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Abstract: Remote side-channel attacks on processors exploit hardware and micro-architectural effects observable from
software measurements. So far, the analysis of micro-architectural leakages over physical side-channels
(power consumption, electromagnetic field) received little treatment. In this paper, we argue that those at-
tacks are a serious threat, especially against systems such as smartphones and Internet-of-Things (IoT) devices
which are physically exposed to the end-user. Namely, we show that the observation of Dynamic Random
Access Memory (DRAM) accesses with an electromagnetic (EM) probe constitutes a reliable alternative to
time measurements in cache side-channel attacks. We describe the EVICT+EM attack, that allows recover-
ing a full AES key on a T-Tables implementation with similar number of encryptions than state-of-the-art
EVICT+RELOAD attacks on the studied ARM platforms. This new attack paradigm removes the need for
shared memory and exploits EM radiations instead of high precision timers. Then, we introduce PRIME+EM,
which goal is to reverse-engineer cache usage patterns of applications. This attack allows to recover the layout
of lookup tables within the cache. Finally, we present COLLISION+EM, a collision-based attack on a System-
on-chip (SoC) that does not require malicious code execution, and show its practical efficiency in recovering
key material on an ARM TrustZone application. Those results show that physical observation of the micro-
architecture can lead to improved attacks.

1 INTRODUCTION

Modern Central Processing Units (CPUs) embed ad-
vanced prediction and optimization mechanisms to
improve their performances. Several of these fea-
tures, such as cache memories or speculative exe-
cution, have been shown to expose security vulner-
abilities exploitable by software attacks (Liu et al.,
2015; Yarom and Falkner, 2014; Osvik et al., 2006;
Bernstein, 2005; Gruss et al., 2015; Yarom et al.,
2017). For instance, cache-based Side-Channel At-
tacks (SCA) allow a malicious process to gain in-
formation about other processes, hence bypassing
memory isolation provided by the Operating Sys-
tem (OS). In practice, cache attacks have been suc-
cessfully employed for the recovery of cryptographic
keys or application fingerprinting. These attacks have
been shown to be practical on smartphones (Lipp
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et al., 2016) as well as desktop computers (Götzfried
et al., 2017; Brasser et al., 2017). Embedded de-
vices’ CPUs or microcontrollers have been widely in-
vestigated through the lens of physical side-channels
such as power consumption or Electromagnetic (EM)
radiations. The behavior of these physical vectors
have been shown to be statistically depend on the
code and data manipulated by the CPU (Brier et al.,
2004; Goldack and Paar, 2008; Novak, 2003; Clavier,
2004; Kocher et al., 1999; Cristiani et al., 2019).
Interestingly, smartphones embark increasingly more
powerful and complex CPUs, which contain micro-
architectural optimizations similar to those found in
desktop computers. Smartphones are physically ex-
posed to the users, thus falling under the scope of
both micro-architectural software attacks and physi-
cal side-channel attacks. In this paper, we show that
the electromagnetic emanations of Dynamic Random
Access Memory (DRAM) accesses represent an ex-
ploitable side-channel on a Systems-on-chip (SoC).
The profiling of EM radiations has well known ad-
vantages over power consumption measurement. Par-
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ticularly, it allows exploiting local leakages (coping
with, for example, peripherals’ noise) while being less
invasive on the targeted device. We exploit this side-
channel in order to perform key recovery attacks on
a lookup table based cryptosystem. Moreover, the at-
tacks presented in this paper are non-profiled: an at-
tacker can recover secret material on a secure device
without the need of prior profiling on a “whitebox”
device. Because a Last-Level Cache (LLC) miss re-
sults in a DRAM access, this work explores hybrid
approaches of LLC cache attacks with physical in-
puts (Liu et al., 2015; Yarom and Falkner, 2014).

1.1 Contributions

In this paper, we make the following contributions:
(i) in section 4 we characterize DRAM accesses
through EM measurements and we show that they
constitute a reliable side-channel vector, (ii) we de-
rive EVICT+EM in section 5, a hybrid attack on a
T-Tables AES implementation and compare the re-
sults with EVICT+RELOAD (Gruss et al., 2015), (iii)
in section 6 we present the PRIME+EM attack, which
allows monitoring cache of a victim process, (iv) we
show the practical feasibility of cache collision-based
attacks with EM measurements on a SoC in sec-
tion 7 and (v) we apply the COLLISION+EM attack
paradigm on a TrustZone application in section 8 with
cache attack countermeasures and demonstrate a suc-
cessful partial key recovery.

2 BACKGROUND

2.1 Physical Side-Channel Analysis

Side-channel analysis is a specific category of physi-
cal attacks. It exploits a so called “side-channel leak-
age”, which can lead to a disclosure of private data
within the observation of auxiliary effects such as
heat propagation, power consumption or EM radia-
tion. The literature mainly studies attacks on interme-
diate values of cryptosystems in order to partially or
fully recover sensitive data (i.e., often cryptographic
keys). Depending on the attacker model, these attacks
can either be profiled (i.e., requiring a training phase
prior to the attack) or non-profiled.

2.2 Cache Memory

SoCs embed high-speed processors that need to ex-
change data with “slow” DRAM. Such memories
have a large storage capacity (several gigabytes), but
have a high access latency. To fill the gap between

CPU requirements and DRAM capacities, processor
designers introduced cache memories. The smallest
storage component within a cache is called a cache
line. Cache lines are grouped within cache ways, that
are themselves gathered into cache sets. When data is
cached, its address (physical or virtual, depending on
the architecture) is used to determine the cache set and
the cache line. The cache replacement policy handles
the affectation of a cache way. Different caches in a
system are organized hierarchically. First level caches
(L1) are fast and small, they can directly provide data
to the CPU’s pipeline. Upper cache levels gradually
gain storage capacity at the cost of a higher response
latency, until the last level cache (LLC) which is di-
rectly linked to the DRAM main memory, and shared
by all the cores of the CPU. If the data required by
the CPU are not currently in the cache, we observe a
cache miss: the data needs to be retrieved from the
higher caches (or ultimately the main memory), and
the cache hierarchy is updated. On the contrary, the
recovery of data already fetched in cache memory is
called a cache hit.

