
HAL Id: cea-04733411
https://cea.hal.science/cea-04733411v1

Submitted on 12 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Impact of assembly bias on clustering plus weak lensing
cosmological analysis

R. Paviot, A. Rocher, S. Codis, A. de Mattia, E. Jullo, S. de la Torre

To cite this version:
R. Paviot, A. Rocher, S. Codis, A. de Mattia, E. Jullo, et al.. Impact of assembly bias on clustering
plus weak lensing cosmological analysis. Astronomy and Astrophysics - A&A, 2024, 690, pp.A221.
�10.1051/0004-6361/202449574�. �cea-04733411�

https://cea.hal.science/cea-04733411v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Astronomy
&Astrophysics

A&A, 690, A221 (2024)
https://doi.org/10.1051/0004-6361/202449574
© The Authors 2024

Impact of assembly bias on clustering plus weak
lensing cosmological analysis

R. Paviot1,⋆ , A. Rocher2,3, S. Codis1 , A. de Mattia2, E. Jullo4, and S. de la Torre4

1 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191 Gif-sur-Yvette, France
2 Université Paris-Saclay, CEA, Département de Physique des Particules, 91191 Gif-sur-Yvette, France
3 Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny,

1290 Versoix, Switzerland
4 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France

Received 12 February 2024 / Accepted 21 August 2024

ABSTRACT

Context. Empirical models of galaxy-halo connection such as the halo occupation distribution (HOD) model have been widely used
over the past decades to intensively test perturbative models on quasi-linear scales. However, these models fail to reproduce the galaxy-
galaxy lensing signal on non-linear scales, over-predicting the observed signal by up to 40%.
Aims. With ongoing Stage-IV galaxy surveys such as DESI and Euclid that will measure cosmological parameters at sub-percent
precision, it is now crucial to precisely model the galaxy-halo connection in order to accurately estimate the theoretical uncertainties
of perturbative models.
Methods. This paper compares a standard HOD (based on halo mass only) to an extended HOD that incorporates as additional features
galaxy assembly bias and local environmental dependencies on halo occupation. These models were calibrated against the observed
clustering and galaxy-galaxy lensing signal of eBOSS luminous red galaxies and emission line galaxies in the range 0.6 < z < 1.1.
We performed a combined clustering-lensing cosmological analysis on the simulated galaxy samples of both HODs to quantify the
systematic budget of perturbative models.
Results. By considering not only the mass of the dark matter halos but also these secondary properties, the extended HOD offers a
more comprehensive understanding of the connection between galaxies and their surroundings. In particular, we found that the lumi-
nous red galaxies preferentially occupy denser and more anisotropic environments. Our results highlight the importance of considering
environmental factors in empirical models with an extended HOD that reproduces the observed signal within 20% on scales below
10 h−1 Mpc. Our cosmological analysis reveals that our perturbative model yields similar constraints regardless of the galaxy popu-
lation, with a better goodness of fit for the extended HOD. These results suggest that the extended HOD should be used to quantify
modelling systematics. This extended framework should also prove useful for forward modelling techniques.

Key words. galaxies: halos – galaxies: statistics – large-scale structure of Universe

1. Introduction
In the standard model of cosmology, galaxies are predicted
to form and evolve within dark matter halos. To extract cos-
mological information from observed galaxy clustering, it is
necessary to understand galaxy formation and thus the connec-
tion between galaxies and their host dark matter halos beyond
their linear relationship on large scales (Kaiser 1984). Analyt-
ically, one can go beyond the linear approximation to describe
the relationship between matter and galaxies (McDonald &
Roy 2009; Assassi et al. 2014). Unfortunately, these pertur-
bative models fail to describe the connection between mat-
ter and galaxy at intra-cluster scales, thus requiring the use
of empirical models calibrated on simulations. This is even
more important nowadays, as forward modelling techniques
have recently emerged as a means to constrain cosmology
Hahn et al. (2023); von Wietersheim-Kramsta et al. (2024);
Jeffrey et al. (2024).

The two most efficient and popular models of galaxy-halo
connection for large-scale cosmological studies are the sub-halo
abundance matching (SHAM) model (Conroy et al. 2006; Vale
& Ostriker 2006; Reddick et al. 2013) and the halo occupation
⋆ Corresponding author; romainpaviot@gmail.com

distribution (HOD; Berlind & Weinberg 2002; Zheng et al.
2005, 2007) model. SHAM assumes a direct correspondence
between sub-halo mass and the stellar mass or luminosity of
its hosted galaxies and can reproduce the clustering of stellar
mass-selected samples in hydrodynamical simulations with high
accuracy (Chaves-Montero et al. 2016). Similarly, HOD models
can reproduce the clustering of magnitude-selected samples and
have been commonly used to produce realistic galaxy catalogues
for the Sloan Digital Sky Survey (SDSS; York et al. 2000) obser-
vations (White et al. 2011; Zhai et al. 2017; Alam et al. 2020;
Avila et al. 2020; Rossi et al. 2021). In the standard HOD frame-
work, it is assumed that all galaxies live inside dark matter halos
and that galaxy occupation, which corresponds to the probability
of a halo to host a galaxy, is solely determined by halo mass. This
assumption has emerged as halo mass is the halo property that
most strongly correlates with halo abundances and clustering as
well as galaxy intrinsic properties (White & Rees 1978). How-
ever, a large number of studies have shown that the mass-only
HOD does not properly model anisotropic galaxy clustering on
small scales (Yuan et al. 2021, 2022) and that halo occupation
depends on secondary halo properties beyond halo mass (Artale
et al. 2018; Zehavi et al. 2018; Bose et al. 2019; Hadzhiyska et al.
2020, 2023a,b).
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Fig. 1. Galaxy number density (left panel) and footprint (right panel) of the LRG sample (green), the ELG sample (blue), and the DES y3 GOLD
catalogue (red). The n(z) of DES corresponds to the concatenation of the n(z) on each tomographic bin (Myles et al. 2021). It has been sub-sampled
by a factor 20 for clarity. On the right panel, we present the DES footprint with a cut below a declination of −12.

