designer, which limits the
flexibility of agents in varies of tasks (such as in dynamic
scenarios). How can we use observations on infant play to
enable a self-motivated agent that can behave in an intelligent
and a flexible manner has become a hot topic in research [5],
[6].

Over the last decades, a multitude of theories and methods
have been devoted to the study of learning mechanisms in
infants’ early-stage cognitive development, proposed various
algorithms targeted at designing and implementing a self-
motivated agent as well. For example, developmental learning

[7] explores mechanisms that allow continually discover and
learn new skills in unseen environments. Intrinsic motivation
[8], [9] (such as curiosity, novelty, etc) drives the development
of the world-model, as a way to replicate some abilities
of infants’ interaction. The constructivism as a knowledge
acquisition theory proposes that learning happens as result
of an internal mental representations and external perceptions
from interaction [10], rather than existing in an ontic reality,
or available for registration from the physical world [11]. In
the view of constructivist learning paradigm, the agent is not
designed as as passive observer of reality, but rather constructs
as perception of reality through active interaction experience
[12].

Inspired from the theory of constructivism, we introduce
a computational framework of Constructivist Cognitive Ar-
chitecture (CCA), as a way towards simulating the early
learning mechanism of infants’ cognitive development based
on theories of enactive cognition, intrinsic motivation, and
constructivist epistemology. Meanwhile, the CCA allows a
self-motivated agent to autonomously construct the perception
of the environment and acquire capabilities of self-adaption
and flexibility to generate proper behaviors to tackle with
diverse situations in interacting with the environment.

Different to traditional cognitive architectures, the intro-
duced model neither initially endows the agent with prior
knowledge of its environment, nor supplies it with knowledge
during its learning process. Accordingly, we are not propos-
ing an algorithm that optimizes exploration of a predefined
problem-space to reach predefined goal states. Instead, we
propose a way for the agent to autonomously encode the
interaction experiences and reuse behavioral patterns based on
the agent’s self-motivation implemented as inborn preference
that drive the agent in a proactive way. In addition, we
introduce two forms of self-motivation: successfully enacting
sequences of interactions (or called autotelic motivation), and
preferably enacting interactions that have predefined positive
values (or called interactional motivation). Following these
drives, the agent autonomously learns regularities afforded
by the environment, and constructs hierarchical sequences to
perform higher-level behaviors.

The paper is structured as follows. In section II, we in-
troduce related works in traditional artificial intelligence and



current developments in solving the problems we are facing
with. In section III, we present the schematic diagram of
the CCA and explain the learning process of each parts in
it. In section IV, we introduce the methodology and the
experimental settings and also introduce the implementation of
toolkit GAIT for analyzing all interaction results. Finally, we
conclude and provide open issues for possible improvements
of our work in the future.

II. RELATED WORK

Reinforcement Learning [13] and with its advances [14]–
[16] as a most popular way to learning the optimal policies
by achieving the maximum cumulative reward of actions.
Behavior construction in such systems is not predefined, but
learned from interactions with the environment, enabling the
partial self-adaptation to situations that were unexpected or
unknown at designing time [6], [17]. However, it will become
unsuitable in conditions of nonlinearity and nonstationarity of
the environments . Besides, it needs further self-adaptation
during the interaction in situations where the environment has
been changed. Furthermore, the previously learned and stored
knowledge could cause interference in the learning of new
behavioral patterns [6].

Playful behaviors in the absence of reward are usually
described as intrinsic motivations (such as curiosity [1], [7])
that drive the development of the sense-making, as a way to
replicate some abilities of infants’ playing [1], [18]. Playing
capacity in this period likely interacts with infants’ powerful
abilities to understand and model their environment, which
amazingly generates flexible actions with familiar environ-
ments and novel behaviors with unfamiliar environments.
Driven by intrinsic motivations, [19] adopts an evolutionary
perspective and design primary reward functions to mea-
sure both emergent intrinsic and extrinsic motivation. [20]
stores agent’s interactive experience of the environment in an
episodic memory, while also spur the robot reaching experi-
ences not yet presented in memory. With intrinsic motivation
of curiosity, [9] formalizes curiosity with neural network and
a self-model to let the agent challenge the developing world-
model , by combing with an error map.