2.3 Cache Attacks

The ability to distinguish between cache hits and
cache misses is the keystone of cache attacks. Cache
attacks can be (i) time-driven if they measure the
time of a complete encryption, (ii) access-driven
if they analyze if target cache lines have been ac-
cessed during an encryption, (iii) trace-driven, if ev-
ery memory access is profiled during an encryption.
EVICT+TIME (Osvik et al., 2006) and collision at-
tacks (Bernstein, 2005) are examples of time-driven
attacks. Different access-driven attacks exist, depend-
ing on the availability of cache flushing instructions
(FLUSH+RELOAD, FLUSH+FLUSH) (Yarom and
Falkner, 2014) or not (EVICT+RELOAD) (Gruss et al.,
2015). Some attacks, such as PRIME+PROBE (Os-
vik et al., 2006), succeed without the possession of
shared memory with the victim’s process. Finally,
trace-driven attacks can reuse the concept of access-
driven attacks, but they also require a mechanism that
allows memory access timing measurements during
the encryption process (e.g., process preemption tech-
niques). There exist a myriad of variants of these at-
tacks (Ge et al., 2018), that we leave out of the scope
of this paper.

2.4 AES T-Tables Implementation

In this paper, we target an AES T-Tables implemen-
tation from openssl-1.0.0f: it is a common use-case
in the literature since the work of Osvik et al. (Osvik
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et al., 2006). T-Tables are precomputed lookup tables
of 256×32 bits words that are designed to accelerate
the computations of AES rounds. Let δ be the num-
ber of 32-bit words that can fit within a cache line. We
denote by x(r)i the i-th byte of the AES state at round
r. Let K(r)

i , for 0 ≤ i < 4 be the i-th 32-bit word of
the key at round r (e.g., K(r)

0 = (k(r)0 ,k(r)1 ,k(r)2 ,k(r)3 )).

Similarly, W (r)
i , for 0 ≤ i < 4 represents the i-th 32-

bit words of the AES state at round r (e.g., W (r)
0 =

(x(r)0 ,x(r)1 ,x(r)2 ,x(r)3 )). We denote ⟨x⟩ the most signif-
icant bits (MSBs) that can be recovered thanks to a
memory access observation. Namely, if δ = 8, the 3
lower-bits of the T-Table address cannot be recovered.
In that case, ⟨x⟩ represent the 8 − 3 = 5 upper bits
of x. T-Tables implementations consist in computing
the first 9 AES rounds by consulting 4 precomputed
lookup tables T0,T1,T2 and T3, as shown on Equa-
tion 1. AES state bytes for round r′ = r+1 are com-
puted as follows:

W (r′)
0 = T0[x

(r)
0 ]⊕T1[x

(r)
5 ]⊕T2[x

(r)
10 ]⊕T3[x

(r)
15 ]⊕K(r′)

0

W (r′)
1 = T0[x

(r)
4 ]⊕T1[x

(r)
9 ]⊕T2[x

(r)
14 ]⊕T3[x

(r)
3 ]⊕K(r′)

1

W (r′)
2 = T0[x

(r)
8 ]⊕T1[x

(r)
13 ]⊕T2[x

(r)
2 ]⊕T3[x

(r)
7 ]⊕K(r′)

2

W (r′)
3 = T0[x

(r)
12 ]⊕T1[x

(r)
1 ]⊕T2[x

(r)
6 ]⊕T3[x

(r)
11 ]⊕K(r′)

3

(1)

With (x(0)i )0≤i<16 being the outputs of the first Ad-
dRoundKey operation (i.e., x(0)i = pi ⊕ ki). The last
round is computed with classical sbox substitutions.
Each lookup table contains 256 elements of 32 bits
each. In our target software, we ensure in the remain-
der of this paper that all T-Tables are aligned on the
beginning of a cache line: such an alignment is the
worst case scenario for an attacker (misalignment ef-
fects are discussed in section 7).

3 ATTACKER MODELS

Put shortly, this work considers an attacker model
that has the same requirements as traditional EM
side-channel analysis. Namely, all the introduced
attacks (i.e., EVICT+EM, PRIME+EM and COLLI-
SION+EM) require physical access to the target de-
vice, as well as a trigger signal (EM pattern, GPIO,
network activity, etc.). Additional prerequisites of
proposed attacks are highlighted in Table 1. We
use a software controlled GPIO as a trigger signal
for synchronizing traces. Note that the literature ex-
poses several ways of synchronizing measurements
without GPIO triggers (Fanjas et al., 2022), but we
leave this out the scope of this paper. Also, we con-
sider that the target device is running an algorithm

that realizes secret-dependent memory accesses (in-
structions or data). Throughout this paper, we use
the AES T-Tables implementation as a meaningful
use-case, with a “known plaintext” scenario, but all
applications that perform memory accesses are po-
tentially vulnerable to the attacks listed in Table 1.
Finally, EVICT+EM and PRIME+EM, similarly to
EVICT+RELOAD and PRIME+PROBE, require mali-
cious code execution, while COLLISION+EM does
not.

4 OBSERVING DRAM ACCESSES

In this section, we describe our experimental method-
ology assessing that EM radiations of DRAM ac-
cesses can be exploited as a reliable side-channel.

4.1 Device Under Test

We use a Digilent Zybo XC7Z020-1CLG400C board
as our Device Under Test (DUT). This board incor-
porates a SoC with a dual-core Cortex-A9 CPU run-
ning up to 667 MHz which belongs to the ARMv7-A
family (32-bit) (LTD, 2012). We choose this DUT
because (i) it contains a two-level cache hierarchy,
(ii) the Cortex-A9 CPU implements several optimiza-
tions such as out-of-order execution, dynamic branch
prediction, dual-issuing of instructions and a deep
pipeline: the induced noise and jitter in EM measure-
ments make the attack scenario realistic compared to
a “smartphone context”, (iii) applicative CPUs are
known to have a very poor Signal-to-Noise Ratio
(SNR) compared to simpler microcontrollers (Mail-
lard et al., 2023; Longo et al., 2015) and Cortex-A9
on the Zybo-z7 board is no exception in this matter.