In particular, it has been shown that halo occupation and
clustering are correlated with properties other than halo mass,
such as halo concentration, formation time, and spin – a phe-
nomenon referred to as halo assembly bias (Gao & White
2007; Dalal et al. 2008). This physical process also introduces
a dependence of galaxy clustering on properties other than halo
mass (Croton et al. 2007), the so-called galaxy assembly bias,
which also depends on halo occupation and galaxy formation
models (Zehavi et al. 2018). Additionally, galaxy occupation
also depends on environmental properties, such as local density
and local anisotropies, as one can predict from first principles,
for instance, when using excursion set theory (Musso et al.
2018). The previous study of Yuan et al. (2021, 2022) shows
that the standard framework fails to accurately model the full
two-dimensional redshift space clustering of the SDSS BOSS
CMASS (constant mass) sample (Dawson et al. 2013) and that
an extended HOD framework that incorporates assembly bias
and environmental dependence of halo occupation agrees bet-
ter with the data. Furthermore, (Leauthaud et al. 2017) observed
a discrepancy of 30–40% between the observed galaxy-galaxy
lensing (GGL) signal of CMASS galaxies and the standard HOD
framework, a tension referred to as ’lensing-is-low’. This tension
can be resolved with an extended SHAM model, as demon-
strated in (Contreras et al. 2023b), so as to account for the impact
of galaxy physics (Gouin et al. 2019; Chaves-Montero et al.
2023). In this analysis, we investigate if an extended HOD frame-
work can provide similar improvement to the observed clustering
and GGL signal of lens galaxies of the extended BOSS survey
(Dawson et al. 2016) around the Dark Energy Survey (DES) Y3
sources (Dark Energy Survey Collaboration 2016). Additionally,
we aim to investigate if small-scale variations between different
HOD frameworks provide notable changes in the extraction of
cosmological information by fitting the clustering and lensing
signal with perturbative models.

The paper is organised as follows: In Sect. 2, we briefly
present the observations. In Sect. 3, we describe the implemen-
tation of the standard and extended HOD framework as well
as our fitting procedure. Finally, we present the results of the
HOD and cosmological fits in Sects. 4 and 5, respectively. We

conclude in Sect. 6, and we also provide additional information
in Appendices A, B, and C.

2. Data

2.1. eBOSS and DES catalogues

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) measured thousands of spectra of galaxies
and quasars in the range 0.6 < z < 2.4 in order to probe the
geometry and growth rate of the Universe over cosmic time. In
this work, we study the properties of the emission line galax-
ies (ELGs) and eBOSS luminous red galaxies (LRGs) combined
with the BOSS CMASS sample1. Description of these samples
can be found in Ross et al. (2020) and their cosmological anal-
yses in Tamone et al. (2020); de Mattia et al. (2021); Bautista
et al. (2021); Gil-Marín et al. (2020). We focused our atten-
tion on the South Galactic Cap (SGC), where 121 717 LRGs and
89 967 ELGs were observed in the range 0.6 < z < 1.0 and 0.6 <
z < 1.1. In addition to the clustering properties of these galax-
ies, we aim to extract information from the GGL signal. This
is achieved with the shape measurements of DES Year 3 (Y3).
We used the main Y3 DES catalogue (referred as ‘Gold’)2 –
information on the photometry and shape measurements of this
sample can be found in Sevilla-Noarbe et al. (2021); Gatti et al.
(2021), while the corresponding cosmological 3 × 2pt analy-
sis is presented in Abbott et al. (2022). The radial distribution
and the footprint of each survey are presented in Fig 1. eBOSS
and DES overlap in a small portion, around 754 deg2, in the
SGC. In the overlapping area, 14 413 244 sources can be used
to infer the GGL signal of 44 456 LRGs lenses, while all of the
observed ELGs are within the DES footprint3. Although there
are more eBOSS galaxies in the North Galactic Cap, there is no
1 We refer to it as an LRG sample for simplicity. Catalogues
can be found at https://data.sdss.org/sas/dr17/eboss/lss/
catalogs/DR16/
2 https://des.ncsa.illinois.edu/releases/y3a2
3 These values were computed with Healpix (Górski et al. 2005) with
NSIDE = 512.
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overlapping weak lensing survey with precise and robust shape
measurements to measure the GGL signal in this pole. Therefore,
we only used the clustering measurement in the SGC so that the
clustering and lensing signals are correlated.

2.2. The UCHUU simulation

In order to model the observed signals, we relied on the
N-body simulation UCHUU (Ishiyama et al. 2021). This sim-
ulation was run with GreeM, a massively parallel TreePM
code (Ishiyama et al. 2009, 2012), with initial conditions pro-
duced by second-order Lagrangian perturbation theory starting
at a redshift z = 127. The cosmological flat ΛCDM param-
eters of the simulation are compatible with the ones mea-
sured by Planck Collaboration XIII (2016), (Ωm,Ωb, h, ns, σ8) =
(0.3089, 0.0486, 0.6774, 0.9667, 0.8159). We note that UCHUU
is one of the most precise N-body simulations to date, with
12 8003 dark matter particles with mass 3.27 × 108 h−1 M⊙ in
a box of side length L = 2 h−1Gpc. This large volume enabled us
to study a large number of dark matter halos up to a very high
mass of M ≈ 1014.8 h−1 M⊙. These halos were identified with
the RockStar halo finder (Behroozi et al. 2013). We extracted
from the simulation4 the halo and sub-halo catalogues of mass
M > 1011h−1 M⊙ and the particle distribution (sub-sampled by a
factor 0.005) at redshifts z = 0.86 and z = 0.7, corresponding to
the effective redshift of the ELG and LRG samples, respectively.

3. Halo occupation model

3.1. Standard halo occupation distribution parametrisation

In order to simulate realistic galaxy distributions in the UCHUU
simulation, we populated halos using the standard HOD descrip-
tion. For LRGs, we considered the HOD framework first
described in Zheng et al. (2005, 2007) and widely used in pre-
vious BOSS and eBOSS studies (White et al. 2011; Zhai et al.
2017). For emission line galaxies, we used the Gaussian HOD
model (GHOD) (Avila et al. 2020; Rocher et al. 2023a) for
central occupation. Hence, we defined the mean central halo
occupations as5

〈
NLRG

cen (M)
〉
=

fic
2

1 + erf
 log M − log MLRG

min

σM,LRG

 , (1)

〈
NELG

cen (M)
〉
=

Ac
√

2πσM,ELG
· exp−

(
log M − log MELG

min

)2

2σ2
M,ELG

, (2)

where fic and Ac correspond to completeness factors and the σM
correspond to scatters of central occupations. When the sam-
ples are complete, fic=1, MLRG

min is the halo mass at which half
of the halos have a central galaxy. MELG

min always corresponds to
the halo mass with maximal probability to host a central galaxy.
The satellite occupation is defined as

⟨Nsat(M)⟩ = f (M)

 M − κMLRG/ELG
min

MLRG/ELG
1

α , (3)

with f (M) =
{ 〈

NLRG
cen (M)

