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Abstract—With the trend towards software-defined vehicles,
the scale and complexity of automotive software application
is increasing rapidly, so that classical timing analysis methods
become hardly practical. This paper proposes a new method,
where a system model, formalized in an abstract multi-rate
dataflow model of computation, is refined into a precedence-
constrained scheduling problem. We characterize, and extend
where needed, several schedulability analysis techniques to tackle
this problem, and we demonstrate its use in the exploration of
partitioning choices.

Index Terms—real-time, multicore, distributed, response time
analysis, schedulability, dataflow

I. INTRODUCTION

The automotive industry is facing many challenges in its
transformation towards the Software Defined Vehicle (SDV).
The number of software components or services is vigor-
ously expanding, as is the complexity of their interaction,
and the associated integration issues, especially the real-time
aspects. SDV applications represent a new step in complexity,
involving thousands of mixed-criticality, both hard and soft
real-time tasks, deployed on heterogeneous computing archi-
tectures made of microcontrollers and multicore processors,
distributed across multiplexed networks, where configurations
are moreover subject to over-the-air (OTA) updates during
vehicle road life. Due to this whole new range of complexity,
classical approaches of software timing analysis face signifi-
cant challenge.

For these applications, many system-level properties, includ-
ing timing feasibility (schedulability, reaction latency) cannot
be left to be verified in the late integration testing phase.
To avoid costly redesign cycles, we advocate a model-based
approach to manage software timing properties, from service
design to implementation and integration, enabling early in
the process to predict application performance and timing
feasibility.

In this paper, we present an approach, and a model-based
analysis toolkit, based on the real-time multi-rate dataflow
language PolyGraph, that allows to determine the feasibility
of real-time constraints early in the design cycle.

First, in Section II we position our research with respect to
previous work, then we present the context of modern SDV
applications and a simple illustrative use-case in Section III. In
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Section IV-A we present the timing annotations added on the
PolyGraph language. Our main contribution is a model of exe-
cution that relates the abstract behavior of the dataflow with a
real-time, precedence-constrained, task scheduling model. This
scheduling model is then analyzed via both simulation and
response-time analysis in Section IV-E and IV-G. Finally, in
Section IV-H we compare the outcomes of this schedulability
study with an actual execution on an embedded platform.

II. RELATED WORKS

In particular, the scientific community has developed a large
knowledge base on models of computation, on the deployment
of corresponding applications onto embedded computing plat-
forms, and various approaches which enable formal reasoning
about safety-related properties.

The embedded and cyberphysical systems community is
progressively adopting technologies from the Internet world.
For instance, the adoption of embedded Service-Oriented
Architecture (SOA) frameworks like the Robot Operating
System (ROS) allows engineers to easily develop, deploy and
maintain complex processing chains made of many software
services, by abstracting behavior from the actual details of
the distributed execution platform, in particular the complex
effects of dynamic scheduling. However, ROS builds a layer
of cooperative scheduling of callbacks within each executor,
on top of a typical priority-driven scheduling of processes.
This complex scheme makes timing analysis extremely com-
plex [1]. In comparison, some other SOA frameworks (e.g.
ZMQ) provide message-oriented abstractions independent of
any task or scheduling model.

Since the seminal works by Lee & Messerschmitt [3] on
Synchronous Dataflow graphs (SDFG), many variants of the
dataflow graph paradigm have been proposed. They explore
various trade-offs between expressiveness of the model on one
hand (related to the ability to accurately model a diversity
of practical industrial systems), and the potential for formal
analysis of useful properties based on a system model on the
other hand [4]. Properties can be formally analyzed such as
causal determinism, consistency, liveness, static schedulabil-
ity, memory-boundedness, which are of particular interest in
safety-relevant applications.

The SDFG paradigm does not explicitly model passing of
physical time, therefore does not lend itself to timing anal-
ysis. Similarly, the synchronous language paradigm focuses
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on logical instants [5], and requires all reactions to happen
between consecutive instants – which limits the potential
integration of longer-running tasks. In contrast, in the Time-
Triggered (TT) paradigm [6] and Logical-Execution-Time
(LET) [7], time is the principal means chosen to ensure
deterministic communication among software nodes. In these
models, specifying a physical time instant for all task release
(TT) or communication events (LET) leads to deterministic
communications, but at the price of adding new tasks or new
constraints to the online scheduler [8].