4.2 Software Experimental Setup

We aim at reliably provoking a DRAM access that is
as distinguishable as possible in side-channel obser-
vations. Target code for DRAM access discovery is
depicted in Figure 1. The goal of this code snippet
is to minimize execution time variations while real-
izing a memory access, whether it is a cache hit or a
cache miss (i.e., DRAM access). It is composed of
8 steps. Step 1 and 8 are the function’s prolog and
epilog which handle the context saving (i.e., push-
ing and popping register values into the stack). Step
2 consists in initializing the r9 register to 0: it will
be used as an offset in step 4. Step 3 and 7 operate
an inline repetition of NOP instructions to fully flush
the pipeline state and generate a visual pattern on the
EM traces. Then, step 4 performs the target memory
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Table 1: Comparison of attacker models prerequisites. Attacks that are presented in this paper are indicated with ∗.

Attack Malicious code Shared memory Timer Knowledge of addresses Physical access
EVICT+RELOAD yes yes yes yes no
PRIME+PROBE yes no yes no no
EVICT+EM∗ yes no no yes yes
PRIME+EM∗ yes no no no yes

COLLISION+EM∗ no no no no yes

Figure 1: Target code for DRAM access discovery.

access. Step 5 consists in the execution of a Read-
after-Write (RAW) dependency code snippet crafted
with sub instructions: this forces in-order execution
and single issuing. It also provides a workload to the
CPU while the target memory load is processed. We
chain this snippet 50 times during our experiments:
this allows minimizing the divergences in the execu-
tion time of the full code snippet between cache hits
and misses induced in step 4. Step 6 behaves as a syn-
chronization barrier, as the sub instruction requires
the ldrb instruction to be completed in order to use
the r6 register.

4.2.1 Crafting Eviction Sets

The access to cache maintenance instructions (such
as the clflush instruction in x86) requires kernel
privileges on ARMv7-A Instruction Set Architecture
(ISA). Consequently, we need to craft an eviction set
for each address we plan to target. An eviction set
is a collection of addresses that fills the entire cache
set in which the target address would be mapped. It
is necessary for the attacker to fill the whole cache
set because the cache way that would contain the
target data is determined by the cache replacement
policy, which is proprietary and hardly predictable.
To this aim, for each targeted cache set, we select a
group of congruent addresses from a large memory
pool, the latter allocated through C function mmap
with the MAP HUGETLB flag activated. The congru-
ent addresses are organised into an eviction set in the
form of a double-linked list in order to tweak the hard-
ware prefetcher: this technique is known as “pointer
chasing” (Osvik et al., 2006). Once the eviction set
is obtained, the eviction of a target cache line is per-
formed by consulting each address of the eviction set.

4.2.2 Side-Channel Acquisition Setup

The near field EM emanations of the DUT are ac-
quired through an EM Langer H-field RF-U 2.5-2

Figure 2: Voltage amplitude cartography above the SoC.

probe connected to a Tektronix 6 series oscilloscope
with a 2.5 GHz bandwidth through a +45/50 dB low
noise amplifier. The probe is attached to a 3-axis mo-
torized bench. We use a sampling rate of 3.125 GS/s,
and an Analogic to Digital Converter (ADC) preci-
sion of 12 bits.

4.3 Probe Location

As we observe local EM radiations, it is necessary
to find an adequate probe position on the top of the
chip that allows to accurately observe DRAM ac-
cesses. We expect the latter event to produce high
amplitude EM radiation, because it involves the use
of several components (e.g., DRAM controller, data
buses, etc.). Additionally, the structure of our target
code and its wrapper prevents high amplitude events,
such as pipeline flushes or context switches, to occur
between trigger up and trigger down events. The am-
plitude of the perceived EM signal is mapped upon
a 25× 25 spatial grid over the main chip. Interest-
ingly, the cartography exposes a high signal amplitude
on several positions near the DRAM interconnection
buses (see Figure 2). For, this DUT, we assess the best
probe position as the one that captures the highest sig-
nal amplitude.

4.4 Identification of Patterns

We acquire one million traces of target code execu-
tion at the best position identified previously. For each
execution, the target access is either a cache hit or a
cache miss with a 50 % probability. Several patterns
emerge within the traces (see Figure 3). One can ob-
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Figure 3: Identification of 3 different patterns, green lines
indicate estimated pattern boundaries. Pattern at offset 4000
corresponds to the target DRAM access.

serve that some patterns stand out from the remaining
signal in terms of amplitude and shape. During our
experiments on this test case, we noticed that DRAM
accesses increased the probability to observe a pattern
in the region close to time sample 4000, oppositely to
measurements realized for cache hits. Note that other
patterns appear erratically (see Figure 3), but those
seem unrelated to our target memory access, poten-
tially caused by evictions from other processes. This
implies that pattern matching or statistical techniques
allow the detection DRAM accesses through EM ra-
diations: this can then be used in a side-channel attack
context.

5 EVICT+EM

We showed in section 4 that we are able to detect
DRAM accesses through EM emanations. This leads
to the question: can EM observation of DRAM ac-
cesses be exploited as an information leaking phe-
nomenon in a cache side-channel attack context?
This section introduces EVICT+EM, a novel hy-
brid software and physical side-channel attack against
memory accesses to recover secret keys. The at-
tack principle is the following: (i) the attacker fills
a target cache set, evicting the victim’s data from
the cache, (ii) the victim resumes its execution and
(iii) the attacker decides whether a DRAM access
has been performed or not by the victim by ob-
serving EM radiations. Note that this is an adapta-
tion of EVICT+RELOAD, with step (iii) replacing the
RELOAD phase. We stress that EVICT+EM does
not require the attacker to share memory with the vic-
tim, and hence falls into the same application contexts
than PRIME+PROBE (Osvik et al., 2006).

5.1 Software Experimental Setup

In this experiment, the DUT runs a TCP server that
is tied to one Cortex-A9 core. Warmup encryptions
can be executed in order to cope with several jitter
and noise sources. Then, one T-Table related cache
line, whose index is sent by the client, is evicted be-
fore the target encryption (see subsubsection 4.2.1 for

the eviction procedure). This target encryption is sur-
rounded by trigger operations. The monitor computer
samples random 16 bytes plaintexts and sends them
to the DUT among several parameters such as the tar-
get T-Table T , the target cache line to evict L, as well
as the number of warmup rounds w. This process is
repeated N times for each T-Table T .

