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Abstract 

Radiological characterisation is one of the main challenges of the decommissioning and dismantling projects 

of nuclear facilities. This is an important step in decommissioning projects as it aims to estimate the quantity 

and spatial distribution of different radionuclides. As the type of contamination (nature of radionuclides, 

radioactive intensity, etc.) will require specific dismantling protocols, this estimation will condition the 

dismantling plan. In order to carry out the estimation, measurements are performed on site to obtain 

preliminary information. The information being incomplete (since all spatial positions cannot be measured due 

to time and cost constraints), spatial interpolation, using a kriging tool for example, is often performed to 

predict the value of interest for the contamination (radionuclide concentration, radioactivity, etc.) at 

unobserved positions. 

A strong assumption made when applying ordinary kriging is that most of the kriging model parameters (except 

for the mean) used in the model are known. However, this is rarely the case in practice. Furthermore, the 

estimation error made when these parameters are estimated from the data is never taken into account, although 

this can lead to biased kriging predictions and overoptimistic prediction variances. This problem is emphasised 

when only a few observations are available, since the variance of the parameters' estimators becomes larger. 

This case is quite common for decommissioning projects, especially in the decommissioning of nuclear 

infrastructures where the number of measurements can be constrained by environmental risks such as 

radioactivity. 

To address this issue, we propose here to use Bayesian kriging where the model parameters are considered as 

random variables, which allows to take into account their uncertainties. The use of prior specifications in 

Bayesian kriging also allows for more robust parameter estimate when only a few observations are available. 

Despite its advantages, Bayesian kriging has the drawback of being more computationally heavy and needing 

a prior specification, which is often difficult to choose and can strongly influence the predictions.  

As such, the present work focused on assessing the usefulness of Bayesian kriging whilst comparing its 

performance to that of ordinary kriging. First, in order to make a relevant comparison, a simulated data set 

with known parameters is initially studied and several cross-validation criteria such as the predictivity 
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coefficient (𝑄²), the Predictive Variance Adequacy (𝑃𝑉𝐴), and the 𝛼-CI plot Demay et al., (2021) are estimated 

for varying data sizes to quantify the performances of both kriging methods. 

A new criterion, the Predictive Interval Adequacy (𝑃𝐼𝐴), is also introduced and studied. 

Secondly, the same comparison is applied on a real data set from the decommissioning project of the G3 reactor 

at the CEA’s Marcoule site. Finally the sensitivity of Bayesian kriging to prior specification and parameter 

estimation is also studied. 

Keywords: geostatistics, bayesian kriging, ordinary kriging, validation criterion 
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Introduction 

Radiological characterization is one of the main challenges encountered in the nuclear industry for the 

decommissioning and (D&D) of old infrastructures. Its main goal is to evaluate the quantity and spatial 

distribution of radionuclides. As such, measurements are made to constitute a data set and obtain preliminary 

information. While measurements are made, many problems can arise. The radioactivity present on site can be 

dangerous for operators and does not allow for many measurements. In some extreme cases, drones and robots 

have to be used (CEA DEN, (2017)), making measurements more expensive, therefore reducing data set's 

sizes. It is therefore quite common in nuclear decommissioning and dismantling characterisation to have little 

data available. A balance has to be found between information and costs, and statistical tools make it possible 

to optimise the information extracted, within a rigorous mathematical framework and with some confidence. 

More precisely, spatial statistics or geostatistics are used to predict the variable of interest at unobserved 

position (prediction of the expected value), with an indication of the expected error in prediction (the prediction 

variance). The methodology is often based on two steps: first the construction of a statistical model with the 

estimation of its parameters, followed by prediction with a linear interpolator called kriging. Geostatistics also 

receive a common critic: its predictions do not take into account the uncertainty in the estimation of the model 

parameters. The variances of the predictions are too optimistic and the neglected model uncertainties can have 

a significant impact. This problem is made worse for smaller data sets, which can be common in D&D projects. 

The work of Desnoyers, (2010) is one of the first example of application to radiological characterisation. In 

this thesis a case study was analysed, but was based on many measurements, which is not realistic in the case 

of industrial nuclear D&D projects.  

