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Abstract.  In the field of Structural Health Monitoring (SHM), the use of tomographic 

methods employing guided elastic waves has been extensively investigated. Despite 

their performance, these existing methods are limited by issues such as resolution and 

their applicability to only specific structures, caused by the approximations on which 

they are based. This paper presents an adaptation of the shape derivative method for 

elastodynamic case, enabling the high-precision reconstruction of complex structural 

thicknesses. Moreover, as of the number of sensor is of utmost importance in the 

context of SHM, the paper will focus on reconstructions with under-sampled data.  
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Introduction  

The health of structures is crucial for safety in sensitive sectors, such as monitoring the 

residual thickness of structural components in nuclear power plants. Structural Health 

Monitoring (SHM) aims to continuously oversee these critical infrastructures. A promising 

physical mean to do so is the use of ultrasonic guided waves, which propagate over large 

distances, enabling a sparse array of sensors. 

Tomography methods are employed for structural imaging. This implies the physical 

acquisition of data within the domain, which is then processed to generate an image. The 

processing is frequently presented in the form of an inverse problem. In order to resolve, it 

is necessary to model the considered physics to a greater or lesser degree of detail. To use 

elastic guided waves, existing literature predominantly explores methods based on acoustic 

modelling [1], where simplifying assumptions are made to facilitate rapid thickness 

estimations. These include single-mode propagation and the absence of mode conversion at 

interfaces. Although these approximations are effective under specific conditions, they can 

limit both the resolution and applicability of the methods. It is notable that these assumptions 

are generally applicable when the wave packet of interest can be clearly distinguished from 

the remainder of the signal and the structure can be considered as a perfect waveguide. 

In this paper, we introduce an application of the shape derivative method, designed 

to eliminate the reliance on prior assumptions. The shape derivative method is an iterative 
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method, which it resolves an inverse problem. The objective is to minimize a cost function 

established between observation data and synthetic data. The particularity of this method lies 

in the fact that the optimization process is directly based on the form of the domain. The 

optimal shape is such that it minimises the associated cost function through the resolution of 

a partial differential equation on the domain Ω. We propose an adaptation to the 

elastodynamic case. The main limitation of such a method is the need to solve the 

elastodynamic system for each iteration, inducing a large computation burden in practice. 

We propose to alleviate this issue with the use of a spectral finite elements solver, reducing 

the cost of each iteration. 

The SHM context implies to pay attention to the intrusiveness. Indeed, the number of 

sensors necessary to monitoring the structures must not compromise its integrity. A 

consequence of relying on waves is that in order to reconstruct properly a defect inside a 

sensor distribution, it is necessary to respect a spacing of less than half the wavelength used 

[2]. In practice, for tomography configurations this represents a large number of sensors. It 

is therefore common to work with under-sampled data [3] in the guided wave tomography 

method based on an acoustic assumption. This paper investigates this for the shape derivative.  

The first part of the paper outlines the theoretical basis of shape derivative and spectral finite 

element method, while the second part evaluates the performance of shape derivative with 

under-sampled data. The behaviour of the algorithm will be analysed when the number of 

sensors falls below the minimum sampling criterion and compared to the literature.  

1. Method 

The concept of the shape derivative method is introduced here. The method presented in this 

paper is based on the shape derivative existing in the literature for the static case [4] [5]. 

The so-called shape optimisation problem is defined as min
Ω
𝐽(Ω), for a given cost function 

𝐽. The objective is to minimize the function 𝐽(Ω) over the domain Ω. Frequently, the cost 

function 𝐽(Ω) depends on Ω through the resolution of a partial differential equation, namely 

the state equation. 

In the case of guided elastic waves, the state equation system under consideration is 

such that 𝒖(𝒙, 𝑡) satisfies  

 

 

where 𝒖(𝒙, 𝑡) is the elastic displacement, 𝝈(𝒙, 𝑡) is the stress tensor which satisfies the 

Hooke’s law such that 𝝈(𝒙, 𝑡) = 𝑪: 𝜺(𝒙, 𝑡) where 𝜺(𝒙, 𝑡) = (∇𝒖(𝒙, 𝑡) + ∇𝑇𝒖(𝒙, 𝑡)) is the 

strain tensor and 𝐶 is the Hooke’s tensor. The term 𝒈(𝒙, 𝑡) is the surface loads applied on the 

boundary 𝜕Ω ∈ Ω, 𝒏 is the unit outward normal to 𝜕Ω and 𝑇 is the maximum observation 

time. 