5.2 Attack Procedure

5.2.1 Key Distinguisher

Making a hypothesis on a key byte consists in split-
ting the traces (ti)0≤i≤N into two groups g0 and g1
based on the fact that a DRAM access at a desired
encryption instant occurs or not under the hypothesis.
This attack follows the methodology of the Differen-
tial Power Analysis (DPA) (Kocher et al., 1999). Let
k∗ ∈ F28 be the right key byte, K = F28 be the set of
all possible key candidates and Z = F28 be a set of
intermediate values. Then, we denote DRAMk̃(z)z∈Z
a Boolean predicate that is True if the manipulation
of z under the hypothesis k̃ results in a DRAM ac-
cess, and False otherwise. Under each key hypoth-
esis k̃, it is possible to separate the traces between
two sets g0

k̃
and g1

k̃ such that g0
k̃
= {ti | DRAMk̃(zi)}

and g1
k̃ = {ti | ¬DRAMk̃(zi)}. Considering an arbitrary

metric M, the best key hypothesis retained is then de-
fined as:

kbest = argmax
k̃∈K

{
M(g0

k̃ ,g
1
k̃)

}
(2)

We use the Welch’s t-test as our distinguisher met-
ric (not as a statistical test). It is an adaptation of
Student’s t-test designed to test whether two normal
distributions (X1 and X2) have the same mean (possi-
bly with distinct variances). In our case, this metric
seems relevant because (i) the data to be processed is
divided into two groups g0

k̃
and g1

k̃ and (ii) the popula-
tion of these two groups is very heterogeneous (g0

k̃
has

few elements): we can benefit from the in-class nor-
malization. For the good hypothesis, we expect the
t-statistic to be higher than for wrong hypotheses.

5.2.2 RoI Selection and Preprocessing

It is hard to specifically locate one AES round (e.g.,
the first) within the traces for various reasons. Firstly,
the probe position does not allow us to observe EM
emanations from the CPU’s pipeline, making harder
the use of Simple Power Analysis (SPA) in order to
precisely locate the AES routines. However, guess-
ing can be performed when the underlying algorithm
is known. Indeed, the AES first round is unlikely

SECRYPT 2024 - 21st International Conference on Security and Cryptography

266



to expose side-channel leakage in, say, the 10% last
samples of the trace, even with the presence of jit-
ter. In our experiments, we thus consider a RoI of
2000 time samples, that corresponds to 400 clock cy-
cles (approximately 640 ns). As we consider discrete
measurements, the integral of a trace t = (t[ j])0≤ j≤n
is defined as the sum of its samples’ values. This op-
eration performs a linear combination of the samples
over a RoI. This is useful when a jitter desynchro-
nizes the traces. However, the main limitation of this
method is that the per-sample precision is mostly lost.
For the sake of our experiments, we consider integral
computation upon a fixed sized sliding window of 300
samples within the RoI. This processing step is sys-
tematically applied to g0

k̃
and g0

k̃
before computing the

metric.

5.3 First Round Attack

The first step of the attack is to craft eviction sets for
at least one cache set per T-Table with the method de-
scribed in section 4. The attacker is supposed to be
able to evict at least one cache line per T-Table. The
information the attacker can learn is whether one of
the addresses that is mapped in this same cache line
has been consulted or not. In the case of our DUT,
this means that an attacker that only exploits the first
AES round can only guess the five most significant
bits (with δ = 8) of the state bytes indexing the T-
Tables. In order to attack the AES’s first round, it
is needed to draw hypotheses on each (⟨x(0)i ⟩)0≤i≤15.
As our attacker model allows only one eviction per
encryption and as each table Tj is consulted for each
(x(0)i )0≤i≤15,i≡ j (mod 4), four sets of traces need to be
gathered (one for each table). Each set of traces allow
to draw hypotheses on 4 bytes. For simplicity, the tar-
geted cache line for each table Tj corresponds to its
first δ = 8 elements. The global guessing entropy is
obtained by performing the attack 100 times for each
byte on N randomly selected traces (see Figure 4), and
computing the average rank of all good hypotheses. A
guessing entropy down at 0 indicates that all guesses
are correct. In Figure 4a, one can observe that the
guessing entropy of EVICT+EM reaches 0 between
800 and 900 traces per table. This means that, on
average, an attacker that is allowed to observe 3600
encryptions is able to guess the 5 MSBs of each byte
of the secret key.

5.4 Second Round Attack

Following the attack of Osvik et al. (Osvik et al.,
2006), it is possible to rewrite all (x(1)i )0≤i≤15 ac-
cording to the bytes of the plaintext and the secret

key. Among those 16 state bytes equations, four of
them are particularly interesting. Indeed, the MSBs
of x(1)2 , x(1)5 , x(1)8 and x(1)15 only depend on four secret
key bytes LSBs (the others depend on five). Let us
denote Si = sbox(pi ⊕ ki). For the second round we
can exploit the following equations:

x(1)2 = S0 ⊕S5 ⊕2 ·S10 ⊕3 ·S15 ⊕ sbox(k15)⊕ k2

x(1)5 = S4 ⊕2 ·S9 ⊕3 ·S14 ⊕S3 ⊕ sbox(k14)⊕ k1 ⊕ k5

x(1)8 = 2 ·S8 ⊕3 ·S13 ⊕S2 ⊕S7 ⊕ sbox(k13)

⊕ k0 ⊕ k4 ⊕ k8 ⊕1

x(1)15 = 3 ·S12 ⊕S1 ⊕S6 ⊕2 ·S11 ⊕ sbox(k12)

⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

(3)

The second round attack relies on the informa-
tion gained from first round attack (i.e., the MSBs of
each key bytes). In order to recover the full key, one
needs to draw hypotheses on key bytes LSBs and use
equations in Equation 3 to predict whether a DRAM
access occurs for each plaintext. As each equation
in Equation 3 involves only 4 key bytes, hypotheses
are drawn on each quadruplet (e.g., (k0,k5,k10,k15)
for the first equation). For each quadruplet hypothe-
sis and target address, we select plaintexts and traces
so that the target address is not accessed during the
first round. Note that this is a slight improvement
of the initial EVICT+TIME attack shown by Osvik et
al.(Osvik et al., 2006). Then, the key distinguisher
(see subsubsection 5.2.1) is applied to highlight the
best hypothesis for each quadruplet. Note that we are
able to reuse the traces gathered for the analysis of
the first round. Globally, guessing entropies for the
quadruplets converge towards 0 with less than 1600
traces per T-Table on average (see Figure 4b). This
means that the whole secret key can be recovered with
less than 6400 traces on average.