To overcome this, a Bayesian approach was first proposed by Kitanidis, (1986). Its main goal was to take into 

account uncertainties in the scale and mean parameters of the model. The work of Handcock and Stein, (1993) 

then completed the full Bayesian approach which considers all the parameters of the model as unknown. More 

recently, a slightly different approach was presented by Krivoruchko and Gribov, (2019) and is called empirical 

Bayesian kriging. While the equations are similar to the ones of regular Bayesian kriging, the prior choices are 

obtained through unconstrained simulations of the random field. This approach was adapted to allow for multi-

fidelity applications, where Bayesian theory is used to update the initial data with new, more accurate data 

(classically used with cokriging if correlations between old and new data exist). Some examples can be found 

in meteorology with Gupta et al., (2017) or for oil extraction in Al-Mudhafar, (2019). Note that a more 

complete description of Bayesian kriging with an extension to generalised linear model is presented in Diggle 

and Ribeiro, (2007).  

Material and Methods 

Spatial Model and Predictions 

The model considered is the following random field: 

{𝑍(𝑥), 𝑥 ∈ ℝ2} 

which is constrained to 𝐷 ⊂ ℝ2. The random field 𝑍(. ) is isotropic and stationary, meaning: 
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∀ 𝑥 ∈  𝐷, 𝐸[𝑍(𝑥)] = 𝛽 

∀ 𝑥, 𝑦 ∈  𝐷, 𝐶𝑜𝑣(𝑍(𝑥), 𝑍(𝑦)) = 𝜎² 𝐶𝜙(|𝑥 − 𝑦|). 

The term 𝐶𝜙  corresponds to a semidefinite positive function. Moreover, the random field is considered 

Gaussian. Thus for 𝑛 observations at positions {𝑥1, . . . , 𝑥𝑛}, we obtain the Gaussian random vector 𝒁 =

(𝑍(𝑥1), . . . , 𝑍(𝑥𝑛))′: 

𝒁|𝛽, 𝜎², 𝜙~𝒩(𝛽𝟏𝑛, 𝜎²𝑲𝜙) 

with 𝟏𝑛 = (1, . . .1)′, where 𝛽 is the mean parameter, 𝜎² the variance parameter, 𝜙 the range and 𝜎² 𝑲𝜙 =

(𝐶𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)))1≤𝑖,𝑗≤𝑛 the covariance matrix. The observation of 𝒁 is written 𝒛 = (𝑧(𝑥1), . . . , 𝑧(𝑥𝑛))′. 

The model is therefore specified by 3 different parameters: the trend parameter 𝛽 ∈  𝐷𝛽, the scale parameter 

𝜎² ∈  𝐷𝜎² or variance and the range parameter 𝜙 ∈  𝐷𝜙. The first step of the geostatistical methodology is to 

estimate these parameters. Two main procedures exist: variographic analysis and maximum likelihood 

estimation. An extensive literature is available about parameter estimation with variographic analysis, such as 

Chilès and Delfiner, (2012), Webster and Oliver, (2007). We chose to use maximum likelihood estimation to 

avoid automatic fitting of variograms since the following applications will require the estimation of parameters 

for numerous data sets generated by simulations. Automatic fitting of variograms is strongly discouraged in 

most of the literature, Chilès and Delfiner, (2012), Webster and Oliver, (2007), so we avoid the methodology 

here. 

The kriging predictor is a linear interpolator which expressions are derived from supplementary conditions, 

such as minimizing the prediction variance. For a detailed description of kriging and its construction, the reader 

can refer to the reference books of Chilès and Delfiner, (2012), Cressie, (1993) for geostatistics, but also 

Rasmussen and Williams, (2006) for computer code surrogate models. Let 𝑥0 be an unobserved position at 

which we wish to predict the expected value and the variance of 𝑍(𝑥0)|𝜎², 𝜙, 𝒁 = 𝒛 (the mean is considered 

unknown), the ordinary kriging equations are: 

𝐸[𝑍(𝑥0)|𝜎², 𝜙, 𝒁] = (𝒌 + 𝟏𝑛

1 − 𝟏𝒏
′ 𝑲𝜙

−1𝒌

𝟏𝒏
′ 𝑲𝜙

−1𝟏𝑛
)

′

𝑲𝜙
−1𝒁 

𝑉𝑎𝑟[𝑍(𝑥0)|𝜎², 𝜙, 𝒁] = 𝜎² (𝟏 − 𝒌′𝑲𝜙
−1𝒌 +

(1 − 𝟏𝒏
′ 𝑲𝜙

−1𝒌)
2

𝟏𝒏
′ 𝑲𝜙

−1𝟏𝑛

) 

with 𝜎²𝒌 = (𝐶𝑜𝑣(𝑍(𝑥0), 𝑍(𝑥𝑗)))1≤𝑗≤𝑛. 