〉
for LRG,

As = cst for ELG,
(4)

4 https://skiesanduniverses.iaa.es/Simulations/Uchuu/
5 Throughout this paper, the logarithm notation refers to the decimal
logarithm unless specified otherwise.

where the M1
6 are the halo masses for which a halo has one satel-

lite galaxy (when the samples are complete), α is the power-law
index, and κ is a parameter that allows the cut-off of satel-
lite occupation to vary with halo mass. For the ELG HOD, we
assumed the relations given in Table 2 of Avila et al. (2020),

κ = 0.8 and log M1 = log Mmin + 0.3. (5)

From these mean occupations, the number of central galaxies
per halo of mass M then follows a Bernoulli distribution with a
mean probability equal to ⟨Ncen⟩. These galaxies are positioned
at the centre of their host halos. The number of satellite galaxies
per halo follows a Poisson distribution with mean ⟨Nsat⟩, with
positions sampled from a Navarro-Frank-White (NFW) profile
(Navarro et al. 1996). Satellite velocities are normally distributed
around the mean halo velocity, with a dispersion being equal to
the ones of the dark matter halo particles,

usat ∼ N
(
uh, ·σvh

)
. (6)

Eventually, the final number density of mock galaxies can be
computed as

n̄gal =

∫
dn(M)

dM
[⟨Ncent(M)⟩ + ⟨Nsat(M)⟩] dM, (7)

and the satellite fraction is given by

fsat =
1

n̄gal

∫
dn(M)

dM
⟨Nsat (M)⟩ dM. (8)

Obviously, the mean number density of galaxies is fixed, which
gives a constraint on the free parameters of the HOD. For ELG,
we followed the methodology described in Rocher et al. (2023a).
As the mock clustering is governed by the ratio As/Ac, Ac is a not
a free parameter but is instead fixed to provide the desired num-
ber density of objects, in our case n̄ELG

gal = 2.3 × 10−4 h3 Mpc−3

by matching nHOD
gal to Eq. (7). Similarly, for LRG, the HOD is

parameterised by (M1,σM, α, κ, fic), and Mmin is fixed in order
to obtain twice the mean observed density of the LRG sample
(to reduce sample noise), where n̄LRG

gal = 7.8 × 10−5 h3 Mpc−3 as

in Zhai et al. (2017). This is done by matching nHOD
gal to n̄target

gal =

15.6 × 10−5 h3 Mpc−3 in Eq. (7). We therefore have three free
parameters in our ELG HOD model, θ ⊂ (As,Mmin, α), and five
parameters, θ ⊂ (M1, σM, α, κ, fic), with the LRG HOD model.
In recent works (Avila et al. 2020; Rocher et al. 2023a,b; Yuan
et al. 2022), it is common to enhance this description with extra
parameters that describe deviation from the satellite NFW profile
and from the velocity assignment of Eq. (6) in order to properly
model the anisotropic correlation function. Since we are only
interested in describing projected quantities (see Sect. 3.3), we
did not introduce these additional parameters. Indeed, the GGL
signal, being a real space quantity, is insensitive to galaxy veloc-
ities, while redshift space distortion has a subdominant impact
on projected clustering (van den Bosch et al. 2013; Rocher et al.
2023a). Eventually, the HOD model described in this section was
calibrated against data to provide realistic mocks with clustering
properties similar to those of the observations, as explained in
Sect. 3.3.

6 We drop the subscripts for simplicity in the following sections.
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3.2. Extended halo occupation distribution including
assembly bias

Since we aim to provide realistic galaxy mocks that are in
agreement with observations, we extended our HOD framework
with additional parameters to take into account secondary halo
properties. This was motivated by studies such as Leauthaud
et al. (2017) that found strong differences between the observed
galaxy-galaxy lensing signal of CMASS galaxies and the one
measured in the mock catalogues using the standard HOD model
described above. Here, we followed the formalism described
in Xu et al. (2021); Yuan et al. (2022). The standard HOD
framework was extended with four additional parameters, two
depending on halo properties (specifically the concentration and
shape of the halo) and two external properties, namely the local
density and local shear (local density anisotropies). Next, we
define in practice how we estimated these additional parameters.

First, we defined the halo concentration c and shape e as

c =
rvir

rs
, e =

1 − b/a
1 + b/a

, (9)

with rvir as the virial radius, rs as the scale radius of the density
profile, and b/a as the ratio between the major and semi-major
axes of the dark matter halo ellipsoid. These halo properties
were directly extracted from the halo catalogues. The concen-
tration was measured by fitting an NFW profile to each halo,
while shapes were determined with the method of Allgood et al.
(2006).

To specify the halo environment within the simulation, we
employed two different techniques. The first one consisted of
finding for each halo all neighbouring halos (including sub-
halos) beyond its virial radius but within rmax = 5 h−1 Mpc
of the halo centre. This was done with the Python pack-
agescipy-Kdtree7, which keeps track of pairs of halo per
object. The rmax scale was chosen in Yuan et al. 2021, as values of
rmax in the range ≈4–6 h−1 Mpc were found to better reproduce
the clustering of CMASS galaxies. In particular, it was shown
by the authors that the goodness of fit depends on the scale at
which the environment is defined (see Fig. 8 of Yuan et al. 2021).
After summing up the mass of all these neighbouring halos, the
environmental parameter fenv could then be computed as

fenv = Menv/M̄env(M) − 1, (10)

where M̄env(M) corresponds to the mean environment mass
within a given halo mass bin dM. This environmental parameter
hence corresponds to the halo over-density in an annulus around
each halo. We computed M̄env(M) in the logarithm mass range
[11, 15.0] h−1 Mpc in bins of dex dM = 0.1 h−1 Mpc.