5.5 Comparison with EVICT+RELOAD

We now compare EVICT+EM with the
EVICT+RELOAD (Gruss et al., 2015) attack.
Note that they are similar in terms of malicious code
execution, as EVICT+RELOAD does not suppose
any preemption of the victims process, nor multiple
evictions per encryption. For a fair comparison,
EVICT+RELOAD uses the same eviction set con-
struction and roaming strategies as EVICT+EM. We
use two different timer sources for the “Reload”
part of the attack: a monotonic timer based on the
gettime function from the libc denoted “User”, and
a high-resolution cycle counter available in ARM
Performance Monitoring Unit (PMU). We stress
that the latter requires to load a kernel module in
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Figure 4: Guessing entropy comparison, averaged per per
table, for EVICT+RELOAD and EVICT+EM first round at-
tack (4a) where ⟨k∗⟩ is recovered, and second round attack
(4b) where the full key quadruplet is recovered, with no
warmup.

order to allow the access to the CPU’s internal
performance monitoring registers: this method is ran
at a kernel privilege level. Finally, we use the same
distinguisher (i.e., Welch’s t-test), except that our
EVICT+RELOAD attack version implements the t-test
upon the timing distributions. In Figure 4, we can
observe that (i) EVICT+EM has better performances
than EVICT+RELOAD with kernel privileges for the
first round attack: this can be explained by a better
temporal resolution, (ii) EVICT+EM has better per-
formances on second round quadruplets candidates,
but it is less significant. An argument to explain this
phenomenon is an increased amount of first round in-
duced jitter for the EVICT+EM for the second round
attack. Consequently, we can assess that EVICT+EM
constitutes a userland alternative to cache attacks
with similar performances than an EVICT+RELOAD
attack with kernel privileges. Finally, when perform-
ing EVICT+EM, the attacker does not need to share
memory with the victim, hence it is an interesting
alternative to PRIME+PROBE family attacks when
EVICT+RELOAD is not practical.

6 PRIME+EM

EVICT+EM relies on the use of eviction sets to evict
target cache lines: the eviction set crafting phase
requires to locate the targets’ physical addresses in
main memory. The main goal of this section is
to overcome this restriction. The technique pre-
sented in this section, called PRIME+EM, is based on
PRIME+PROBE (Osvik et al., 2006). Here, we mon-
itor cache activity in order to identify the cache sets
hosting the T-Tables within cache memory. This at-
tack, which can be viewed as a reverse-engineering
step, can precede an EVICT+EM attack for full key
recovery.

Figure 5: Cache set activity metric of the Zybo-z7 during
AES encryption with 100 warmup rounds and N = 400.

6.1 Profiling Cache Set Activity

We assume that the T-Tables are stored contiguously
and 32 bytes aligned within the DRAM, and that T0
is page aligned. For a memory page size of 4 KB,
this results in the T-Tables filling exactly one page so
that there is no risk that two distinct T-Tables share
the same cache set. Then, the attacker is able to craft
eviction sets for each cache set within the cache by
using the methodology described in section 4. We
denote evi the eviction set for cache set i. The pro-
filing of cache set activity is performed as follows: (i)
(Warmup) the attacker lets the victim’s process per-
form random encryptions so as to fill the cache, (ii)
(Prime) the attacker accesses evi to realize an eviction,
(iii) (Observation) the attacker triggers the encryption
of a random plaintext with the oscilloscope. This pro-
cedure is repeated several times for each cache set,
and for all cache sets. For each cache set, an activity
metric is computed for N EM traces as follows:

metric =
1
N

N

∑
k=0

σk (4)

With σk being the standard deviation of the signal
amplitude of the EM observation on a 1000 samples
RoI for trace k. Then, an averaging of the standard
deviation over the N traces is made. This metric
is based on the automatic pattern identification con-
ducted in subsection 4.4: the key idea is that DRAM
accesses highly stand out compared to other activities
for the assessed probe position on this DUT. Experi-
mental results of PRIME+EM for 100 warmup rounds
(i.e., 100 encryptions of the same plaintext before ris-
ing the GPIO) with N = 400 are depicted in Figure 5.
We clearly observe high metric values for the contigu-
ous cache sets where the T-Tables are mapped. Inter-
estingly, we also observe non contiguous high peaks
for other cache sets. These accesses can be related to
cached assembly code (as we are targeting the LLC
in which both instructions and data can be cached)
or other memory locations accessed during the en-
cryption (e.g., plaintext or secret key buffers). With
this experiment, we show that an attacker is able to
craft eviction sets targeting the T-Tables without pre-
cise timers, shared memory nor knowledge of the T-
Tables’ location in memory.
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7 COLLISION+EM

EVICT+EM and PRIME+EM require the forgery of
eviction sets. In this section, we remove the constraint
of malicious code execution by designing a collision-
based attack. We define a collision as equivalent to
a cache hit with data that is belonging to the same
target algorithm during a single encryption. Our at-
tacker model is built under the assumption that all
non-colliding memory accesses made by the victim
would generate a DRAM access during the targeted
round. As a prerequisite, the attacker is supposed to
be able to erase T-Tables’ content from the cache hi-
erarchy before the encryption. This scenario can be
enabled by cache eviction from other processes or by
a systematic cache flushing implemented as a cache
attack countermeasure. Finally, a collision can be in-
ferred from the absence of a DRAM access through
EM measurement during the encryption. Once again,
we opt for a differential approach on the EM traces.