A major concern for applications of these equations is that they are conditional on the knowledge of the 

variance and correlation length parameters, which is mostly unrealistic since they are estimated. This 

assumption yields overoptimistic prediction variances and narrower confidence intervals. This problem is 

made worse for small data set where parameter estimation is sensible to each observation. To address this 

issue, more robust methods exist such as cross-validation estimation presented by Bachoc, (2013). Another 

solution is to consider the parameters as random variables. Bayesian approach seems natural in this case and 

leads to Bayesian kriging. 

Indeed, Bayesian kriging deals simultaneously with estimation and predictions by considering the parameters 

as random variables that must be predicted conditionally to the observed data. We will use here the approach 
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described by Diggle and Ribeiro, (2002). For ease of notation, densities will be noted as 𝑝(. ) and the 

conditioning to parameters will be simplified from 𝑍|𝛽 = 𝛽 𝑡𝑜 𝑍|𝛽. 

Bayesian kriging predictions are derived from the predictive distribution as follows: 

𝑝(𝑍(𝑥0)|𝒁 = 𝑧) = ∫ 𝑝(𝑍(𝑥0), 𝛽, 𝜎², 𝜙|𝒁 = 𝒛)𝑑𝛽𝑑𝜎²𝑑𝜙
 

𝐷𝛽×𝐷𝜎²×𝐷𝜙

 = ∫ 𝑝(𝑍(𝑥0), 𝛽, 𝜎²|𝜙, 𝒁 = 𝒛)𝑝(𝜙|𝒁 = 𝒛)𝑑𝛽𝑑𝜎²𝑑𝜙
 

𝐷𝛽×𝐷𝜎²×𝐷𝜙 

 = ∫ 𝑝(𝑍(𝑥0)|𝜙, 𝒁 = 𝒛)𝑝(𝜙|𝒁 = 𝒛)𝑑𝜙
 

𝐷𝜙 

.

 

As per usual in Bayesian framework, we choose a joint prior distribution for 𝛽, 𝜎²: 

𝜋(𝛽, 𝜎²) ∝
1

𝜎²
. 

For the correlation length, the prior is reduced to a uniform law between the minimum and the maximum 

distance allowed by the data set: 

𝜙 ~ 𝑈(𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥). 

 

Validation Criteria 

The validation criteria are given by Demay et al., (2021) as means to compare and choose different covariance 

models for geostatistical predictions. These criteria aim to assess the quality of both the predictions of the 

model and the associated prediction variances. Their expressions are given here in their leave-one-out cross-

validation formulation, but can be extended to K-fold cross-validation or to validation sets. 

 

Predictivity coefficient (𝑄²) 

The main goal of this coefficient is to evaluate the predictive accuracy of the model by normalising the errors, 

allowing a direct interpretation in terms of explained variance. Its definition is the following: 

𝑄² = 1 −
∑ (𝑧(𝑥𝑖) − 𝑧̂−𝑖)2𝑛

𝑖=1

∑ (𝑧(𝑥𝑖) − 𝜇̂)2𝑛
𝑖=1

 

where 𝑧̂−𝑖 is the value predicted by the model built without the 𝑖-th observation and 𝜇̂ is the empirical mean of 

the data set. 

This coefficient measures the quality of the predictions and how near they are to the observed values. It is 

similar to the coefficient of determination used for regression  (with independent observations), but estimated 

here by cross-validation. The closer its value is to 1, the better the predictions are (relative to the observations). 

As a rule of thumb, if the 𝑄² is smaller than 0.5 (i.e. less than 50% of output variance explained), the model 

is not considered valid. 

 

Predictive variance adequacy (𝑃𝑉𝐴) 

This second criterion aims to quantify the quality of the prediction variances given by the model and kriging. 

Initially introduced by Bachoc, (2013), it is defined by the following equation: 
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𝑃𝑉𝐴 = |𝑙𝑜𝑔 (
1

𝑛
∑

(𝑧(𝑥𝑖) − 𝑧̂−𝑖)2

𝑠̂−𝑖
2

𝑛

𝑖=1

)| 

where 𝑠̂−𝑖
2  is the prediction variance of the model built without the 𝑖-th observation. 

It estimates the average ratio between the squared observed prediction error and the prediction variance. It 

therefore gives an indication of how much a prediction variance is bigger or smaller than the one expected. 

The closer the 𝑃𝑉𝐴 is to 0, the better the prediction variances are. For example, a 𝑃𝑉𝐴 ≈ 0.7 indicates 

prediction variances that are on average two times bigger or smaller than the squared errors. 