A related but alternative idea comes from the constructivist
learning paradigm [2], [6], [21]. In the constructivist paradigm,
agent is not a passive observer of reality, but rather con-
structs a perception of reality through active interaction [4].
The constructivist theory proposes that humans build internal
frameworks of knowledge, and acquire new knowledge either
through assimilation (incorporating new knowledge into their
existing framework) or accommodation (re-framing internal
representations to the newly acquired external knowledge) [4].

Previously, we proposed a causality reconstruction model
with constructivist [22] which could let an autonomous agent
organize its behavior to fulfill a form of intentionality defined
independently of a specific task. With the PetriNet that the
agent has learned to predict the consequences of the agent’s
actions, which explains regularities of interaction through
the presence of objects in the agent’s surrounding space. In

another work, [23] introduces an algorithm for self-motivated
hierarchical sequence learning with inspirations from Piaget’s
theories of early-stage developmental learning. The behavior
organization is driven by pre-defined values associated with
primitive behavioral patterns. The agent learns increasingly
elaborated behaviors through its interactions with its environ-
ment. These learned behaviors are gradually organized in a
hierarchy that reflects how the agent exploits the hierarchical
regularities afforded by the environment.

III. THE CONSTRUCTIVIST COGNITIVE ARCHITECTURE
(CCA)

Figure 1 shows the schematic diagram of the CCA, which
is mainly composed of the following parts: (a) the stream
of enacted interactions timeline, (b) the module of episodic
memory, (c) the container of sensorimotor interactions, (d)
a hierarchical sequential construction module, (e) the antic-
ipation proposition process, and (f) the behavior selection
mechanism. We will introduce each of them in the following
sections.

At the bottom of Figure 1, the interaction timeline presents
the stream of enacted interactions that occurred overtime.
Specifically, enacted interactions are represented by colored
symbols in order to indicate different interactions. As the
enacted interaction is prepared, the episodic memory records it
in the form of hierarchical structure. In the CCA, the elements
in the episodic memory are formed by two different kinds
of interactions: the primitive interaction and the composite
interaction, which are stored in the container of sensorimotor
interactions. Specificially, the primitive interaction is a way
to represent primitive sensorimotor scheme, the composite
interaction is used to represent hierarchical sequential scheme.

With agent’s continuously interacting with the environment,
new patterns of interaction and higher-level behaviors are grad-
ually constructed, which enhances the hierarchical sequential
system on the left top of Figure 1. Hierarchical Sequential
System represents the mechanism of learning hierarchical
regularities of interactions. It includes the rudimentary learning
of regularities of interaction and the recursive learning of com-
posite interactions. The rudimentary learning of regularities of
interactions constructs the basic patterns of interaction with
previous enacted interaction and current enacted interaction.
While the recursive learning of composite interaction gives
a bottom-up way to learn higher-level patterns of interaction
which are made of lower-level patterns of interactions (or
rudimentary composite interactions), which is bottom-up hi-
erarchical sequential learning. Behavior Selection mechanism
balances the propositions made by the sequential system and
by episodic memory, and then selects the next sequence of
interactions to try to enact. For example, an interaction of
“moving forward with success” is evoked in episodic mem-
ory, then the behavior selection mechanism may select this
interaction as the next intended interaction to try to enact.