7.1 First-Round Attack

Let i, j ∈ {0, ...,16} with i ̸= j be such as x(0)i = pi ⊕ ki

and x(0)i′ = pi′ ⊕ ki′ are indexing the same table T . A
collision is obtained when ⟨x(0)i ⟩= ⟨x(0)i′ ⟩, which im-
plies that ⟨pi ⊕ pi′⟩= ⟨ki ⊕ ki′⟩. Then, an attacker can
craft hypotheses on ⟨ki ⊕ ki′⟩ under a known plaintext
scenario. All the T-Tables’ contents are evicted from
the cache before each encryption. Under each hypoth-
esis, it is possible to separate the traces and plaintexts
into two groups g0 and g1, based on the apparition
of a collision or not for each plaintext. Graph the-
ory provides an insightful representation for collision-
based attacks (Bogdanov, 2007). Let G = (V, E) be
an undirected graph such as its vertices V represent
key bytes MSBs (⟨ki⟩)0≤i<15. An edge is drawn be-
tween two vertices vi = ⟨ki⟩ and vi′ = ⟨ki′⟩ when the
knowledge of the value of vi allows to uniquely de-
termine the value of vi′ . Knowing a relationship of
the form ⟨ki ⊕ ki′⟩= r creates an edge in G between
vi and vi′ , because if ⟨ki⟩ is known, the value of ⟨ki′⟩
is ⟨ki⟩⊕ r. Let G j = (Vj,E j)0≤ j<4 be subgraphs such
as Vj = {⟨ki⟩ | i ≡ j (mod 4)} (see Figure 7). In other
words, G j covers key bytes that concern table Tj dur-
ing the first round computations. By observing col-
lisions within the same table, one can hope to re-
cover enough vertices between edges of G j to make
it a connected graph. Figure 6 illustrates the guess-
ing entropies for each vertex corresponding to each
subgraph G j. Concerning the G0 and G1 subgraphs
(see Figure 6a and Figure 6b), we observe that the
guessing entropies converge towards 0 with between
8k and 14k attack traces. We also remark that G2 and

(a) G0 subgraph. (b) G1 subgraph.

(c) G2 subgraph. (d) G3 subgraph.

Figure 6: Guessing entropy for G j related collisions corre-
sponding to each table (T0 to T3) on the Zybo-z7 platform,
each point shows the average good candidate rank averaged
over 100 attacks.

G3 have a slower convergence towards 0. In our ex-
periments, guessing entropies for each ⟨ki ⊕ ki′⟩ reach
0 for 20k traces, making all the G j subgraphs fully
connected. This shows that our method allows discov-
ering ⟨k(0)i ⊕ k(0)i′ ⟩ relationships with a few thousands
of encryptions on average. Recall that, for δ = 8 (e.g.,
on the Zybo board), knowing if a cache line has been
accessed by an intermediate value grants information
upon the 5 MSBs of this value. If a subgraph G j is
connected, fixing a value for any ⟨ki⟩ ∈ E j allows re-
covering the values of all other ⟨ki′⟩ ∈ E j, i′ ̸= i. Thus
there are 25 hypotheses to be tested for each subgraph
G j. By combining the four subgraphs, we obtain a
search space of size 25×4 = 220. Then, remember
that for δ = 8, the 3 LSBs of each key byte cannot be
guessed from the first round attack. Hence, after the
first round attack, the total key entropy drops from
2128 to 220 × 23×16 = 268. Now we consider Equa-
tion 3. For each of the four quadruplets, each key byte
involved is concerned by a different G j. Hence, in
our case, this means that the complexity of the second
round attack is in the order of 4× 220 × 23×4 = 234.
More precisely, an attacker would need to derive 234

hypotheses in total for the four quadruplets and per-
form a Welch’s t-test for each of them.

7.2 About Connecting G

Creating links between subgraphs to make G con-
nected implies that collisions must be exploitable be-
tween state bytes that are indexing different tables.
Several hardware or software features could enable
this, such as (i) misaligned T-Tables and (ii) known or
controlled data prefetching behavior. Firstly, as stated
in (Spreitzer and Plos, 2013), misaligned T-Tables
have the effect of not mapping their base address to
the beginning of a cache line. As T-Tables are often
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Figure 7: Example of collision graph G composed of four
subgraphs G0 to G3. Plain vertices indicate inter table col-
lisions, dashed vertices represent collisions observable with
misaligned tables or favorable prefetching behavior.

contiguous in memory, this would imply that cache
lines contain data from adjacent tables, allowing col-
lisions between state bytes indexing distinct tables.
Secondly, data prefetching, that brings data closer to
the CPU speculatively, could bring data from one ta-
ble when another is accessed, potentially leading an
attacker to observe a collision. The AES implementa-
tion we target here has no misaligned tables, and we
found no exploitable prefetching behavior.

8 ARM TRUSTZONE ATTACK

The ARM TrustZone is a mechanism that aims at
providing hardware-based security features on ARM
CPUs. ARM TrustZone ecosystems have widely been
deployed in embedded devices such as smartphones,
automotive and industrial systems (Pinto and Santos,
2019). This technology separates the so called se-
cure world from the normal world. TrustZone pro-
vides a Trusted Execution Environment (TEE) which
hosts the security critical features such as payment
or authentication operations within Trusted Applica-
tions (TAs). The secure monitor is a privileged en-
tity that handles context switches between secure and
normal worlds. The secure and normal world’s re-
sources are isolated at the hardware-level. Such iso-
lation prevents shared memory based attacks such
as EVICT+RELOAD. For the past several years, re-
searchers have identified several vulnerabilities in
TEEs. Notably, Lipp et al. (Lipp et al., 2016) ex-
posed a PRIME+PROBE attack on a trusted applica-
tion. Note that their attack only allow to classify
valid versus wrong keys. The authors emphasized that
some devices ensure that the cache is flushed when
entering or leaving a trusted application. This coun-
termeasure make PRIME+PROBE attacks harder, as
eviction sets need to be browsed between the cache
flushing procedure and the beginning of the encryp-
tion, imposing precise synchronization. As a conse-
quence, authors were unable to perform complete or
partial key recovery, but rather determined if a valid
or invalid key had been used by the trusted applica-