The objective is to modify the surface 𝜕Ω ∈ Ω to match the observation and hence 

recover the domain's thickness. The information obtained by the 𝑁𝑠 sensors is the elastic 

displacement 𝒖obs and the domain Ω gives the synthetic solution 𝒖Ω through the resolution 

of (1). Therefore, the least square minimization is a suitable choice to fit them. The associated 

𝐿2 cost function is defined as 

 

𝐽(Ω) =
1

2
∑∫ ||𝑑𝒖Ω

𝑛 − 𝐝obs
𝑛 ||

2
d𝑡

𝑇

0

𝑁𝑠

𝑛=0

, 

{

𝜌(𝒙)𝜕𝑡𝑡𝒖(𝒙, 𝑡) − ∇ ⋅ 𝝈(𝒖(𝒙, 𝑡)) = 0,   in Ω × [0, 𝑇]

𝝈(𝒖(𝒙, 𝑡))𝒏 = 𝒈(𝒙, 𝑡),    on  𝜕Ω × [0, 𝑇]

𝒖(𝒙, 0) = 𝜕𝑡𝒖(𝒙, 0) = 0,    on Ω,

 (1) 
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where 𝑛 designates the 𝑛-th illumination of the domain, 𝑑 is the observation function 

reporting, through the state, the part corresponding to the measures and 𝐝𝐨𝐛𝐬 is the physical 

measures. The function 𝑑 hence represents the measurement by the sensor. For example, for 

a simple sensor, it can be an averaging of the normal displacement over the surface of the 

sensor. In this paper, we consider only simulated data, which means that the same observation 

function  𝑑 is used to generate 𝐝𝐨𝐛𝐬. 

1.1 Boundary Variation Method 

The boundary variation method, introduced by Hadamard [6] in 1908, lies in the variations 

of a given domain Ω ∈ ℝ3 such as 

 

Ω𝜃 ≔ (1 + 𝜃)(Ω), 
 

where 𝜃 ∶ ℝ3 → ℝ3 is a mathematical object that represents a vector field used to update the 

domain Ω. It gives the whole deformation of the domain in order to reduce the cost function 

under the given constraints. 

The shape derivative 𝜃 ↦ ∇𝐽(Ω)(𝜃) of a domain’s function 𝐽 in  Ω is defined as the 

differential at 𝜃 = 0 of the application  𝜃 ↦ 𝐽(Ω𝜃), such that its Taylor’s expansion is 

 

𝐽(Ω𝜃) = 𝐽(Ω) + 𝐽
′(Ω)(𝜃) + 𝑜(𝜃),    where 

|𝑜(𝜃)|

||𝜃||

𝜃→0
→  0. 

 

The shape derivative 𝐽′(Ω)(𝜃) is necessary to develop an optimization algorithm 

based on the domain's shape. If we choose a vector field 𝜃 such as 𝐽′(Ω)(𝜃) < 0, we have, 

for an 𝛼 > 0 sufficiently small 

 

 

According to the equation (2), information about the gradient of 𝐽 is essential for 

minimisation. As demonstrated, the relationship between the domain's shape and its cost 

function is not straightforward. To derive the gradient, a numerical approximation method, 

such as the finite difference method, may be employed. Nevertheless, this method results in 

a computational cost that is proportional to the problem's dimension, making it a significant 

burden for high-dimensional problems. To address this issue, the adjoint state method is a 

suitable choice.  

1.2 Adjoint Method to Shape Gradient Derivation 

The adjoint state method is a general variational method to compute the gradient of a 

functional that depends on a set of state variables, which is the solution of the state equations. 

The adjoint state variable 𝒗Ω is the solution of an adjoint state system. A didactic introduction 

to this method is given in Ref. [7]. 

The literature has shown that in most cases, with the adjoint state method, the shape 

derivative of the function 𝐽(Ω) defined on the domain Ω has the following form:  

 

 

𝐽(Ω𝜃
𝛼) ≈ 𝐽(Ω) + 𝛼𝐽′(Ω)(𝜃) < 𝐽(Ω).  (2) 

∇𝐽(Ω)(𝜽) = ∫ 𝒑Ω 𝜽 ⋅ 𝒏 d𝑠
𝜕Ω

, (3) 
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where 𝒑𝛀: 𝜕Ω → 𝑅 is a function that depends on the cost function 𝐽, the state variable 𝒖Ω and 

the adjoint state variable 𝒗Ω. 