As a consequence, the models of computation listed above
do not scale well to support modern, multi-rate, SOA-
distributed SDV applications. In our study, we select the
PolyGraph language introduced in [9], [17]. It inherits the
determinism and causal actor semantics of dataflow networks,
but adds a formal model of time, similar to TT however it
constraints only a specific subset of tasks. This model lends
itself particularly well to data-driven applications where multi-
rate behavior is dictated by the diversity of sensors or actuators
typically used in modern automotive, such as Advanced Driver
Assistance Systems (ADAS). However the mapping of those
applications onto schedulable task sets is yet to be defined.

Several implementations derived from dataflow graphs use
static scheduling strategies [3] or static time-triggered imple-
mentations [15], as often used in aeronautic environments
that require strong time- and space-partitioning, it seems
comparatively few approaches have been proposed to deploy
dataflow networks using fixed priority [16].

Many real-time software systems rely on a fixed-priority
preemptive scheduling policy. While often dominated by other
policies (e.g. deadline-driven), it has the advantage of being
simpler to implement reliably, to understand and therefore
to analyze. Since the formalization of the Response-Time
Analysis (RTA) algorithm by [10], [11], many have extended
this approach to support multicore parallelism and prece-
dence constraints among tasks [12]. A Directed-Acyclic Graph
(DAG) is typically used to represent precedence constraints
among sub-tasks that run at the same rate. In particular, [13]
extends the traditional RTA with a probabilistic model to
estimate response time bounds of a DAG task model. This
DAG-based approach however is not sufficient to model all
the constraints that emerge from a multi-rate timed dataflow.

In the classical RTA algorithm [11] as well as the prob-
abilistic multicore extension [13], the authors only consider
the response time of tasks, i.e. the span from release to
completion, wheras the PolyGraph-derived precedence scheme
imposes to also model the variability of jobs release times. The
Compositional Performance Analysis approach (CPA) [14]
uses a set of event curves to model the inter-arrival times.

In this paper, we define an extension to the PolyGraph
language to generate the scheduling constraints for large SoA-
oriented systems with timing constraints, accounting for their
high variability; from these constraints we define an execution
model respecting the precedence and real-time constraints,
and characterize different analysis methods to determine the
schedulability of the resulting system. Our results show that

classical approaches have limitations, and we introduce an
extension to the RTA analysis framework to overcome them.

III. CONTEXT

In this paper, we first explore the challenges to overcome
during the development of real-time systems using Service-
Oriented Architecture (SOA), powerful centralized computing,
distributed sensors/actuators, all concepts required for the
advent of a Software-Defined Vehicle (SDV). In this section
we present the new challenges that emerge in the SDV domain,
we recall the main aspects of the PolyGraph dataflow lan-
guage, then we present some notations useful to the following
analyses.

A. The Software Defined Vehicle challenge

The future generation of vehicles or other domains will
implement more and more software components distributed
over multiple multi-core Electronic Control Units (ECUs)
interacting in real time. From the increasing amount of dis-
tributed data, the growing number of software components
(SWCs) running on a single target and to keep the safety
in the complete system, methods of design and validation
need to adapt. By combining model-based engineering and
timing analysis, we propose a feasibility assessment method
based on the PolyGraph formal model to tackle those evolving
challenges.

In a modern vehicle, multiple sensors such as cameras,
lidars, radars, produce data at different rates; these signals
are fed through various software components, some of which
support lightweight state machines, and some support very
computationally-heavy image-processing or trajectory predic-
tion. Moreover, both computing and network resources are typ-
ically shared among both critical and quality-managed loads.
PolyGraph allows to formally model all these constraints,
defining rigorously the expected behavior (timing wise), and
assess latencies, schedulability and deployment possibilities.
Through those analysis, we can refine the previous model to
have a better accuracy of the final system.

We illustrate our work on the use-case proposed in [18].
Fig. 1 presents the multirate dataflow structure, and Fig. 2
illustrates the vision processing stages. This system represents
the perception stage of an ADAS, where images from a front-
facing camera are fed by actor ImgSrc at 15Hz into two
parallel processing chains. The lane-detection subchain detects
road lane markings using classical computer-vision algorithms.
First, a perspective transform creates a bird-eye-view, a color
filter outlines the white and yellow markings. A boxed-search
filter identifies lane keypoints, a 2nd order polynomial is fitted
through the identified keypoints, so that the extrapolated lane
can be drawn on the bird-eye view. This bird-eye view of
the lane is perspective-transformed back into a front view
for display. Its output is used for lateral control, typically in
lane keeping assistance. The object-detection subchain detects
and classifies obstacles like vehicles and pedestrians using
a neural network ; its output typically drives an automated
emergency braking (AEB) system or other longitudinal control

2



functions. Due to its heavier computation load, the object-
detection subchain runs at a lower frequency, processing only
every 5th frame. Both subchains are subject to a strict end-
to-end latency constraint, imposed here through the Display
sink actor. Although not representative of the scale of modern
automotive SOA applications, this didactic use-case already
showcases both some limits of existing approaches and the
practical usability of our method in this context.