The second method consisted of painting the dark matter par-
ticle field onto a mesh in order to evaluate the over-density field
δ(x) (Paranjape et al. 2018; Delgado et al. 2022; Hadzhiyska
et al. 2023b). The field δ was then smoothed with a Gaussian
kernel of radius R and interpolated at the position of each halo.
This was done with the Python package nbodykit8. From the
smoothed density field, we further defined the environmental
shear, which quantifies the amount of local density anisotropy.
First, we computed the tidal tensor field as

Ti j(x) = ∂i∂ jψR(x), (11)

7 https://scipy.org/
8 https://nbodykit.readthedocs.io/en/latest/

where the normalised gravitational potential ψR(x) obeys the
Poisson equation

∇2ψR(x) = δR(x). (12)

This was easily done in Fourier space, the expression for the tidal
tensor being equal to

Ti j(x) = FT
{(

kik j/k2
)
δR(k)

}
, (13)

from which we determined the tidal shear q2
R:

q2
R ≡

1
2

∣∣∣(λ2 − λ1)2 + (λ3 − λ1)2 + (λ3 − λ2)2
∣∣∣ , (14)

where the λ correspond to the eigenvalues of Ti j. Different
definitions of the smoothing radius have been used in the liter-
ature. Delgado et al. (2022) used a top hat filter of fixed size:
5 h−1 Mpc9. Hadzhiyska et al. (2023b) estimated the density
field with a Gaussian filter at different smoothing scales and
selected for each halo the closest smoothing scale to the virial
radius of the halo, rounding up. In Paranjape et al. (2018), they
found that the correlation between large-scale linear bias and
local shear was maximum at scales of four to six times the
virial radii. We therefore adopted two definitions for our smooth-
ing scale. The first one is a constant smoothing of size R =
5/
√

5 ≈ 2.25 h−1 Mpc, from which we determined q2
R for each

halo. Our second definition uses a smoothing scale of 2.25rvir
for each halo, from which we determined the local density and
local shear. The density field was smoothed from 1 to 5 h−1 Mpc
with a step dx = 0.25 h−1 Mpc and interpolated at the position of
each halo to determine δR(x) for R = 2.25rvir.

These secondary halo properties were used to modify the two
mass parameters of the HOD model, Mmin and M1, as

log Mmod
min = log Mmin + Acent fA + Bcent fB (15)

log Mmod
1 = log M1 + Asat fA + Bsat fB, (16)

where fA and fB correspond to the distributions of internal
(either concentration or shape) and environmental (either shear
or density) properties of the halos. This type of effective descrip-
tion that modifies central and satellite occupation based on
secondary properties was also proposed in Hadzhiyska et al.
(2023a). The authors found that the simulation-predicted quan-
tities Ncent(M, fA, fB) and Nsat(M, fA, fB) for each mass bin are
well approximated by hyper-plane surfaces, which are nearly
constant over mass. These distributions were normalised in the
range [−1, 1] within the mass bins defined to compute the envi-
ronmental factor fenv in Eq. (10). This was done by first taking
the natural logarithm of each quantity (1+δ for the density)
before scaling and normalising it around zero. Taking the log-
arithm of each quantity first has the advantage of keeping the
shape of their distributions intact, as we are much less sensi-
tive to outliers that squeeze the distribution after normalisation.
We present these distributions in Appendix B. The high volume
of UCHUU enabled us to probe the assembly bias and environ-
mental dependencies on halo occupation up to very high halo
masses, M = 14.8 h−1 Mpc, with more than 100 halos in the
mass bin [14.7, 14.8] h−1 Mpc. Extra parameters in Eq. (15) were
fixed to zero above this threshold, as higher masses bins are not
populated enough for a robust statistical description.

9 A top hat filter of size R is equivalent to a Gaussian filter of size
R/
√

5 (see Paranjape et al. 2018).
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Our extended HOD framework therefore has seven parame-
ters for an ELG HOD θ ⊂ (As,Mmin, α, Acent, Bcent, Asat, Bsat) and
nine parameters θ ⊂ (M1, σM, α, κ, fic, Acent, Bcent, Asat, Bsat) for
an LRG HOD. In the following, we test different combinations
in Eqs. (15)–(16), between internal halo properties fA (concen-
tration and shape) and the local environment fB (density and
shear).

3.3. Fitting procedure

Our fitting method uses the HOD model described above to pop-
ulate dark matter halos with galaxies for which clustering and
lensing statistics are measured and compared to the ones of the
data. Here, we are interested in the projected correlation func-
tion, which is almost insensitive to the effect of redshift space
distortions at small scales. We computed the galaxy anisotropic
two-point function ξ

(
rp, π

)
as a function of galaxy pair sepa-

ration along (π) and transverse to the line of sight (l.o.s.;rp).
Integrating over the l.o.s. yielded

wp

(
rp

)
= 2

∫ πmax

0
ξ
(
rp, π

)
dπ. (17)

We used the Dark Energy Spectroscopic Instrument (DESI,
DESI Collaboration 2016) wrapper, pycorr10, around the
corrfunc package (Sinha & Garrison 2020) to compute ξ

(
rp, π

)
with the natural estimator, which normalises galaxy pair counts
to analytical estimation of random pairs in a periodic box. For
the data, we used the minimum variance Landy & Szalay (1993)
estimator

ξ(rp, π) =
DD(rp, π) − 2DR(rp, π) + RR(rp, π)

RR(rp, π)
, (18)

with R as a random catalogue with the same angular and red-
shift distribution as the data. We applied to each galaxy and
random catalogue the total weight w = wnozwcpwsystwFKP (see
Ross et al. (2020) for an in-depth definition of each individual
weight). Briefly, wnoz corrects for redshift failures, wsyst corrects
for spurious fluctuation of target density due to observational
systematic effects, FKP weights (Feldman et al. 1994) are opti-
mal weights used to reduce variance in clustering measurements,
and close-pair weights wcp correct for fibre collisions. Correcting
for fibre collision is an important matter in our case, as we want
to extract information from the one-halo regime in order to con-
strain the satellite distribution in our HOD model. Traditionally,
these weights are applied by up-weighting observed galaxies in
a collision group.

While this method provides a good correction scheme at
large scales, which is enough for the study of galaxy anisotropic
clustering, it fails on smaller scales, and we therefore needed
another method to correct for fibre collisions. In particular,
we used the pairwise-inverse probability (PIP) and angular
upweighting (ANG) weights described in Mohammad et al.
(2020). These weights were shown to properly account for
fibre collisions at small separations. However, PIP weights
were only produced for eBOSS galaxies, and we therefore only
applied ANG weights to the combined sample (including the cp
weights), as they provide sufficient correction below 1 h−1 Mpc.
For wp(rp), we used 13 logarithmic bins in rp between 0.2
and 50 h−1 Mpc, with πmax = 80 h−1 Mpc. In addition to the
clustering, we also fit the GGL signal, similar to the work of

10 https://py2pcf.readthedocs.io/en/latest/index.html

Contreras et al. (2023b), observed with eBOSS lenses around
DES sources in order to further constrain the assembly bias
parameters. The measured GGL differential excess surface den-
sity is defined as

∆Σgm(r) = Σ̄gm(r) − Σgm(r), (19)

where the mean projected surface density is defined as

Σ̄gm(r) =
2
r2

∫ r

0
Σgm(r′)r′dr′. (20)