 

The adjoint state formulation of (1) is such that 𝒗(𝒙, 𝑡) satisfies 

 

 

We can then show that  

 

𝒑Ω = ∫ (𝝆(𝒙)𝒗Ω(𝒙, 𝑡)𝜕𝑡𝑡𝒖Ω(𝒙, 𝑡) + 𝜺(𝒖Ω(𝒙, 𝑡)) ∶ 𝑪 ∶ 𝜺(𝒗Ω(𝒙, 𝑡))) d𝑡
𝑇

0

. 

 

Given that the elastodynamic system is self-adjoint, the adjoint formulation (4) is the 

same as the state equation (1) but with a different source term. Indeed, the derivative of  𝐽, 
with respect to the state variable 𝒖, is the residual between the observation 𝒖obs and the 

simulated signals 𝒖Ω. Moreover, the adjoint system has a final condition in time but, the 

elastodynamic problem being revertible in time, it is possible to solve it as usually, 

considering the final condition as an initial condition and reverting time afterwards. The 

resulted field is the so-called residual backpropagated field. 

Finally, the analytic form (3) allows to identify a descent direction by choosing a 

vector field 𝜽 such as 

 

𝜽 = −𝒑Ω𝒏    on    𝜕Ω.  

The equation (2) becomes 

𝐽(Ω𝜃
𝛼0) ≈ 𝐽(Ω) − 𝛼0∫ 𝒑Ω

2  d𝑠 <  𝐽(Ω0)
𝜕Ω

 

 

and the updated domain satisfies 

 

Ω𝜃
𝛼 = (1 + α0𝜽) Ω0,   with  𝛼0 > 0. 

 

Using the descent direction 𝜽 as the inverse of the gradient is the same as the steepest 

descent method, which suffers from a very low convergence rate, all the more with a fixed 

descent step. To address this issue, we have chosen to use the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method with the first weak Wolfe condition (Armijo condition) [8].  In this 

context, the BFGS algorithm is particularly interesting and combined with the Armijo 

condition, it ensures a robust and fast convergence. 

 

The convergence criterion is defined as 

  

|∇𝐽𝑘−1 − ∇𝐽𝑘| ≤ 𝜀∇𝐽0, 
 

where 𝜀 = 10−3, the subscript 𝑘 represents the current iteration and 0 represents the first 

iteration. 

{

𝜌(𝒙)𝜕𝑡𝑡𝒗(𝒙, 𝑡) − ∇ ⋅ 𝝈(𝒗(𝒙, 𝑡)) = 0,   𝒙, 𝑡 ∈ Ω × [0, 𝑇]

𝝈(𝒗(𝒙, 𝑡)) ⋅ 𝒏 = 𝜕𝒖𝐽,    𝒙, 𝑡 ∈ 𝜕Ω × [0, 𝑇]
𝒗(𝒙, 𝑇) = 𝜕𝑡𝒗(𝒙, 𝑇) = 0,    𝒙 ∈ Ω.

 (4) 
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1.2 Adapted Shape Derivative Based on Spectral Element Method 

As it has been shown previously, the method still needs to solve 2𝑁𝑠 problems for each 

iteration, where 𝑁𝑠 the number of sensors, hence the need of an efficient solver. To optimize 

this step, the resolution is performed with the spectral finite elements in space and an explicit 

leapfrog scheme in time. The solver is presented in the Ref. [9] and used in the SHM module 

of CIVA [10].  

The particularity of the spectral element method is its capacity to work with Legendre 

polynomial to perform the numerical integration inside the mesh element. Increase the order 

of the polynomial allows for a better consideration of the small and complex variations of 

the field. Thus, compared to adding elements, this method is more efficient in terms of 

computational cost and memory management because it limits the increase in the number of 

global degrees of freedom. Compared to the traditional finite element method, the linear 

system to be solved in this case involves a diagonal mass matrix. This reduces the cost of 

solving the system, remove the need to assemble the full system and enables parallel 

implementation of the calculations. In addition, the method demonstrates high accuracy in 

the context of guided wave propagation. The performance of this solver for wave propagation 

has been evaluated in this article [11] and shows remarkable performance compared to other 

finite element solvers. This makes it a wise choice for our application.  