B. PolyGraph summary

PolyGraph is a formal dataflow modeling language, pro-
posed in [17]. We recall here only the main notions. It defines
the expected real-time behavior of actors (which model the
software components), communicating through read-blocking
FIFO channels (which model message-based communication).
Actors fire atomically to consume and produce a fixed number
of tokens on the incident channels.

The real-time constraints are modeled by defining the ex-
pected firing frequency of the actors modeling sensors and
actuators in the multi-rate system. Maximal end-to-end latency
on channel paths can be defined by adding phase offsets for the
first expected firing. The other actors without explicit timing
constraints represent reactive software components triggered
by their inputs.

The formal model allows to infer inherited timing con-
straints for the reactive actors. Model-checking can then be
applied to verify consistency and liveness properties (hence,
memory-boundedness and absence of starvation, including
missing inputs at expected real-time start date).

These abstract properties are verified with the minimum set
of parameters derived from system engineering constraints.
While this abstraction is an advantage in functional modeling
to determine the feasibility and coherence of the timing
requirements, it lacks precision when taking into account the
possible variations in the software implementation. To account
for variability in a concrete execution in software, we introduce
in Section IV additional notions to capture execution time
and jitter, without impacting the verdict on consistency and
liveness.

C. Notations

Following [17], a polygraph is a tuple containing a set
V = {V1, ..., VN} of actors and a set E = {E1, ..., EM} of
channels. We denote by V n

j the nth firing of actor Vj in an
execution of the polygraph.

A subset T ⊆ V of actors are strictly-timed. To each actor
Vj ∈ T is associated a frequency ωj (equivalently a cycle time
Πj) and phase offset ϕj . For any actor Vj ∈ T and any of its
firings V n

j , its cycle time and phase offset determine an exact
firing date τnj = Πj × n+ ϕj .

From Propositions 1 and 2 in [19], we denote ρi(n) the
(non-decreasing) count of tokens produced on channel Ei by
the first n firings of its producer actor i.e. V 1

j to V n
j , and σi(p)

the (non-decreasing) to count of tokens consumed by firings
V 1
k to V p

k .

Depending on the order of the firings in a polygraph’s
execution, it may be non-blocking, i.e. for any channel Ei =
〈Vj , Vk〉, the firings of Vj and Vk are ordered so that any
firing V n

k has sufficient input data tokens to prevent a blocking
read. We denote H = 〈J,≺〉 the directed acyclic graph
(DAG) encoding the partial order of the actor firings in the
polygraph’s non-blocking executions (with an edge if V n

j must
occur before V p

k to preserve the non-blocking property, i.e.
V n
j ≺ V p

k ). Fig. 3 represents the structure of the precedence
graph for the first jobs of our ADAS use-case.

IV. CONTRIBUTIONS

A. Variations and execution times in PolyGraph

As explained in the previous section, the PolyGraph lan-
guage reasons on firing instants for the verification of consis-
tency and liveness. In an actual software execution, this re-
striction is not realistic and maintaining the abstraction comes
with advantages and drawbacks (see Section II). To enable
reasoning on firing time frames instead of firing instants, we
add two modeling parameters: completion jitter and timing
budgets.

Completion jitter allows to define the maximal acceptable
deviation from explicit periodicity constraints. For example, an
actor Vj with a strict cycle time of Πj = 100ms with a jitter
of 10ms models a requirement to refresh its output data every
100ms, plus or minus 10ms. We denote zj the completion
jitter of a strictly timed actor Vj , and require that zj 6 Πj .

Timing budgets are associated to actor firings, to define
the maximal acceptable execution time to process input data
for the production of output data. It can for example be
defined as an estimate of the maximal execution time, resulting
from a static or dynamic worst-case execution time (WCET)
analysis, or coarsely estimated through benchmarking statistics
(depending on stringency of the actor’s constraints). We denote
bnj the budget of firing V n

j .
The addition of timing budgets and jitter maintains the

decidability for the consistency and liveness properties. For
the consistency property, only the topology matrix of the
polygraph and the frequencies are relevant, and they are not
modified by the addition of budgets and completion jitters. The
purpose of the liveness property is to determine the existence
of at least one valid execution. Budgets and completion jitters
can thus be ignored in the liveness property definition. Budgets
indicate a maximal execution time delaying the occurrence of
a firing, but the minimum remains 0. The completion jitters
indicate a variation of the firing date of strictly timed actors,
which can be ignored by choosing the fixed date τnj for
any firing V n

j (equivalently, all jitters being set to 0). The
Algorithm 1 in [17] thus remains applicable by choosing these
values for the additional parameters. A positive verdict on
liveness is a required starting point to further analyze the
polygraph with other values for budget and jitter.