The projected surface density Σgm(r) can be written as a function
of the galaxy-matter cross-correlation as (Guzik & Seljak 2001;
de la Torre et al. 2017; Jullo et al. 2019)

Σgm(r) = ρm

∫ ∞

−∞

ξgm

(√
r2 + χ2

)
dχ, (21)

with the mean matter density ρm = Ωm(z)ρc(z) = 3ΩmH2
0/8πG

constant in redshift in co-moving coordinates. The galaxy-
matter correlation ξgm function was measured in the range [5 ×
10−3, 150] h−1 Mpc with 41 logarithm bins by cross-correlating
galaxy mock catalogues with the dark matter particles of the sim-
ulation, sub-sampled by a factor of 2000. With this sub-sampling
factor, we could accurately predict ∆Σ (we omit the gm sub-
script in the following parts of the paper) as in Contreras et al.
(2023a), whose authors claimed that sub-sampling the matter
field by a factor ∼0.0003 ensures robust measurement of ∆Σwith
sub-percent precision across all the ranges considered in their
analysis. We checked this statement with the simulation used
in this work. The measurements of ∆Σ performed with particles
sub-sampled by a factor 0.00511 or 0.0005 are the same. We then
estimated Σ(r) by integrating Eq. (21) up to 100 h−1 Mpc. The
estimation of ∆Σ was then compared to the one observed in the
data, which is computed as (Jullo et al. 2019)

∆Σ
(
rp

)
=

∑Nls
l,s

∑
cr (z1, zs)wl,sϵ+

(
rp

)
∑Nl,s

l,s wl,s

−

∑Nr,s
r,s

∑
cr (zr, zs)wr,sϵ+

(
rp

)
∑Nr,s

r,s wr,s

,

(22)

where zs and zl correspond to the source and lens redshift,
respectively, and ϵ+ represents the tangential component of a
source ellipticity around a lense. The subtraction around random
lenses reduces the contribution of lensing systematics and leads
to a reduced variance on small scales (Singh et al. 2017). The
critical density Σcr is defined as

Σcr (z1, zs) =
c2

4πG (1 + zs)2

DS

DLSDL
, (23)

where DS,DLS,DL are the observer-source, lens-source, and
observer-lens angular diameter distances. We measured ∆Σ(rp)
with 13 (11 for the ELG) logarithmic bins in the range between
0.2 and 20 h−1 Mpc with the python package dsigma12 (Lange
& Huang 2022). We used Metacalibration shape measure-
ments and corrected for potential systematic effects induced
by this method. We used for photometric redshifts of source
galaxies the ones estimated with the Directional Neighbourhood
11 This is the maximum number of particles that can be extracted from
the simulation.
12 https://dsigma.readthedocs.io/en/stable/index.html
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Fig. 2. Best-fit HOD models for LRG (top) and ELG (bottom). The subscript ‘s/e’ denotes the standard and extended HOD model. The extended
model here corresponds to our fiducial configuration, where the concentration and an annular definition of δ are used as additional parameters. The
points with error bars correspond to the measured wp (left) and the ∆Σ (right) signals. The blue lines (sHOD1) correspond to a fit to the projected
correlation function wp only, while the green (SHOD2) and orange lines (eHOD) correspond to standard and extended HOD fits including the
measurement of ∆Σ in the fitting pipeline. The extended HOD model provides a good description of both the clustering and lensing signal. We did
not perform any standard HOD fit to the combined wp + ∆Σ vector for ELGs (sHOD2), as the standard HOD fit to wp only already agrees well with
the ∆Σ measurement.

Fitting (DNF) algorithm (De Vicente et al. 2016). Errors in photo-
z measurements can lead to bias in the estimation of ∆Σ. We
matched DES galaxies with galaxies observed spectroscopically
with BOSS and eBOSS. While these samples are not represen-
tative of DES galaxies, they can however be used to obtain a
rough estimate of the bias introduced by the photo-z. We found
that photo-z leads to an underestimation of the observed signal
by approximately 3–5% at all scales. Since this effect is sub-
dominant compared to the S/N of our measurements, we did not
include it. We also did not include any Boost factor correction
(Miyatake et al. 2015), as we have found that it has nearly no
impact on our measurements, even at the smallest scale.

When computing the correlation functions for the data in
Eqs. (18) and (22), we assumed the UCHUU cosmology to com-
pute radial distances from redshift. We then compared the HOD
clustering and lensing signals to the observed ones in eBOSS by
means of a likelihood analysis:

−2 lnL(θ) =
Np∑
i, j

∆i(θ)Ψ̂i j∆ j(θ), (24)

where θ is the set of HOD parameters, ∆ is the data-model
difference vector, Np is the total number of data points, and
Ψ̂i j is the precision matrix, the inverse of the covariance
matrix. The covariance matrix is determined given the observa-
tional measurements by jackknife (JK) sub-sampling with N =
100 patches. Since all ELGs are within the DES footprint, we

could use the same JK regions for the clustering and lensing
measurements in order to estimate the cross-correlation between
wp and ∆Σ. For the LRG, only about a third of the sample is
within DES footprint. We decided to use the whole sample to
estimate wp in order to get a sufficient S/N measurement. Since
∆Σ is only measured within the overlapping footprint, the cross-
covariance cannot be estimated through the jackknife method,
and we assumed it to be zero. We checked with the ELG sample
that this assumption does not change the results significantly: the
jackknife cross-covariance is mainly dominated by noise.

Our fitting procedure corresponds to the one described in
(Rocher et al. 2023a,b). The parameter space is first sampled
with a quasi-uniform grid, which serves as a training sample
for a Gaussian process regressor and technical details. Here, we
used the Gaussian process implemented in sklearn13. For each
sampled point in the parameter space, the clustering and lens-
ing signals are averaged over ten realisations to reduce stochastic
noise from halo occupation. We then repeated, iteratively, the
following procedure: We used a Markov chain Monte Carlo
(MCMC) sampler, here emcee14 (Foreman-Mackey & al. 2013),
to sample our parameter space given our surrogate model gen-
erated by the Gaussian process regressor. Specifically, we ran
50 chains of 5000 points in parallel, with the first 500 points
being discarded in each chain. We then randomly picked three

13 https://scikit-learn.org/stable/
14 https://emcee.readthedocs.io/
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Table 1. Best-fit parameters of the LRG HOD for all configurations defined in the main text.