A. The sensorimotor interaction
In the initialization, the agent is endowed innate experiments

and primitive interactions. In our work, the primitive interac-
tion is defined as a tuple of an experiment et with its cor-
responding feedback ft at time t, it = ⟨et, ft⟩. Additionally,
we associate each primitive interaction with a scalar valence
vt to qualify the agent’s “feeling” from each environmental
feedback ft. Enacting an interaction it means that the agent
intends an experiment et and receives feedback ft that com-
poses a given interaction at step t. The experiment et could be
a primitive interaction or a series of interactions that the agent
is going to enact recursively. Meanwhile, the agent intends an
interaction it which presents that it performs an experiment
et while expecting its corresponding feedback ft at step t.
With different interactive situations, this “intention” could be
that the agent actually enacts interaction ⟨et, f

′

t ⟩ if it receives
feedback f

′

t instead of ft. If the enacted interaction equals the
intended interaction, then the attempted enaction of intended
interaction is considered a success, otherwise failure.

Fig. 1. The schematic diagram of the Constructivist Cognitive Architecture.

At the interaction cycle t, agent selects an intended inter-
action iit = ⟨et, ft⟩ and tries to enact with reference to the
reactive part of the environment. As a result, the agent receives
the enacted interaction iet and memorizes the two-step enacted
interactions formed as a sequence ct = ⟨iet−1, i

e
t ⟩, which is

made by the previous and current enacted interactions. The
sequence of interaction ⟨iet−1, i

e
t ⟩ is called a composite inter-

action ct, as the pattern of structured behaviors corresponds to
the assimilation process in constructivism. The interaction iet−1

is called ct’s pre-interaction, noted as pre(⟨iet−1, i
e
t ⟩), and iet

is called ct’s post-interaction and is noted as post(⟨iet−1, i
e
t ⟩).

The tuple of composite interaction expresses that in the context
of iet−1, the post interaction iet will be activated to enact in
the future. As interaction continues, more complex composite
interactions will be emerged (or reinforced) according to
the combinations of different kinds of primitive interactions.
To better reflect the proximity of pre-interaction and post-

interaction in composite interactions, we associate each com-
posite interaction with a weight (initialized as “1”) and it
will be incremented when the same composite interaction has
learned again (coincide with the accommodation process in
constructivism). Moreover, composite interaction’s valence is
the sum of its pre-interaction’s and post-interaction’s valence.

B. Activation process

The set of composite interactions known by the agent at
time t is defined as Ct and the set Jt = I ∪ Ct is the all
interactions known to the agent at time t. For the next step
interaction, the current enacted interaction iet as the context
Bt activates previously learned composite interactions as it
matches their pre-interaction, then the agent gets the activated
composited interaction set At = {ai ∈ Ct|pre(ai) ⊂ Bt} .

Activated interactions At propose their post-interaction as
anticipations and the agent’s decision from these anticipations
for the next round. For each post-interactions, anticipation
is created with a scalar value proclivity pi ∈ ℜ which is
computed from the weight wai

of the activated interaction
ai multiplied by the valence of the proposed post-interaction
v(post(ai)), then forms the set ANt of proposed anticipations:
ANt = {antii ∈ ANt|ai ∈ At, proclivityantii = wai

×
v(post(ai))} . The proclivity value reflects the regularity of
the interaction based on its probability of occurrence and the
agent’s motivations.

With partial anticipations starting with the same experi-
ments, the partial similar anticipations (PSAs), we regroup
all anticipations according to their first experiment of the
intended interactions and map them all as different lists with
corresponding experiments respectively. Each experiment’s
proclivity value is calculated as follows:

proclivityantiidefault
=

n∑
i=1

wai × v(post(ai)) (1)

proclivityantiidefault
is the proclivity of experiment i, n

refers to the number of anticipations that share the same first-
experiment of primitive interaction in their intended interac-
tion, wai

is the weight of activated composite interactions ai
and the v(post(ai)) is the valence of ai’s post-interaction.