Given the precedence graph H for a polygraph, the com-
pletion jitters and budgets allow to generate expected exe-
cution windows, or time frames, in so-called optimistic and
pessimistic scenarios. In the optimistic scenario, the execution
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Fig. 1. ADAS use-ecase dataflow

Fig. 2. ADAS vision processing stages: front view (ImgSrc output), bird-eye view (PerspWarp output), lane detection (2 stages), inverse perspective
(PerspUnwarp output), and object detection.

Fig. 3. Jobs precedence graph

times are ignored to define the bounds, and in that case the
time frames are maximal. In the pessimistic scenario, the
size of the time frames are minimal, considering execution
times such that all actors consume the entirety of their timing
budgets.

For each firing V n
j , we define the following time frames:

• allowed execution: defines in the optimistic scenario
when the actor has all the required data on its input
queues at the earliest, and when the data is required at
the latest on all its output queues. That frame is thus the
maximum time frame during which input data is available
for computation and output data is relevant to successors
in the precedence graph. We denote alnj the lower bound
of this frame and aunj its upper bound.

• pessimistic execution: defines the same instants in the
pessimistic scenario, when all firings consume their
whole timing budget. That frame is thus the minimum
equivalent of the allowed time frame. We denote plnj the
lower bound of this frame and punj its upper bound

• realization: defines the instants when the firing (atomic

consumption and production) may occur. We denote rlnj
the lower bound of this frame and runj its upper bound.

We detail in the following how to determine these time
frames. Before going into more details, Fig. 4 illustrates
their definition for a polygraph with 3 actors and 2 channels
modeling a simple functional chain Sensor→ Compute→ Ac-
tuator. Sensor and Actuator are strictly timed, with frequencies
respectively 10Hz and 5Hz. Actuator has an offset of 50ms.
Compute is a reactive actor with inherited frequency of 5Hz.
The jitters of Sensor and Actuator are set respectively to 10ms
and 20ms. If we assume that Sensor produces every two firings
the number of tokens consumed by Compute, the polygraph is
consistent and live. The precedence graph is then quite simple,
Sensor(1) → Sensor(2) → Compute(1) → Actuator(1). The
timing budgets are 10ms for the firings of Sensor, 30ms for
the firing of Compute, and 20ms for the firing of Actuator.

In Fig. 4, note first the position of the realization time frame
of firing Sensor(2) and the allowed time frame of Compute(1).
The firing Sensor(2) is constrained to be realized between 190
and 200ms by the timing parameters of the Sensor actor. In
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any valid execution, the data is thus produced within this
frame. Since it is required by Compute(1) as an input, its
allowed time frame cannot start before 190ms. Then note that
in the pessimistic scenario, Compute(1) ends at the soonest
at 220ms, which constrains the pessimistic lower bound for
Actuator(1).

Fig. 4. Firing time frames. The time budget is figured in dark red, the
pessimistic frame in pale red, the allowed frame in blue, realization frame
in green.

To determine these time frames, the model parameters are
used as follows. The allowed time frame for V n

j is initially
defined by interval [τnj , τ

n
j + Πj ] if Vj is strictly timed. The

realization time frame is defined by [τnj + Πj − zj , τnj + Πj ].
For reactive actors, these frames are initially equal, and defined
by [0,+∞[. All pessimistic frames are initially equal to the
allowed time frame.

In addition to these initial definitions, every precedence
constraint in H of the form V n

j ≺ V p
k requires that the data

produced by V n
j be available on time for execution of V p

k in
all scenarios, that is:

∀(V n
j , V

p
k ) ∈ J , V n

j ≺ V
p
k ⇒ rlnj 6 alpk
⇒ max(rlnj , pl

n
j + bnj ) 6 plpk

⇒ runj = aunj 6 aupk
⇒ punj 6 pupk − b

p
k

(1)

Then, a propagation of these constraints through the graph
H starting with the initial values (for example using a variant
of the Bellman-Ford algorithm) refines the initial time frame
definitions to ensure causality of communication and real-time
constraints are enforced. If a reactive actor’s firing has no
successor in H, the upper bounds for its time frames can be
chosen (as long as it is less than or equal to the hyperperiod
of the polygraph, to preserve the consistency property).