Method sHOD1 sHOD2 eHOD
δvir,c

eHOD
T i j

vir,c
eHOD
T i j

vir, b/a
eHOD
δannulus,c

eHOD
δannulus,b/a

eHOD
T i j

5Mpc ,c

Mmin 13.24 12.81 12.95 13.23 12.93 13.03 13.11 13.26
M1 14.18 13.84 13.91 13.80 13.72 13.76 13.76 13.87
σ 0.54 0.11 0.44 0.74 0.53 0.58 0.67 0.72
α 1.20 1.36 0.91 0.93 1.05 0.93 0.90 0.97
κ 0.39 0.36 0.64 0.48 0.39 0.56 0.51 0.46
fic 0.64 0.28 0.32 0.38 0.25 0.30 0.32 0.43
Acent 0.11 –0.01 0.10 0.18 0.20 0.15
Bcent –0.27 –0.27 –0.24 –0.25 –0.25 –0.18
Asat 0.01 –0.15 –0.05 –0.06 –0.08 –0.02
Bsat 0.00 –0.04 –0.10 0.01 0.02 0.01
fsat% 8.0 14.1 13.3 12.8 16.6 14.8 14.6 12.0
χ2

r 1.05(2.42) 1.93 1.43 1.11 1.06 1.08 1.09 1.62

Notes. The baseline eHOD configuration in this work corresponds to the case where the concentration and an annular definition of δ are used as
additional parameters. The standard model sHOD1 only fit wp, while every other model fit the combined wp + ∆Σ data vector. For the standard
HOD model (sHOD1), we show in parenthesis the reduced chi-square including ∆Σ. The full posterior distributions corresponding to these bestfit
parameters are presented in Appendix C.
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Fig. 3. Difference between the observed galaxy-galaxy lensing sig-
nal (points with error bars) of eBOSS LRGs with the prediction of a
standard HOD (sHOD) determined by fitting the projected correlation
function wp only. The continuous line in blue represents an sHOD fit to
wp +∆Σ, while the orange line corresponds to the extended HOD model.

points within our final MCMC chains from which we computed
the likelihood. We then added these points to the initial train-
ing sample and re-trained our Gaussian process. In Rocher et al.
(2023a), they found that iterating up to N = 800 from a train-
ing sample of Nini ≈ 1000 was enough to get robust contours.
These findings are highly dependent on the parameter space one
wants to explore and the dynamic range of the likelihood. While
we do find the same conclusion for an ELG HOD, the degree of
degeneracy of an LRG HOD calls for a higher number of itera-
tions. We therefore used Nini = 1000 (resp. 2000) and N = 1000
(resp. 2000) for the ELG (resp. LRG) fit. We checked that our

results are robust to these choices. Additionally, we refer the
reader to (Rocher et al. 2023a) for more details on the perfor-
mance of the Gaussian process emulator. Briefly, the authors
compared their results with the ABACUS HOD pipeline (Yuan
et al. 2021) and found strong agreements between the two meth-
ods. The main difference between the implementation of Rocher
et al. (2023a) and ours is that the authors only picked one point
in each chain for each iteration, while we decided to pick three
per iteration. The reason for this decision is computation speed.
We found that for a high number of points, the Gaussian process
regression takes a longer time to compute than three averaged
HOD realisations. The key element is to have a high enough
number of points in the region where the likelihood is minimal
to have robust contour estimation with the Gaussian process.

4. Halo occupation distribution fit

4.1. Luminous red galaxies

As a baseline configuration for the extended HOD (eHOD)
model, we used the concentration as a proxy of assembly bias
and the local density, described as an annular definition of the
density field δ, following the formalism of Yuan et al. (2022). We
emphasize that the annular definition of local density might be
prone to sub-halo identification and thus simulation resolution.
However, given the properties of the UCHUU simulation (see
Sect. 2.2), we did not consider this potential source of bias in our
analysis. We present in Fig. 2 the best-fit results obtained with
the standard (s) and extended (e) HOD models. The standard
model sHOD2 and the extended model both fit the combined
wp, ∆Σ data vector, while the sHOD1 model only fits wp. Best-fit
values are given in Table 1, while full posterior distributions and
prior information can be found in Appendix C. For the sHOD1,
one can see that the model over-predicts the signal at scales
around 10 h−1 Mpc while obtaining a satellite fraction of 8%,
slightly lower than what was obtained in Alam et al. (2020);
Yuan et al. (2022) and 50% below the best-fit value of Zhai et al.
(2017). We found that this difference was due to noise in the
jackknife covariance estimate of wp. When we performed a fit
only considering the diagonal elements, we obtained a satellite
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fraction of 11%, the model matches well the peak at 10 h−1 Mpc
but in turn provides a poor fit at scales 1–3 h−1 Mpc, similar to
the observed fit for the sHOD2 case and an issue in the modelling
also reported in Zhai et al. (2017). The introduction of secondary
HOD parameters enabled us to provide a better description of the
small and intermediate scales of wp while also yielding a more
accurate description of ∆Σ, decreasing the reduced chi-square
from χ2

r = 1.93 down to χ2
r = 1.08, an improvement mainly due

to a better description of ∆Σ on the scales below 3 h−1 Mpc.
Figure 3 displays the ratio of ∆Σ measurements in the data

and as measured in the mocks generated by sHOD2 and eHOD
models (calibrated on both wp and ∆Σmeasurements), compared
to the∆Σmeasurement as measured in the mock generated by the
sHOD1 (calibrated only against the projected clustering wp). The
standard model (dashed line) over-predicts the GGL signal by
30–40% at scales below 10 h−1 Mpc, while a combined fit (blue
solid line) poorly alleviates this issue, with a slight improve-
ment of only ≈5–15%. With the eHOD model, we observed an
improvement of 20% on scales between 2–10 h−1 Mpc and a
really good match to the data at lower scales. This better good-
ness of fit is mainly achieved by incorporating a dependence on
the local density environment (Yuan et al. 2021; Hadzhiyska
et al. 2023a). Thus, adding secondary halo parameters to the
HOD models helps reproduce the lensing signal at small scales
and gives a partial answer to the lensing-is-low problem. Indeed,
baryonic feedback, not considered in this work, smooths out
the matter distribution, also contributing to a decrease of ∆Σ
(Amodeo et al. 2021).

We present in Fig. 4 the posterior distributions of each HOD
fit. The better description of ∆Σ with the sHOD2 was achieved
by lowering the mass threshold M1 and Mmin (see also Table 1),
above which central and satellite galaxies occupy dark matter
halos. We observed the same trend for the eHOD, interestingly
with a higher best-fit value for Mmin compared to the sHOD2
case. To maintain a similar galaxy bias between the eHOD and
sHOD1 models, galaxies in lower mass halos should therefore be
located in higher density peaks. This is what we obtained in the
posterior distributions of Fig. 5. A negative value of Bcent implies
that halos located in denser environments are more likely to be
populated, as a decrease of Mmod

min in Eq. (15) increases the prob-
ability of populating such halos, a result also found for CMASS
galaxies (Yuan et al. 2022) and in hydrodynamical simulations
(Artale et al. 2018).