tion. The COLLISION+EM attacker model is partic-
ularly relevant for targeting a TA’s AES implemen-
tation with such countermeasures in a realistic sce-
nario because (i) the addresses of the T-Tables are
unknown, (ii) the target cache sets are flushed be-
fore entering the secure world as a countermeasure
for PRIME+PROBE, PRIME+EM and EVICT+EM at-
tacks and (iii) no malicious code is executed (GPIO
toggles before and after the encryption used to trig-
ger the oscilloscope are not considered as malicious
code), only legitimate calls to the trusted application
are performed. Here, we use a STM32MP157F-EV1
dual-core Cortex-A7 based SoC with TrustZone sup-
port as our DUT. This platform encompasses several
peripherals (screen, keyboard, ethernet port, etc.) that
are active during the analysis, adding noise and jitter
to our measurements. Finally, the Cortex-A7 has two
levels of cache, with a cache line size of 64 bytes and
a 1Mb 8-way set-associative LLC.

8.1 Attack of a Trusted Application

The DUT is running a full-fledged Linux distribu-
tion as a host operating system, and an OP-TEE OS
that handles the TrustZone environment. OP-TEE’s
cryptographic primitives are implemented within the
LibTomCrypt library, with T-Tables AES implemen-
tation by default. Note that no cache flushing counter-
measure is implemented by default before or after en-
cryption, enabling PRIME+PROBE and PRIME+EM
threat models (see Table 1). This countermeasure is
hence the responsibility of the developer that writes
the TA. For the sake of this experiment, we design
a trusted application that realizes AES encryptions,
where cache lines that would hold T-Tables contents
are systematically evicted before and after every en-
cryption thanks to the TEE cache clean function pro-
vided by the OP-TEE API. To carry out this experi-
ment, we gathered one million encryption traces. Be-
cause of low amplitude noise and important jitter, the
preprocessing method presented in subsection 5.2 is
inefficient on this DUT. A variant, that counts the
number of samples that exceed an amplitude thresh-
old on a sliding window fashion, is preferred for this
platform. With a cache line size of 64 bytes, each T-
Table fills exactly 16 cache lines. As a consequence,
a random guess on ⟨ki ⊕ ki′⟩ ranks in eighth position
in average. Also, an attacker that is able to build sub-
graphs G j reduces the total AES key entropy to 280.

Guessing entropies for the first round collision at-
tack on the four tables are depicted in Figure 8. The
G0 and G1 subgraphs become fully connected with
less than 10k traces. Some collisions are harder to
detect for the G2 and G3 subgraphs, which become
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(a) G0 subgraph. (b) G1 subgraph.

(c) G2 subgraph. (d) G3 subgraph.

Figure 8: Guessing entropy for G j related collisions corre-
sponding to each table (T0 to T3), each point shows the good
candidate rank averaged over 100 attacks.

fully connected with almost 60k traces. It is impor-
tant to notice that some collisions are accurately de-
tected from 2000 traces (e.g., ⟨k0 ⊕ k4⟩). Figure 8c and
Figure 8d expose that collisions with bytes belonging
to W (1)

3 need more traces to be accurately recognized.
When focusing on the G3 case, we see that collisions
related to k6 have the worst guessing entropy conver-
gence towards zero. Interestingly, the analysis of the
binary file indicates that the compiler reordered mem-
ory accesses so that T2[x

(0)
6 ] is processed last. Despite

extra noise and jitter in the electromagnetic measure-
ments, COLLISION+EM succeeds in extracting secret
data in a TrustZone environment. Hence, TrustZones
with cache flushing countermeasures are not resis-
tant against COLLISION+EM. Moreover, as COLLI-
SION+EM does not rely on eviction sets, cache parti-
tioning or randomization seem inefficient.

9 DISCUSSION

9.1 Comparison with EM SCA

On a SoC, measurements of small-scale phenom-
ena through EM (e.g., register updates) often present
a high amount of noise and jitter due to micro-
architectural complexity and concurrent activity.
Even so, after EM traces are gathered, traditional
SCA often require preprocessing steps, such as filter-
ing or synchronization (Longo et al., 2015). Finally,
finding a good probe position on noisy SoCs is a time
consuming process (i.e., several days to a month).
Still, even at the best probe position, attacking a cryp-
tosystem on a high-end SoC with non-profiled meth-
ods often requires up to millions of traces (Lisovets
et al., 2021). By profiling DRAM accesses through
EM measurements, we tackle some of these issues.

The attacks we propose are more resilient to noise
and jitter than classical physical side-channel attacks.
We recall that DRAM accesses last for various clock
cycles and produce rather high amplitude signal: the
constrains upon the acquisition chain (e.g., ADC pre-
cision, sampling rate, etc.) are less restrictive in our
case. Moreover, chip packages with stacked DRAM
on are known to impose a lot of EM traces gather-
ing and preprocessing (Lisovets et al., 2021). These
stacked packages also limit the possibility for an at-
tacker to directly probe the buses to harvest DRAM
access information. Combining EM measurements
with the cache attack paradigm comes at the cost of
being more intrusive on the DUT. EVICT+EM and
PRIME+EM require eviction set construction, hence
malicious code execution, but COLLISION+EM re-
moves this limitation.

9.2 Comparison with Cache Attacks

Cache attacks often require a high amount of mali-
cious memory accesses. The extreme case is reached
with trace-driven attacks, which need to profile almost
every memory accesses performed by the victim pro-
cess. Moreover, the vast majority of cache attacks re-
quire a way to measure time with enough precision.
Finally, software micro-architectural attacks are often
noisy. For example, access-driven and time-driven at-
tacks on AES first round are noisy because of other
rounds accesses. The method we describe here (i) has
a small memory footprint, as abnormal memory inter-
actions are performed for initial data evictions only,
(ii) can be headed with better temporal precision, (iii)
does not require cycle accurate timer and (iv) can
target DRAM accesses through time during the en-
cryption. In terms of drawbacks, EVICT+EM and
PRIME+EM attacks hardly allow to profile several
memory addresses at the same time. Moreover, the at-
tacker needs to have physical access on the target and
add several hardware components to its experimental
setup (i.e., oscilloscope, probe).