For a consistent and live polygraph, the initial allowed and
realization time frames can always be refined while respecting
the inequalities of Equation (1), since H is an encoding of
the partial order of non-blocking executions and there is at
least one valid execution for the polygraph from the liveness
property. As such, with the completion jitter extension, any
sequence of firings ordered by firing date, such that the firings
occur within their realization frame, is a valid execution for
the polygraph.

Note that if refining the time frames results in pessimistic
frames smaller than the budget or frames where the pessimistic
upper bound is out of the realization frame, the system is
infeasible regardless of scheduling and resources. Indeed, a
frame smaller than the budget implies that the actor have

insufficient time to complete in the pessimistic scenario. A
pessimistic upper bound out of the realization frame translates
in a requirement to produce data sooner that the firing can be
realized, which is a contradiction.

For final time frames respecting the inequalities of Equa-
tion (1), different approaches can then be used to assess the
feasibility of the system timing requirements defining these
frames, taking into account a scheduling policy and execution
resources. We explore and characterize some approaches in
the following sections.

B. Execution model

In this section, we suppose now that a polygraph system
is implemented by mapping actors to a set of real-time,
partitioned, fixed-priority tasks, connected through first-in,
first-out (FIFO) message queues, where each token on channel
represents a distinct message. In a service-oriented imple-
mentation, these message queues are typically implemented
as a publish/subscribe channel supported by a communication
middleware such as ROS, DDS, MQTT or ZMQ. We suppose
that a common time source is available to all tasks.

We consider that each actor Vj is implemented by a single
task, which loops infinitely over the following 4 states. For
job index n = 1, 2, ...:

• 1. Wait: If Vj is strictly timed, i.e. has a period/phase
offset constraint specified, block until the allowed time
frame lower bound is met. If Vj is loosely-timed, switch
immediately to Pend state.

• 2. Pend: block until all the required input data is avail-
able, that is for each input channel Ei of actor Vj , block
until at least ρi(n)−ρi(n−1) tokens are available in the
corresponding FIFO.

• 3. Compute: this stage performs the application-specific
business logic computation associated with this job. This
typically involves processing the payload of the available
input messages and computing the payload of the output
messages, using CPU time less than or equal to the
budget.

• 4. Send: Block until the start of the realization time
frame, then atomically pop required input data from the
input queues and push the produced data samples to
the output queues, that is on each output channel Ei,
σi(n)− σi(n− 1) tokens.

We further suppose that during the Wait and Pend phases the
processor is left free to run other jobs, i.e. the processor does
not waste time in busy-waiting or input polling loops; and that
the time spent in the communication stack in the Send phase
is negligible – or at least, negligible in comparison to the time
spent in the Compute phase. This is a reasonable hypothesis
for several communication stacks such as ROS or ZMQ. For
now, we also neglect message transmission times, i.e. a given
message is available to its consumer immediately after it was
sent by its producer job.

With these assumptions, and given the definition of the
time frames in Section IV-A, scheduling a polygraph system
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becomes equivalent to scheduling the Compute phase of all
jobs, subject to the following constraints:
• the release, jitter and deadline constraints imposed on

strictly-timed actors,
• the precedence constraints imposed by messages tokens.
Since all these time and precedence constraints can be

predetermined off-line from the polygraph system definition,
we can lean on the body of knowledge accumulated about
precedence-constrained scheduling.

C. Absolute execution window

Scheduling using the allowed time frames (neglecting the
budgets) gives the most flexibility to the execution (as the time
frames are maximal). When guarantees on the feasibility of a
schedule are required, it is best to account for budgets and use
the pessimistic frames instead.

When a feasibility test is required, it is mandatory to have
a characterization of the execution times of the jobs, we thus
consider that BCET and WCET are available.

From there, setting the budgets to the BCET and refining the
time frames as defined in Section IV-A provides pessimistic
time frames that are the largest possible frames for the
Compute phase of the jobs (since they are built considering
that all jobs perform as fast as possible without processor
resource constraints). We call this time frame for any job V n

j

its absolute execution window, noted [aesnj , alf
n
j ].

As a corollary we have a first necessary condition on
schedulability: if, for any actor/job indices j, n, the absolute
execution window is not long enough for the worst-case
execution time, i.e. aesnj + WCETj > alfnj , then it is not
possible to schedule that job within these bounds. Such a
system is proven unfeasible.

If this condition is verified, it makes sense to analyze further,
by accounting contention on each processor resources.

