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Manufacturing fuel pellets in nuclear industry is composed of three main steps : Powder grinding, Pressing and Sintering. Powder during uniaxial pressing step is stressed with a lot of stages such mlmg. compacnon, discharge in die and

pellet ejection with a springback. Multiple phases occurs in the powder during the compaction stage and the agglomerates inside the powder undergo y rea strain and

control in order to ise defects and rejects in the pellot, and to take into account the history of the powder and its rheology when shaping a pellet, with control of the density card that precedes the final
sintering stage. In addition, the istics of p, are evolving in order to improve the quality or for reprocessing of the product in the reactor for greater effici So, ined with the multi PP , a great
deal of research is aimed at ising the laws of of pi for the of the fuel for predicting. In the present work, three methods for calibrating the elastic and porous plastic model of the

Drucker Prager cap are tested in order to reduce the amount of powder used. The first method is the reference method and has the disadvantage of using the pellet after ejection to characterise shear failure by means of an axial and radial
fracture tests. The second method uses less powder and proposes replacing the fracture test with a shear test, but extrapolation of the cohesion and friction angle is not easy at high consolidation pressure. The third method is a numerical
method that uses a minimum amount of powder and enables to show that the accuracy of the model is preserved.
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Modelling : Porous elastic-plastic material behaviour
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Model calibration and partial results
0_Method 1 (M1) :
q
a) =TT T R
I’ Diametral . “""P“““’“\ \
1
1
|

O _Method 3 (M3) :

+Medium low strain gauge location for calibration (Silicon

o
deyy

1
i\

Lulnpres:lun (-

i «—F, =G
O Q L7
/
/ i "1 Die compaction
N L = - /4/_ o~ loading path

#* "I{/ 4

M1 (~20 pellets) n N ) " L ens .
breakage test on green 3D model 2D Axisymétric 3D model calibration

Pl Py P
R(d+p,tanf) pel tion/Drucker Prager law =L O8Et model
aenancation (o) madel
- nterna ticton angie “Axisymmetric 2D model/Powder Material/lsight optimisation:

Instrumented compaction in die (b) for
M1, M2 and M3, radial stress measurement
with localized st auges for cap surface
characterization :

- Eccentricity k

For each parameters, the erroris:

Pressure P, Law component | Parameters. Symbol | min vaiue | Max value
PoroElasticity [Log X ot
Shear test e = Z(X' —x)? Poissor's coefficient |+ 020 0.5
(FT4 Powder Rheometer) x i~ X e : o 1oz
M2(-15pellets eq.) 7 Initial void ratie e 028 0.45.
Shear test powder FT4 rheometer (c) . Drucker-Prager | Gohesion a 28 2180
Mohr-Coulomb = characterisation : With (Cap plasticity) | Friction angie B 0 [
i= the density level Ee [ 05 1
Intornalfriction angle ) X = the experimental value to i point Vol plastic strain | cf 5
Relationship for transfer of c,¢ to d,f via Friction " 0.1 0.3

x = the calculated value to i point

Lode angle 6 :

3sing

tanp=— P ____
VBcos —sinOsing
3ccos ¢

= coso—sinosing

Optimizationl

R A AN A A N
Abaqus Data MatchingData Matching-Data Matching-2 Calculator

Sy Q )

Strain vs punch Stress vs punch Stress vs strain

okl i/t . '1! .
Lo L

o o o e i . displacement displacement Experimental
2 i S = e Erme oo Density card computeg/ Experimental Experimental (target) and
. . Double compactiol (target) and (target) and calculated (RP)
DPC law for different materials cycle calculated (RP) calculated (RP) match
— match match
/~ Conclusion/Outiook Estrain Estress Estrass.vs.strain

As the conclusion of this study, three i i of the Prager cap porous elastic and
plastic model have been challenged in order to reduce the powder quantity engaged. The third numerical
method has a great interest because ten pellets for ten densities are enough with the conservation of the
model representatl ly. The Hooke-Jeeves optlmlzatlon algorlthm was used and other optlmlzatlon methods
ight code for the future i The of the method is data
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ital twin include in the main numerical manufacturing chain. Furthermore, we plan to use
numerigal tools like Al associated to the large nuclear material data base.
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