In recent studies, halo occupation was found to be strongly
dependent on formation time (Zehavi et al. 2018; Artale et al.
2018) and concentration (Bose et al. 2019; Delgado et al. 2022),
as both variables are correlated (Wechsler et al. 2002), although
in a non-trivial way (Gao & White 2007). The conclusion from
these analyses was that at low mass, central galaxies are more
likely to be hosted by more concentrated, early-formed halos.
This trend reverses at higher mass due to the contributions of
satellite galaxies. However, given our measurements, the only
parameter that is well constrained is Bcent, being non-zero at
the 3σ level, while all the other parameters are consistent with
zero at the 1σ level. Hence, based on our analysis, we cannot
draw a proper conclusion on the impact of assembly bias on
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halo occupation. Similar to Yuan et al. (2022), we also find that
including secondary assembly bias parameters (or just fitting∆Σ)
does increase the satellite fraction. This can be explained by the
fact that central-particle correlation is dominant on small scales
(Leauthaud et al. 2017). Thus, increasing the satellite fraction

Table 2. Posterior and best-fit results for the ELG HOD.

Method sHOD1 eHOD

As [0.002,0.02] 0.017+0.006
−0.005(0.015) 0.017+0.006

−0.005(0.015)
Mmin [11.5,12.5] 12.19+0.10

−0.12 (12.28) 12.11+0.17
−0.19(12.21)

σ [0.1,1.2] 0.52+0.23
−0.23(0.41) 0.42+0.22

−0.23(0.28)
Acent [–0.5,0.5] −0.01+0.19

−0.22 (–0.08)
Bcent [–0.5,0.5] −0.09+0.11

−0.19 (–0.04)
Asat [–0.5,0.5] −0.04+0.19

−0.18 (0.02)
Bcent [–0.5,0.5] −0.04+0.20

−0.12(–0.08)

Ac [0.01] 0.034+0.012
−0.011 (0.047) 0.028+0.017

−0.012 (0.038)
fsat% 10.4 13.3
χ2

r 1.13(1.22) 1.40

Notes. We show here the 16, 50, and 84 percentiles of the posterior
distribution. The first column presents the prior ranges for each param-
eter. The two other columns show the 16, 50, and 84 percentiles of the
posterior distributions, with the best-fit values in parenthesis defined
as the minimum of the χ2 of the MCMC chains for both sHOD and
eHOD models. The initial value of Ac is fixed to 0.01, meaning that As
is allowed to vary in the range [0.2,20]Ac. Other columns present the
rescaled values of Ac and As in order to match the ELGs number den-
sity. For the sHOD1, we show in parentheses the reduced chi-square
including ∆Σ.

will lower the central contribution and the low scales ∆Σ signal.
For completeness, we present the full posterior distribution of
the extended HOD in Appendix C. In Sect. 3.1, we made two
approximations that might impact the result present in this sec-
tion, mainly the choice of number density and an assumption of
a simple NFW profile. We show in Appendix A that our statis-
tically significant result, the environmental dependence on halo
occupation, is robust with respect to our fiducial choices. How-
ever, we did not consider other physical effects that impact our
GGL signal.

As demonstrated in Chaves-Montero et al. (2023), satel-
lite segregation and baryonic feedback are the two main
sources, after assembly bias, that create the lensing-is-low
problem. Clearly, including these effects would modify the
interpretation of our results. Study of these effects is out
of the scope of this paper, as our main goal is to investi-
gate how small-scale variations of ∆Σ can impact cosmolog-
ical analysis of anisotropic clustering plus lensing signal (see
Sect. 5).

4.2. Emission line galaxies

The best-fit results for ELGs are represented in the bottom panel
of Fig. 2, while the posterior contours are shown in Fig. 6 with
the corresponding constraints in Table 2. We did not observe
significant differences between the standard and the extended
HOD framework when considering either the best-fit model or
the full posterior distribution. Both models provide a similar
goodness of fit and reproduce the observations, with a χ2 = 23.1
and 22.0 respectively for the sHOD and eHOD models, result-
ing in a worse reduced χ2 for the eHOD, as the four additional
free parameters do not significantly improve the fit. From the
posterior distributions in Fig. 5, one can see that all the sec-
ondary parameters are consistent with zero at the 1σ level. In
the literature, it was shown that ELGs are preferentially located
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Fig. 7. Result for different combinations of assembly bias (concentration and shape) and local environments (density and shear) parameters. Top
panels present the measurements, while the bottom panels show the relative differences. Nearly all the models provide similar best-fitting clustering
predictions, lensing predictions, and goodness of fit results except the shear measured with a Gaussian Kernel of size 2.25 h−1 Mpc, which has a
slightly worse goodness of fit.

in denser regions than average (Artale et al. 2018; Delgado
et al. 2022) and in more concentrated halos (Zehavi et al.
2018; Artale et al. 2018; Rocher et al. 2023b). This is in agree-
ment with our negative best-fit values for Acent and Bcent, even
though we cannot derive more decisive conclusions from our
analysis.

In addition, we found a satellite fraction of 10.4% for the
sHOD, significantly lower than that reported in Avila et al.
(2020), fsat = 22%. However, for ELGs, the mean satellite occu-
pation is independent of that of the centrals, which means that an
ELG satellite can orbit around a non-ELG central. Thus, it only
contributes to the two-halo term of the ELG auto-correlation
function, affecting the amplitude of the linear bias of the galaxy
sample. The lower satellite fraction (compared to Avila et al.
2020) can be explained by the fact that our mean value for
Mmin = 12.19 is larger than that reported in Avila et al. (2020),
Mmin = 11.71 and that we allowed α to vary, resulting in a
different satellite occupation over halo mass. In Rocher et al.
(2023b), when they include strict conformity, that is, satellite
galaxies can only populate the halo in the presence of a cen-
tral ELG, they report a very small fraction of satellite of ≈2–3%.
For DESI ELG, strict conformity is needed in order to provide
a positive value for α, which is predicted by semi-analytical
models (Gonzalez-Perez et al. 2018, 2020).