D. Priority-driven scheduling

If we further suppose that each actor Vj is scheduled, using
the Fixed-Priority Preemptive (FPP) policy, on a processor πj ,
with distinct priority Pj , then we can refine our estimates of
when each job will be executed, and whether processors can
schedule all jobs.

In priority-driven scheduling, several jobs might compete
for execution time on the same processor. Henceforth a high-
priority job might defer or preempt a lower-priority job, hence
causing scheduling interference (as illustrated in Fig. 5). To
model the execution of tasks in the FPP policy, we introduce
the following notions.

For any job V n
j in a FPP schedule, we denote by snj the start

time of its Compute phase, fnj the completion of its Compute
phase, and Cn

j its execution time.
In addition, we denote by ifnj the amount of interference

that V n
j suffers from other, higher-priority jobs (i.e. the total

time during which V n
j is ready to run, but not actually running,

on processor pij). Finally, we denote Rn
j the response time

Rn
j = Cn

j + ifnj .

Fig. 5. Scheduling interference caused by a high-priority job HP on a lower-
priority job LP. Jobs become ready at ↓. Bright green: LP job is running; dark
green: LP suffers interference from HP.

The FPP schedule is then subject to the following con-
straints:

∀V n
j ∈ J ,fnj = snj +Rn

j

BCETj 6 Cn
j 6WCETj

aesnj 6 snj

fnj 6 alfnj

∀(V n
j , V

p
k ), V n

j ≺ V
p
k ⇒ fnj 6 spk

(2)

Our task is now to estimate, or bound, the amount of
interference that any job suffers.

E. FPP simulation

In order to estimate interference, we developed a simula-
tor for FPP-scheduled polygraph systems. This simulator is
derived from Equation (2), using a discrete-event simulation
strategy: at each scheduling point, we compute the state of
each actor, and each processor elects the highest priority job
among those in the Compute state, to run until completion or
preemption by another event. Fig. 6 illustrates the chronogram
generated by this simulation.

If actor jobs have constant execution times (i.e. BCETj =
WCETj), such a simulation might provide a sufficient
schedulability test. If execution times are variable however, it
is not sufficient to simulate a schedule with all actors’ WCET
to get a worst-case response time estimate. Indeed, in certain
circumstances, a job taking less time to execute might cause
another job to have a longer response time and even miss a
deadline. Fig. 7 illustrates such a scheduling anomaly, where
the first job of A executes for its full WCET duration, then
releases the first job of B after C has completed. During
the second run at t = 40ms however, A completes earlier,
releasing B sooner. This time, B preempts C, increasing its
response time.

To build a higher confidence in system schedulability, we
simulate many runs of the system (actually, many hyperpe-
riods) in a Monte-Carlo fashion. For each job simulated, a
execution time sample is drawn from a uniform distribution be-
tween BCETj and WCETj . The outcome of the simulation
is a chronogram, and a histogram for each actor of its response
times such Fig. 8. Remember that the maximum observed
response time is only a lower bound on the actual maximum
response time, therefore this method does not constitute a
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Fig. 6. Simulated FPP schedule

Fig. 7. Illustration of a scheduling anomaly: a shorter execution of actor A at t = 40ms leads to a longer response time of C.

Fig. 8. Response latency histogram of the ObjDetection actor.

sufficient schedulability test. Indeed, a rare interference pattern
might remain unveiled during any fixed-length simulated run.

F. Compositional performance analysis

In complement to the simulation approach, which provides a
lower bound to job response times, several formal approaches
are known to provide upper bounds. The Compositional Per-
formance Analysis method seems an interesting approach,
which supports modeling fixed-priority jobs with precedence
constraints, deployed over multicore platforms.

We experimented with the open-source pyCPA library how-
ever, the response times estimates were very pessimistic.
Indeed, current pyCPA implementation does not take into
account the phase offsets in job release times. When we
attempted to transform a polygraph job graph into a pyCPA
precedence-constrained task system, many time constraints
were therefore lost in translation, and as a consequence the
pyCPA solver accounted many interferences that can not occur
in practice. For this reason, we tried to reduce pessimism by
adapting another method: the response-time analysis approach.

Fig. 9. Interval-based representation of job timing uncertainty. Dark green:
best/worst-case total amount of interference; bright: best/worst case execution
time.

G. Interval-based response time analysis

From the classical RTA algorithm, we derive an interval-
based variant. Its main stage consists in rewriting the
execution-time equation 2 using intervals to bound the un-
certainty on each operand, then using the precedence graph to
propagate these uncertainty intervals to neighboring jobs (sim-
ilar to the method used for absolute execution windows), and
then using these intervals to estimate possible job interference.