2. Numerical results 

In this paper, the influence of the number of sensors was investigated. The literature 

demonstrates [2], in the case of guided wave tomography with an acoustic assumption, that 

in order to capture all spatial frequency information of a defect with an effective radius 𝑟0 
placed at the centre of a circular distribution, the distance between two adjacent sensors must 

satisfy 

𝑑max < 
𝜆𝑅

2𝑟0
, 

 

where 𝜆 is the working wavelength, 𝑅 is the radius of the sensor distribution and 𝑟0 is the 

radius of a defect placed at the centre of the distribution. 

In our case, it can be seen as the largest imaging area without reconstruction artefacts. 

This ensures that the circle centred on the distribution with a radius 𝑟0 is free from grating 

lobes. Therefore, to obtain the full view imaging, the distance between sensors must not fall 

under 𝜆 2⁄ , i.e. the minimum number of sensor must satisfy  

 

𝑁𝑠 >
4𝜋𝑅

𝜆
, (5) 

 

where  𝑁𝑠 is the number of sensors. 

The same methodology will be employed in order to investigate this further in the 

context of the shape derivative. 
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2.1 Simulation Setup 

2.1.1 Configuration 

The domain Ω is a bounded aluminium plate of size 600 ×
580 × 2.95 mm3. A defect, represented by a thickness loss, 

is implemented at the coordinates [360, 280] mm. The defect 

radius is  𝑟 =
3

2
𝜆 composed by a flat base of radius 𝑟base =

1

2
𝑟 at the thickness 𝑒def = 2.55 mm and a smooth transition 

zone (described by a Hann half-window) of radius 𝑟Hann =
1

2
𝑟, which varies from 𝑒def to 𝑒healthy, see Fig. 1. The used source consists in a 5 cycles tone 

burst of centre frequency 40 kHz and a Gaussian-shaped normal load at the surface of the 

plate of standard deviation 2.5 mm. The wavelength of the 𝐴0 mode at the center frequency 

is 𝜆 = 25.97 mm. The simulated sequence is a round robin capture of punctual emissions 

placed on a circle of radius 𝑟circle = 150 mm. According to the equation (5), the minimal 

number of sensor to the full view is 𝑁𝑠 ≈ 73 sensors. In a SHM context, this is too many 

sensors to get a system with an acceptable intrusiveness, so we want to evaluate the ability 

of the shape derivative to work with under-sampled data.  

 

2.1.2 Mesh and SEM Configuration 

To perform the finite element resolution on the 

domain, we need to discretize it. We have used a 

full structured hexahedral mesh, see Fig. 2, with 

a mesh size such that there are five nodes per 

wavelength. The length of an edge is =
𝜆min

5√2
 1, 

where 𝜆min = 21.5 mm represents the minimal 

wavelength in the emission signal. The order of 

the spectral elements is 2 in the two directions of 

the plane and 3 in the thickness direction. 

Therefore, there are ten DoFs in the plane and three in the thickness, which allows a good 

convergence of the finite element.  

Using our formulation, it would be possible to use higher order finite elements to 

further reduce the number of DoFs. However, to properly reconstruct the domain, the 

geometrical order of the elements should be also chosen accordingly. In this first study, we 

restricted ourselves to first order geometrical elements that is straight polyhedral, hence 

limiting the order of the used finite elements. Future studies will use higher order geometrical 

elements for a more precise description of the geometry and faster computations. 

 

2.1.3 Shape Derivative Results 

The shape derivative is performed for several configurations. We started with the optimal 

configuration, i.e. with the optimal number of sensor 𝑁𝑠 = 73. Then, we have reduced the 

number of sensors to evaluate the robustness of the shape derivative to under sampled data.   

                                                 
1 The square root √2 is used to ensure that the diagonal of the quadrangular elements is sufficiently sampled in 

relation to the wavelength. 

Fig 2. Defect mesh. 

Fig. 1. Thickness loss reference 

map. 
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(a) 73 sensors. (b) 50 sensors. (c) 20 sensors. 

   
(d) 15 sensors. (e) 10 sensors. (f) 5 sensors. 

Fig. 3. Shape Derivative reconstruction with 73, 50, 20, 15, 10, 5 sensors. The red circles represent the 

sensors position and the white circles represents the 𝑟0 circle. 