C. Behavior selection and interaction enaction

The intended interaction iit is selected from anticipations
whose experiment has the biggest proclivity and enacts the
intended interaction of its anticipation with the biggest pro-
clivity. If the intended interaction is composite, the enaction of
this intended composite interaction refers to its anticipation’s
weight wai and the threshold d ∈ ℜ. The parameter d is the
threshold which presents the belief of enacting the intended
interaction as a whole. Suppose the weight of the anticipation
is greater than d and its proclivity value is positive. In that
case, the agent will effectively enact all primitive interactions
within this intended interaction according to the hierarchical
sequential structure recursively. Otherwise, the agent enacts
the first primitive interaction of this intended interaction. In



essence, this mechanism ensures that higher-level schemas
are sufficiently rehearsed before being enacted as a whole.
If the sequence of the intended interactions corresponds to the
regularity of interaction, then it is possible that the sequence
of this intended interaction can be enacted again. Therefore,
the agent can anticipate that performing post interaction’s
experience will likely produce its result. The agent can thus
base its choice of the next interaction on this anticipation.

While enacting intended interaction, the agent checks each
enacted interaction with intended interaction and compares
the result between them. For enacting composite interac-
tions, the flat sequence of enacted interactions constructs
a hierarchical structure according to the enaction sequence
and the intended composite interaction’s structure. With en-
acted interactions, new composite interactions are constructed
or reinforced with their pre-interaction belonging to the
context and their post-interaction iet , forming the set of
learned or reinforced interaction ct to be included in Ct+1,
for supporting affordance of more complicated interaction
situations in the future. The set ct is defined as ct =
{⟨iet−1, i

e
t ⟩, ⟨iet−2, ⟨iet−1, i

e
t ⟩⟩, ⟨⟨iet−2, i

e
t−1⟩, iet ⟩}, Ct+1 = Ct ∪

ct. A new context Bt+1 is constructed to include the stabilized
interactions in iet and post(iet ).

IV. METHODOLOGY AND EXPERIMENTAL SCENARIO

To evaluate the proposed model, we set up an experimental
scenario in which the agent could move around and touch
the environment in three directions: front, left and right. The
environment is designed as a Small Loop Problem (SLP) [24],
[25] environment, which composed of white squares present
paths surrounded by green “walls” (as shown in the left figure
of Figure 2). The agent is presented as a blue arrow and
initialized with a random direction. Meanwhile, the following
shapes of triangle, left and right half-circle square, left and
right trapezoid and square respectively represent experiments
of moving forward, turn left and turn right, touch left, touch
right and touch front. Colors of interactions in white and green
indicate possible feedbacks of moving forward successfully or
bumping with wall from interacting with the environment.

The SLP as a benchmark to evaluate agents that imple-
ment four principles of emergent cognition: environment ag-
nosticism, self-motivation, sequential regularity learning, and
spatial regularity learning [26]. Different from most existing
benchmarks, the small loop environment does not involve a
final goal for the agent to reach, instead, the agent’s self-
motivation comes from the fact that primitive interactions
have different valence. Additionally, our environment can be
dynamically modified to verify the adaptability of agent in
dynamic environments.

In the interface panel, the experimenter can preset the
parameters to control the interaction process (as shown in
the right figure of Figure 2), such as valences allocation for
primitive interactions, interaction “interval” for speeding up or
slowing down the interaction process, “actionType” indicates
the current experiment the agent enacts, “Total valence” rep-
resents the accumulated valence, and “loopNum” presents the

(a) The environment for interaction. (b) Parameter settings for interacting.

Fig. 2. The Small Loop Problem environment and experimental settings.

decision-making steps. To better investigate the fine-grained
learning process and the formation of structured behaviors
after each decision-making, we developed a toolkit of “Gen-
erating and Analyzing Interaction Traces toolkit” (GAIT) as
introduced in the next section.