If we suppose that the release time of a job V n
j lies within

an interval snj ∈ [esnj , ls
n
j ] (early start, late start), and that

the total interference is bounded within ifnj ∈ [bcifnj , wcif
n
j ],

then from (2) we can bound the job completion time fnj ∈
[efnj , lf

n
j ] (early finish, late finish) with:

efnj = esnj +BCETj + bcifnj (3)

and
lfnj = lsnj +WCETj + wcifnj (4)

Fig. 9 illustrates the notations for early/late start and finish
times, and their relation with best/worst-case interference and
execution times.

Equation (4) resembles the classic RTA update equation.
Note that updating a job’s completion date might result in
discovering new interfering jobs, so the classic RTA algorithm
is applied recursively, until either fix point convergence or a
deadline miss is identified. In our case, another argument calls
for recursive application: updating the completion interval of a
job might also postpone the release time of its successor jobs.
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Now let’s estimate the interference that a job V n
j might

suffer from another job V p
k , noted as above as an interval

[bcif(V n
j , V

p
k ), wcif(V n

j , V
p
k )]. Consider two arbitrary jobs,

with their execution windows as indicated by their early and
late start/finish dates. A job V p

k might defer or preempt a job
V n
j , therefore cause interference, if and only if:

• both are deployed on the same processor, and the victim
job has lower priority than its interferer, i.e. πj = πk,
and Pj < Pk,

• and at some point in time, they are simultaneously ready
to run.

Remark that if we’re sure that an interferer’s release
time occurs while the victim is running, then the interferer
will certainly interfere with the victim. We therefore set
bcif(V n

j , V
p
k ) = BCETk when [espk, ls

p
k] ⊆ [lsnj , ef

n
j ]. In

all other case, 0 is a safe lower bound to interference.
Similarly, an interference can occur only if the execu-

tion frame of the interferer overlaps that of the victim:
wcif(V n

j , V
p
k ) = 0 when [esnj , lf

n
j ] ∩ [espk, lf

p
k ] = ∅, in all

other cases, WCETk is a safe upper bound.
By further noting that two jobs can’t interfere with each

other if they are linked by a precedence chain, we can reduce
the set of potentially interfering jobs to consider:
HP (V n

j ) = {V p
k |πj = πk and Pj < Pk and V p

k /∈
Pred∗(V n

j ) and V n
j /∈ Pred∗(V p

k )}
Hence, we define:

bcif(V n
j , V

p
k ) =


BCETk if V p

k ∈ HP (V n
j ) and

[espk, ls
p
k] ⊆ [lsnj , ef

n
j ],

0 otherwise
(5)

and

wcif(V n
j , V

p
k ) =


WCETk if V p

k ∈ HP (V n
j ) and

[espk, lf
p
k ] ∩ [esnj , lf

n
j ] 6= ∅,

0 otherwise
(6)

It follows that a lower bound the total amount of interference
suffered by job V n

j is the cumulative interference from all jobs:
bcifnj = ΣV p

k ∈HP (V n
j )bcif(V n

j , V
p
k ). It might be tempting

to similarly sum all wcif(V n
j , V

p
k ), however that would lead

to accounting multiple times across a precedence chain the
interference from a single job: Fig. 10 shows a schedule
where a single high-priority job HP which might interfere
with either LP2 (at t = 100ms) or LP1 (at t = 1100ms),
which are part of a precedence chain LP1 → LP2; but HP
can obviously not interfere simultaneously with both. For this
reason, we add to wcifnj only the interference that was not
already accounted on predecessors of V n

j , i.e.:
wcifnj = ΣV p

k ∈HP∗(V n
j )wcif(V n

j , V
p
k )

with
HP ∗(V n

j ) = HP (V n
j ) \ {V p

k |∃V
q
l ∈ Pred∗(V n

j ),
wcif(V q

l , V
p
k ) > 0}

This last remark leads to the interval-based response-time
analysis Algorithm 1.