 

Predictive interval adequacy (𝑃𝐼𝐴) 

The 𝑃𝑉𝐴 is criterion for variance adequacy but does not consider possible asymmetry in the predictive 

distribution. In the Gaussian case, mean and variance characterise completely the distribution, but in the case 

of Bayesian kriging where the predictive distribution is not Gaussian, the 𝑄² and 𝑃𝑉𝐴 are not enough to 

evaluate the quality of the model and its prediction. As such, we propose a geometrical criterion called the 

predictive interval adequacy (𝑃𝐼𝐴) defined as follows: 

𝑃𝐼𝐴 = |𝑙𝑜𝑔 (
1

𝑛
∑

(𝑧(𝑥𝑖) − 𝑧̂−𝑖)2

(𝑞̂0.31,−𝑖 − 𝑞̂0.69,−𝑖)²

𝑛

𝑖=1

)| 

 

where 𝑞̂0.31,−𝑖 (respectively 𝑞̂0.69,−𝑖) is the estimation of the quantile of order 0.31 (respectively 0.69) of the 

predictive distribution without the 𝑖-th observation. It has been defined to be identical to the 𝑃𝑉𝐴 for a Gaussian 

distribution, but rather than comparing squared errors to the predictive variance, it compares the width of 

prediction intervals with the squared errors. Another main difference is that the intervals defined by the 𝑃𝐼𝐴 

are centred on the median whereas the 𝑃𝑉𝐴 is centred around the mean. Finally, an estimation of the predictive 

distribution is therefore necessary to compute this criterion, whereas the 𝑃𝑉𝐴 only needs mean and variance 

to be computed. 

 

𝛼-CI plot and Mean Squared Error 𝛼 (𝑀𝑆𝐸𝛼) 

The Gaussian process model allows to estimate credible intervals for predicted values, for 0 ≤ 𝛼 ≤ 1: 

𝐶𝐼𝛼(𝑧(𝑥𝑖)) = [𝑧̂−𝑖 − 𝑠̂−𝑖𝑞1−𝛼; 𝑧̂−𝑖 + 𝑠̂−𝑖𝑞1−𝛼] 

This expression is only valid if all parameters are known. For example if the scale parameter is incorrectly 

estimated, the width of the predicted confidence intervals will not reflect what we might observe. But how can 

we validate a confidence interval without prior knowledge of the model parameters? The idea behind this 

criterion is to evaluate empirically the number of observations falling into the predicted confidence intervals 

and to compare this empirical estimation to the theoretical ones expected: 

Δ𝛼 =
1

𝑛
∑ 𝛿𝑖

𝑛
𝑖=1  where 𝛿𝑖 = {

1 𝑖𝑓 𝑧(𝑥𝑖) ∈ 𝐶𝐼𝛼(𝑧(𝑥𝑖)
0 𝑒𝑙𝑠𝑒

.   

This value can be computed for varying 𝛼, and can then be visualised against the theoretical values, yielding 

what Demay et al., (2021) called the 𝛼-CI plot. 
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Similarly to the 𝑃𝐼𝐴, the 𝛼-CI plot must be adapted to the Bayesian kriging since the posterior distribution is 

not Gaussian. We therefore introduce a slightly different criterion based on the quantiles of the predictive 

distribution. More precisely, the 𝛼-CI plot relies now on credible intervals defined as: 

𝐶𝐼𝛼(𝑧(𝑥𝑖)) = [𝑞̂1−𝛼
2

; 𝑞̂1+𝛼
2

] 

where 𝑞̂1−𝛼

2

 (respectively 𝑞̂1+𝛼

2

) is the estimation of the quantile of order 
1−𝛼

2
 (respectively 

1+𝛼

2
) of the predictive 

distribution without the 𝑖-th observation. 

Once again we obtain a criterion that is identical for both methods when the predictive distribution is Gaussian. 

Illustration of 𝛼-CI plot for ordinary and Bayesian kriging (for a same learning sample) is given by Figure 1. 

 

Figure1 Example of an 𝛼-CI plot with both Bayesian and ordinary kriging 

 

To summarise the 𝛼-CI, we also introduce a new criterion  called the Mean Squared Error 𝛼 defined as follows: 

𝑀𝑆𝐸𝛼 = ∑(Δ𝛼𝑖
− 𝛼𝑖)²

𝑛𝛼

𝑖=1

 

where 𝑛𝛼 is the number of width considered for confidence intervals and 𝛼𝑖 the width of the 𝑖-th confidence 

interval. The closer this criterion is to 0, the better the confidence/credible intervals are.  