A. Generating and Analyzing Interaction Traces (GAIT)

The toolkit of GAIT records all the details of each decision-
making and its execution results, including all anticipations
activated by current enacted interaction, all candidate inter-
action in each anticipation sorted by their proclivity value,
and the enacted interaction of the selected proposed inter-
action (the intended interaction). In addition, the interactive
interface enables to pop out tip windows to display these
details selectively. For example, in the area of interaction
traces, the mouse move over each enacted interaction will
pop up the tip window presenting all composite interactions.
The highlighted green rectangles indicate that the composite
interactions are newly learned, while the blue ones are already
learned before but reinforced in this interaction. Left-clicking
on any enacted interactions, the sorted experiment list will
pop out with its proclivities. For the case that experiments
have proposed anticipations, we highlight them with pink
rectangles. Selecting the experiment will display more details
on its anticipations and sorted by their own proclivities. As for
enacting composite interactions, the light green rectangle fields
on the “loop number” can pop out a tip window including
the intended composite interactions with its enacted composite
interaction to show the detailed interaction process. In order to
identify the range of interactions in this composite interaction,
we circle all primitive interactions the agent has enacted with
a yellow rectangle.

The scroll button at the bottom of the interaction traces
can be used to show all previous interactions. In our exper-
iment, the proposed toolkit can support tens of thousands of
interactions which makes it easy to retrospect all previous
interactions.

B. Interaction traces analysis

As shown in Figure 3, agent starts to enact a default intended
interaction (the green right trapezoid) and it receives the same
enacted interaction. In step 2, a composite interaction was



formed according to the previous enacted interaction and the
current enacted interaction. Particularly, in step 3, the agent
not only memorizes the previously enacted interaction and
also combines the previously learned composite interaction to
construct more higher-level composite interaction.

Fig. 3. The first several interactions and composite interactions construct
process.

The proposed intended interaction appears at step 9 (as
shown in Figure 4), the experiment “move forward” has
the highest proclivity and its intended interaction (the white
triangle) is activated with the highest proclivity (the proclivity
value is 15). Then the agent intends this white triangle
(move forward) and gets the same white triangle (the agent
successfully moves forward a step), then this enacting intended
interaction is a success. When the opposite situation happens
in step 14, the agent intends the same white triangle but bumps
with the wall (a green triangle), thus this interaction is a
failure.

Fig. 4. Enact the same intended interaction with different feedback.

At step 23, the agent is going to enact a composite interac-
tion, with the reason that this anticipation’s weight is less than
the threshold, then the agent intends the first primitive interac-
tion (left half-circle) and receives the same enacted interaction
(as shown in Figure 5). In our implementation, we use different
colors of proclivities to identify their anticipations’ weight
beyond the threshold or not, the red color means the weight
is less than the threshold while the green color presents the
weight is higher than the threshold.

At step 119, the agent gets an intended composite interac-
tion with the weight beyond the threshold, then it sequentially
intends this composite interaction successfully receives the
same enacted composite interaction (as shown in Figure 6).
The agent combines this enacted composited interaction with
previously enacted interaction and learned composite interac-

Fig. 5. The enacted composite interaction’s weight less than the threshold.

tion to construct higher-level and more complex composite
interaction.

Fig. 6. The agent enacts composite interaction and constructs higher-level
composite interaction.

AS interactions continue, the agent successfully interacts
with the environment and learns to avoid unfavorable interac-
tions (bumping with the wall) by using sequences that it has
learned. More complicated behavioral sequences have been
constructed and they can handle appropriately with different
situations (as shown in Figure 7).

Fig. 7. Enacting complex composite interaction.

C. Performance comparison

We compare the performance of CCA with reinforcement-
based method of Q-learning. Figure 8 indicates that both
algorithms converge as the interaction proceeds, except that
the CCA converges faster. For example, in the top sub-figure,
the bumping phenomenon in CCA stops from 357th step, and
in Q-Learning from the 1246th step, respectively. Meanwhile,
from the perspective of accumulated valences, we find the
valence begins to rise as the agent could successfully interact
with the environment, and the increase goes gradually faster
until stable, which is evidence proving the emergence of sense-
making and cognitive development in the agent’s interactions
with the environment. Accordingly, the CCA gains more
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Fig. 8. Performance comparison between CCA and Q-Learning.

valences than the Q-Learning (as shown in the bottom Figure
IV-C).