9.3 Mitigations

A natural countermeasure to the presented attacks is
a systematic prefetch of the victim’s data before en-
cryption. This would prevent DRAM accesses during
the encryption supposing that no self evictions occur
within the victim’s process. Note that this can repre-
sent a performance bottleneck. Also, such a prefetch
is not always possible, especially when the sensitive
lookup tables are wider than the available cache size.
A performance compromise can be reached by per-
forming random accesses to the sensitive data before
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encyption: this would drastically increase the num-
ber of measurements required by an attacker. Note
that this mitigation “as-is” does not prevent the at-
tacks, and needs to be implemented jointly to other
security measures (e.g., frequent rekeying). The at-
tacks presented in this paper exploit side-channel in-
formation leaked by DRAM accesses that are statis-
tically dependent to a secret. Preventing secret de-
pendent table lookups and branches, which is a cor-
nerstone of constant time implementations (Almeida
et al., 2016), is also a viable mitigation strategy al-
ready widely deployed for asymmetric cryptography
(e.g., square-and-multiply always for RSA). Classi-
cal SCA countermeasures such as hiding (e.g., metal-
lic shields or artificial EM noise addition), and mask-
ing (Mangard et al., 2008) can thwart the attacks pro-
posed in this paper. Because of a high tolerance to
jitter, our attacks would be poorly affected by shuf-
fling countermeasures.

9.4 Related Work

Bertoni et al. (Bertoni et al., 2005) designed a simu-
lated attack exploiting intentional cache misses. They
targeted the first round of a sbox AES implementa-
tion on a simulated microcontroller architecture with
an 8 bytes cache line size. This provided inspirational
insights for the EVICT+EM approach. Osvik and
al. (Osvik et al., 2006) proposed cache attacks on an
AES T-Tables implementation AMD Athlon64 CPU.
They formalized the key recovery procedure to attack
the two first rounds of the AES with EVICT+TIME
and PRIME+PROBE. Dey et al. proposed to moni-
tor CPU stalls induced by LLC misses through EM
emanations (Dey et al., 2018). They used micro-
benchmarks by executing controlled code with known
memory access behavior. They pinpoint the benefit
of their work for benchmarking code segments when
performance counters are unavailable (e.g., bootload-
ers). While our study and Dey et al.’s both tar-
get similar memory events, our goal is to mount a
key recovery attack on CPUs that could be packaged
with a stacked DRAM and potentially support Out-of-
Order execution. Then, rather than relying on precise
(and potentially device dependent) pattern matching
results, we exploit statistical links between the EM
radiations and DRAM accesses to leverage a differ-
ential non-profiled attack. Schramm et al. identi-
fied that collisions of intermediate variables in a cryp-
tographic primitive are an attack vector (Schramm
et al., 2003b; Schramm et al., 2003a). Fournier
and Tunstall designed a theoretical attack exploiting
cache collisions during AES encryptions (Fournier
and Tunstall, 2006) on a smartcard with a single

level of cache.They propose exploiting cache colli-
sions in the MixColumns pre-computed tables. This
work has been since extended (Gallais et al., 2010).
Bogdanov (Bogdanov, 2007) proposed an enhanced
collision-based attack targeting SubBytes and Mix-
Columns outputs. He formalized the collision attack
as a set of linear equations that can be represented as
a connected graph. This work was extended by com-
bining the key ranking features of DPA, Correlation
Power Analysis (CPA) or Mutual Information Analy-
sis (MIA) with collision-based attack (Bogdanov and
Kizhvatov, 2011). Gérard and Standaert formalized
collision attacks linear problems as a Low Density
Parity Codes (LDPC) decoding problem (Gérard and
Standaert, 2013). They pinpoint that collision attacks
are hardened by the diversity of possible implemen-
tations when considering software primitives. This
work may allow to optimize COLLISION+EM.

10 CONCLUSION

In this paper, we described a new methodology to ex-
ploit the electromagnetic emanations of DRAM ac-
cesses on SoCs as an attack vector. We develop
three attack scenarios, EVICT+EM, PRIME+EM and
COLLISION+EM, that require a physical access to
the attacked device, which is relevant when consid-
ering embedded devices such as smartphones. We
show that EVICT+EM enables full AES key recov-
ery with similar precision as EVICT+RELOAD attacks
with kernel level timer. Furthermore, the aforemen-
tioned attacks require no process interruption nor con-
currency constraints. Then, we demonstrate the effi-
ciency of COLLISION+EM, that do not require any
malicious code execution, and allows partial key re-
covery against a T-Table AES implementation run-
ning in a trusted application on an ARM TrustZone,
even with cache flushing countermeasure activated.
Besides, randomized and partitioned caches seem
inefficient against COLLISION+EM. This threatens
trusted execution environments on embedded devices,
which remain physically accessible to an attacker. Fu-
ture work may consider recovering the addresses of
the DRAM accesses to mount more efficient attacks.
Finally, it could be beneficial to evaluate the effi-
ciency of mitigations suggested in subsection 9.3.
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Potin, O. (2022). Combined fault injection and real-
time side-channel analysis for android secure-boot by-
passing. In International Conference on Smart Card
Research and Advanced Applications.

Fournier, J. and Tunstall, M. (2006). Cache based power
analysis attacks on AES. In Australasian Conference
on Information Security and Privacy.

Gallais, J.-F., Kizhvatov, I., and Tunstall, M. (2010). Im-
proved trace-driven cache-collision attacks against
embedded aes implementations. In International
Workshop on Information Security Applications.

Ge, Q., Yarom, Y., Cock, D., and Heiser, G. (2018). A
survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering.

Gérard, B. and Standaert, F.-X. (2013). Unified and opti-
mized linear collision attacks and their application in
a non-profiled setting: extended version. Journal of
Cryptographic Engineering, 3(1).

Goldack, M. and Paar, I. C. (2008). Side-channel based re-
verse engineering for microcontrollers. Master’s the-
sis, Ruhr-Universität Bochum, Germany.
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