The different criteria aforementioned provide additional information to evaluate the prediction quality of the 

kriging model, either in terms of mean, variance or confidence/credible intervals. They will be used in the 

following to compare the performance of ordinary and Bayesian kriging. 

Results 

Protocol 

Our goal is to compare Bayesian and ordinary kriging (which is the more commonly used kriging method) 

with our validation criteria and to identify if Bayesian kriging gives better results, and if so for which data set 

sizes. 

We start with simulated data sets. We simulate 100 data sets for varying data set sizes, i.e. 16, 25, 36, 49, 64 

and 81 observations. The data sets are simulated in the space [0,10]² and the parameters chosen for the 

Gaussian field are: 

𝛽 =  0.5, 𝜎² = 0.1, 𝜙 = 4.5  
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We also consider an exponential covariance model for the covariance function. For each of these data sets a 

cross-validation is applied to estimate each aforementioned validation criterion. Then the boxplot of each 

estimated criterion is represented against the data set sizes to compare both kriging's performances. 

We wish to apply a similar protocol to a real data set for the G3 reactor in CEA Marcoule. This data set is 

made of 70 observations of radioactivity in the space [0,10] × [0,7]. To generate multiple data sets, we 

sampled various data set sizes i.e. 20, 30, 40, 50, 60 and 70 observations, with the last one being the real size 

of the original data set. Once again, for each data set a cross-validation is applied to estimate the validation 

criteria. 

The boxplot of each estimated criteria is represented against the data set sizes. 

 

Simulations 

 

 

 

Figure 2 - Validation criterion against data size for simulated data for 𝑄² criterion, 𝑃𝑉𝐴 criterion, 𝑃𝐼𝐴 

criterion and 𝑀𝑆𝐸𝛼 criterion. 

The results shown in Figure 2 indicate better prediction and prediction variances for smaller data sets. We can 

see on the different graphs that for data sets below 40 observations, Bayesian kriging seems to outperform 

ordinary kriging. This result is especially visible for the 𝑃𝑉𝐴 and 𝑃𝐼𝐴 for small data sets and shows that the 

main difference between both kriging methods still lies in the prediction variance estimation. It is mainly 
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explained by the fact that Bayesian kriging takes more of the parameter's estimation uncertainty into account 

than ordinary kriging. It therefore yields larger and more accurate confidence intervals, both represented by 

the 𝑃𝑉𝐴, 𝑃𝐼𝐴, and 𝑀𝑆𝐸𝛼 criteria. 

It can also be noted that for larger data sets, Bayesian and ordinary kriging yield similar results. This 

observation is to be expected, since Bayesian and inferential methodology coincide for larger data sets. It can 

be therefore argued that Bayesian kriging loses some of its advantages for data set larger than 40 observations, 

since its computational cost is heavier than that of ordinary kriging. The 𝑄²values are also extremely low for 

49 observations or less, but it is to be expected for very small data sets such as sets of 16 observations. 

 

G3's data set 

 

 

Figure 3 - Validation criterion against data size for the G3 data set for 𝑄² criterion, 𝑃𝑉𝐴 criterion, 𝑃𝐼𝐴 

criterion and 𝑀𝑆𝐸𝛼 criterion. 

The Figure 3 shows similar results to the ones obtained for simulated data sets. One thing to note is that the 

variance of each validation criterion is reduced as the data sets size grows. This is both explained by the larger 

data sets, but also by our protocol, which chooses randomly points in the original 70 observations, so that 

when the data set sizes grows, the number of difference between randomly sampled observations is reduced. 

It can be noted that ordinary kriging seems to be slightly better than Bayesian kriging for larger data sets, 
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reinforcing our precedent argument that Bayesian kriging should be reserved for smaller data sets where 

uncertainty in parameter estimation is high. 

Discussion and Conclusions 

In conclusion the usage of Bayesian kriging for decommissioning and dismantling projects shows promising 

results, as its usefulness is made evident for small data sets. Even though Bayesian kriging gives better results, 

usual kriging methods such as ordinary kriging retains some advantages as their computational cost is lower 

and give similar results (sometimes even better results) for larger data sets. Therefore use of Bayesian kriging 

should be restricted to smaller data sets or cases in which prior information on parameters is well known. Our 

future works aim at a better modelling of measurement uncertainty, which could be achieved with the 

implementation of the work of Ng and Yin, (2012) for heteroscedastic models. 
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