In the optimal configuration, see Fig. 3a, we see that the imaging area is free from 

artefacts. The localisation of the defect is well positioned until ten sensors Fig. 3e, but the 

quality of the reconstruction is greatly degraded below twenty sensors Fig. 3c.  

The white circles on Fig. 1 represent the 𝑟0 circle with respect to the number of sensor. 

For the optimum configuration 𝑟0 = 𝑅, therefore the white circle is confounded with the 

sensor circle. We can see that the artefacts appear when the number of sensors is less than 

the optimum resulting on a noisier background and a less visible defect signature. Below 

twenty sensors, the defect is outside of the 𝑟0 circle. Those results seem to indicate that the 

relation established under the acoustic assumption also holds for the shape derivative. 

The thickness loss for each configuration is plotted in Fig. 4, where we can clearly 

see that the diminution of the number of sensor deteriorates the result. The relative error on 

the thickness loss is below 15% up to ten sensors that is very encouraging, because it is one 

of the most crucial information for the SHM of corrosion. Up to the configuration of fifteen 

sensors, the thickness loss is slightly overestimated. This is a preferred scenario in an SHM 

context. Actually, it is preferable to overestimate the residual thickness slightly and carry out 

maintenance, for example, rather than to underestimate it and risk a failure. However, we 

also need information that is more global. While the residual thickness provides insight into 

specific points on the reconstruction map, we also require information on the global image 

but also on the overall shape of the defect. 

In order to enable a quantitative and global comparison of the reconstructions to the 

reference, the following error calculation is introduced. 

 

where Δimage = 𝑒 − 𝑒ref is the difference between the reconstruction map 𝑒 on Fig. 3 and 

the reference map 𝑒ref on Fig. 1 and 𝑒ref
healthy

 is the structure’s reference thickness. 

The figure 5 illustrates the evolution of the mean of the relative error computed by 

the equation (6). As expected, the relative error increase as the number of sensors decreases. 

err =
|Δimage|

|𝑒ref
healthy

−min 𝑒ref|
× 100, (6) 
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It seems to reach an asymptote when the defect is in the 𝑟0 area. This can be justified by the 

fact that at this level, the algorithm has all the data it needs to reconstruct the structure. 

Therefore, the addition of a new sensor does not result in any further information being 

produced. When the defect is located outside of the 𝑟0 area, it can be observed a “linear” 

increase of the relative error.  

If we now concentrate the calculation of the relative error on the corrosion zone, see 

Fig. 6, the evolution seems to have a steeper slope than on the entire map, and the degradation 

of the reconstruction becomes significant from fifteen sensors onwards. Finally, the study on 

the relative error shows that up to fifteen sensors, the defect is globally well reconstructed. 

In a SHM context, some infrastructures need less-intrusive instrumentation and thus 

keep the number of sensors relatively low. This study reinforces the interest in this method, 

since with a relatively small number of sensors, twenty in this case, the algorithm continues 

to converge and the error in terms of residual thickness and global thickness remains low 

enough. This result must be confirmed in other cases to be sure of its performance. 

 

  
Fig. 4. Plot of the minimum residual thickness with 

associated relative error to residual thickness of 

reference. 

Fig. 5. Plot of the mean of the relative error with the 

one sigma error bar. 

 

Furthermore, in the configuration 

with twenty sensors, the defect is located 

outside of the 𝑟0 area. However, the 

algorithm is still able to reconstruct the 

defect, demonstrating its robustness 

against under-sampled data. 

3. Conclusion 

In this paper, the formalism of the shape 

derivative method adapted to guided 

elastic waves has been shown. In order to 

measure the performance of the method, 

we have chosen to make a study on the 

minimal number of sensors to maintain a good shape reconstruction and a precise residual 

thickness. The results show that the method seems to be robust to under-sampled data. 

Indeed, even with a relatively small number of sensors compared to the ideal number, the 

relative error in the defect is kept below 15% for up to ten sensors. Finally, it has been shown 

that the appearance of grating lobes for this method seems to follow the established law 

observed for guided wave tomography under an acoustic assumption.  

 
Fig. 6. Plot of the mean of the relative error in the 

defect area with the one sigma error bar. 
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A recent work established the performance of the method with experimental data [12]. 

Moreover, the result of the tomography under the acoustic assumption is employed as an 

initialisation of the shape derivative in order to reduce the number of iterations and the 

sensitivity of the cost function to local minima. Based on these preliminary results, future 

works will handle the reconstruction of more complex structural thicknesses. 
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