From step 2000, we change the environment to investigate
the scalability of two algorithms in adapting the new environ-
ment and the flexibility to generate appropriate behaviors in it.
As shown in Figure 9, both algorithms adapt to the changes, as
well as converge as interaction proceeds. Particularly, the CCA
outperforms Q-Learning by a faster discovery of the changes
and converges faster than Q-Learning. This advantage can
be seen more clearly in the accumulated valence sub-figure,
where CCA obtains more valence.

Fig. 9. Performance comparison between CCA and Q-Learning in dynamic
environment.

V. CONCLUSION AND OPEN ISSUES

This article introduces a computational framework of con-
structivist cognitive architecture (CCA), as a way of simulating
the early learning mechanism of infants’ cognitive develop-
ment and enabling the sense-making and knowledge construc-
tion for self-motivated agents. The agent autonomously or-
ganizes schemas it learned from interaction into hierarchically
structured behaviors, which lets the agent gradually understand
the meaning of divers experiments and infer the structure
of the environment simultaneously based on the patterns in
the stream of interactions feedback traces. Meanwhile, an
implementation of GAIT for autonomously generating and
analyzing interaction at run-time, which could let us observe
the detailed learning process for agent interacting with the
environment and each structured behaviors it has learned
within each decision-making.

We evaluated the agent’s cognition emergence with an
improved Small Loop Problem (SLP) environment, in which
the changeable environment is designed for simulating agent’s
performance in different levels of complex scenarios. With
interaction traces from GAIT and hierarchically structured
behaviors the agent has learned, the agent gradually exploits
the hierarchical regularities afforded by the environment and
learn to avoid unfavorable interactions using regularities that
it has learned.

Nevertheless, the agent has to retrospect all composite
interactions to retrieve the one whose pre-interaction matches
the current enacted interaction. Being performed interactions,
their traces grow progressively longer, hence the agent spends
a long time to activate all eligible composite interactions for
anticipations. In addition, the utility rate of composite interac-
tions needs to be improved. As an example, the agent activated
almost all composite interactions but few are proposed for
intending. Although the agent can be easily qualified for
the work in the environment designed in this paper, when
the environment becomes more complex, this shortcoming
becomes more obvious.

Valence initialization is another issue that we need to
face. According to the common sense of human beings,
assuming the agent gets positive hints if it can successfully
take a step forward and the negative feedback for collisions
with the wall. As for the agent, it starts interaction without
any prior knowledge, which means it should comprehend
the feedback of different behaviors from its own interaction
with the environment. For the initialization of Valence, it is
inevitable to have a certain influence on the cognitive process
of the agent to some extent. The setting of the threshold
limits the agent performing the proposed interactions, in this
paper, this parameter was set manually, and it should have a
prediction mechanism that dynamically gates the enaction of
the proposed interaction. In the following research, we need to
study how to reduce human intervention as much as possible,
let the agent explore for itself, and discover how to find the
optimal valence allocation strategy from the interaction.

Further work will be mainly focused on optimizing our



model and upgrading our toolkit. For example, we could use
a predictive model for better-proposing anticipations for the
agent of interacting with the environment in the next round.
With memorizing patterns that could improve the learning
efficiency and eliminate composite interactions that probably
will not use to simplify the activation and proposition pro-
cesses in the CCA in the future. Also, for selecting proposed
interactions to enact, we could flatten composite interactions
into sequences of primitive interactions without taking care
of its structure. With this hierarchical sequential learning
model, we’d like to evaluate the performance of the agent in
a multi-agent scenario, which provides more challenges and
opportunities to improve its learning ability.
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