Algorithm 1 Interval-based response-time analysis
Input: polygraph system
Output: early and late release/completion times

Initialisation: for all jobs
esnj ← aesnj
lsnj ← aesnj
efnj ← aesnj +BCETj
lfnj ← aesnj +WCETj
repeat

for all jobs in topological order do
Update the release interval
esnj ← max(aesnj ,maxV p

k ∈Pred(V n
j ) ef

p
k )

lsnj ← max(aesnj ,maxV p
k ∈Pred(V n

j ) lf
p
k )

Update best/worst case interference
bcifnj ← ΣV p

k ∈HP (V n
j )bcif(V n

j , V
p
k )

wcifnj ← ΣV p
k ∈HP∗(V n

j )wcif(V n
j , V

p
k )

Update completion interval
efnj ← esnj +BCETj + bcifnj
lfnj ← lsnj +WCETj + wcifnj
if lfnj > alfnj , schedulability is not guaranteed
if efnj > alfnj , deadline miss is certain; return.

end for
until fix-point convergence

If this algorithm converges, then the system is schedulable,
and for each job V n

j we have computed a lower- and upper-
bound to its release and completion times. Fig. 12 visualizes
the outcome in a chronogram: each job is represented by two
slices: an “early run” between esnj and efnj and a “late run”
between lsnj and lfnj .

H. Evaluation
Our performance analysis was evaluated on both our ADAS-

inspired use-case, as well as with the use-case proposed
by [13], which illustrates a precedence-constraint task set
similar to our model.

Reference [13] presents a DAG task model with 2 tasks,
detailed in a total of 8 precedence-constrained sub-tasks which
are deployed on a 2-processor machine. By modeling message
transmission times as additional non-interfering sub-tasks, this
DAG task model injects easily into our PolyGraph language,
which allows us to analyze it through both simulation and
interval-based RTA analysis. This comparison confirms that
for most tasks both [13]’s probabilistic method and our
interval- based RTA algorithm gives a tight bound, equal to
the maximum response time observed in simulation for most
sub-tasks, with an overestimation corresponding to 1 message
transmission time for two of them.

If we chose to deploy our ADAS use-case on a 2-core
machine with the parameters in Table I, Core 2 is overloaded.
As a result, both the simulation and interval-based RTA detect
a deadline miss. Since the miss probability is low (see the
histogram in Fig. 11), many hyperperiods are simulated before
detecting a deadline miss.

If however we change the configuration, for instance by
deploying the PerspWarp actor on core 1 instead, the system

8



Fig. 10. Example interference on a precedence chain: high-priority job HP may defer or preempt either LP1 or LP2.

Fig. 11. Response time histogram of the Display actor, in overloaded
configuration

Actor Core Prio. BCET -
WCET
(ms)

Simul.
WCRL
(ms)

RTA
WCRL
(ms)

ImgSrc 1 5 1-2 2 2
PerspWarp 2 4 22-23 24.9 25

LaneDetection 2 3 6-7 31.8 32
PerspUnwarp 2 2 11-12 43.8 44
ObjDetection 2 0 100-150 206.7 209

Display 1 1 12-13 37.9 38
TABLE I

ADAS USE-CASE PARAMETERS AND WORST-CASE RESPONSE LATENCIES

becomes schedulable. The last two columns of Table I show
the worst-case response latency computed by our interval-
based RTA algorithm, and observed over a simulation of 100
hyperperiods. Since the simulation approach provides a lower
bound on the actual maximum response times, and the interval-
based RTA proves an upper bound, the small gap between both
predictions indicates that we have a rather accurate estimation
of the actual maximum possible response times.

In addition, from this polygraph system definition we gen-
erated a set of task threads communicating through ZMQ
messages, respecting the same scheduling parameters. We ran
the generated code on a physical multicore target and traced
the effective execution during a few minutes. The actual trace
of Fig. 13 confirms that each job ran within the early/late
bounds observed in simulation and computed with interval-
based RTA.

V. CONCLUSION

The PolyGraph language supports modeling of a rich set
of SDV applications, typically in the form of reaction chains
involving services running at various rates, deployed over
multi-core and distributed ECUs. Equipped with the model

of execution proposed in Section IV-B, we have shown that
two powerful verification methods can be extended to support
the timing analysis of polygraph systems, namely scheduling
simulation (Section IV-E) and an interval-based variant of the
response-time analysis method (Section IV-G). This approach
is validated by comparing the response latencies measured on
a simulation, computed with the interval-based RTA method,
and measured on an actual target execution.

This paper focuses on the partitioned, fixed-priority pre-
emptive scheduling policy, however both the simulation and
response-time analysis tools could be extended as future work,
to support other policies such as deadline-driven policies –
especially the Constant-Bandwidth Server configuration which
is also often used in SDV applications. Similarly, the effect of
network scheduling policies on message transmission times
(typically in Time-Sensitive Networking configurations) could
be integrated in our analysis to refine the estimated response
latencies in network-distributed applications. Moreover, we
consider adapting some heuristics that have been proposed in
literature to assign priorities and explore partitioning configu-
rations.
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