4.3. Dependence on parameter choices

We present in Fig. 7 multiple eHOD best-fit models for differ-
ent configurations. We tested as a proxy for the environment

either the local shear or the local density, combined with internal
properties, that is, concentration or shape of the dark matter
halos. As a reminder, the baseline configuration corresponds to
the case where we apply to Eq. (15) fA = concentration and
fB = δannulus, with δannulus calculated by summing the mass of
neighbouring halos. Estimating the local density field with this
definition provides a better description of the observed LRG sig-
nal, with a χ2

r improved by ∆χ2
r = –1.39, compared to the case

where the density field is estimated on a mesh with a Gaussian
smoothing kernel of size = 2.25rvir, with ∆χ2

r = –0.98. These
results are in agreement with those of Yuan et al. (2022), who
found that estimating the density field with a Gaussian kernel
of a fixed size of 3 h−1 Mpc yields no significant improve-
ment compared to the sHOD. Instead of the concentration of
the dark matter halo, using its shape as a proxy for assembly
bias provides nearly indistinguishable best-fit model results. The
resulting constraints, presented in Table 1 and in Appendix C,
suggest that red galaxies preferentially occupy more ellipsoidal
halos than average, as the best-fitting value Acent is positive when
either considering shear or density as external property. The two
extra configurations including the local density are in agreement
with the baseline configuration, which is in favour of a negative
value for Bcent such that galaxies preferentially occupy denser
environments.

Using the local shear instead of the local density also
provides good χ2

r values when the tidal tensor is computed
with a Gaussian kernel of size 2.25 rvir. The best χ2

r value is
obtained when combining the local shear with the halo shape,
χ2

r = 1.06. It reproduces the small scales of ∆Σ better but
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gives a slightly worse fit around the peak of wp observed
at 10 h−1 Mpc. Surprisingly, using the local shear with a
fixed Gaussian smoothing of size 2.25 h−1 Mpc provides the
worst χ2

r value out of all configurations. This demonstrates that
local density anisotropy should be considered at halo scales to
retrieve the maximum amount of information, as explained in
Paranjape et al. (2018). Our results suggest that galaxies pref-
erentially occupy more anisotropic environments, in agreement
with Delgado et al. (2022), who found this correlation for
low-mass halos, and with DESI ELGs (Rocher et al. 2023b).

5. Cosmological fit

In the current analysis, perturbative and semi-analytical mod-
els that are aimed at extracting cosmological information from
the observations were tested intensively against galaxy mock
catalogues. In eBOSS analysis (Rossi et al. 2021; Alam et al.
2021), different HOD models were used in order to quantify
the modelling systematics of redshift-space distortion models.
The authors found consistent results amongst a large variety
of HOD models that validated the accuracy of the theoretical
models.

5.1. Theoretical models

In the analyses of de la Torre et al. (2017); Jullo et al. (2019), the
measured anisotropic clustering ξ(r⊥, r∥) at an effective redshift z
was combined at the likelihood level with lensing measurements
of ∆Σ in order to provide direct constraints on the growth rate
of the structure f (z), the amplitude of matter fluctuation σ8(z),
and the present time matter density Ωm. These studies extracted
information at scales below 3 h−1 Mpc, where our HOD models,
as illustrated in Fig. 2, show significant differences that might
introduce biases when quantifying modelling systematics of ∆Σ.

In this study, We performed the cosmological analysis of
galaxy catalogues populated with the standard and extended
HOD framework in order to test the accuracy of a combined
analysis of galaxy clustering and galaxy-galaxy lensing. We con-
sidered as a redshift space model the TNS (Taruya et al. 2010)
model extended to non-linearly biased tracers, hereafter referred
to as TNS, described and robustly tested in detail in Bautista et al.
(2021). The expression for the redshift space power spectrum of
biased tracers is given by

Ps(k, ν) = D(kνσv)
[
Pgg(k) + 2ν2 f Pgθ(k) + ν4 f 2Pθθ(k)

+CA(k, ν, f , b1) +CB(k, ν, f , b1)
]
, (25)

where k is the wave-vector norm, ν is the cosine angle between
the wave-vector and the l.o.s., θ is the divergence of the veloc-
ity field v defined as θ = −∇·v/(aH f ), and f is the linear
growth rate parameter. The terms CA(k, ν, f ) and CB(k, ν, f )
are the two correction terms given in Taruya et al. (2010),
which reduce to one-dimensional integrals of the linear mat-
ter power spectrum. The damping function D(kνσv) describes
the Fingers-of-God effect induced by random motions in viri-
alised systems, inducing a damping effect on the power spectra.
We adopted a Lorentzian form, D(k, ν, σv) = (1 + k2ν2σ2

v/2)−2,
where σv represents an effective pairwise velocity dispersion
treated as an extra nuisance parameter. The expressions of the
real space quantities Pgg, Pgθ, and Pgm are given following the

bias expansion formalism of Assassi et al. (2014):

Pgg(k) = b2
1Pδδ(k) + b2b1Iδ2 (k) + 2b1bG2 IG2 (k)

+ 2
(
b1bG2 +

2
5

b1bΓ3

)
FG2 (k) +

1
4

b2
2Iδ2δ2 (k)

+ b2
G2

IG2G2 (k)
1
2

b2bG2 Iδ2G2 (k),

Pgθ(k) = b1Pδθ(k) +
b2

2
Iδ2θ(k) + bG2 IG2θ(k)

+

(
bG2 +

2
5

bΓ3

)
FG2θ(k),

Pgm(k) = b1Pδδ(k) +
b2

4
Iδ2 (k) + bG2 IG2 (k)

+

(
bG2 +

2
5

bΓ3

)
FG2 (k),

(26)

where each function of k is a one-loop integral of the linear
matter power spectrum Plin, whose expression can be found in
Simonović et al. (2018). The expressions of Iδ2θ(k), IG2θ(k), and
FG2θ(k) are the same as Iδ2 (k), IG2 (k), and FG2 (k) except that the
G2 kernel replaces the F2 kernel in the integrals. To estimate the
velocity divergence power spectra Pθθ and Pδθ, we used the Bel
et al. (2019) fitting function, which depends solely on σ8:

Pθθ(k) = Plin(k)e−k(a1+a2k+a3k2),

Pδθ(k) = (Pδδ(k)Plin (k))
1
2 e−

k
kδ
−bk6

,
(27)

with the expressions of each parameter given in Bel et al. (2019);
Bautista et al. (2021). The linear matter power spectrum was
estimated with camb (Lewis & Challinor 2011)15, while the non-
linear power spectrum Pδδ was estimated with the latest version
of HMcode (Mead et al. 2021). This is different from Bautista
et al. (2021); Paviot et al. (2022), where we used the response
function formalism respresso described in Nishimichi et al.
(2017). Indeed, the latest version of HMcode provides nearly
indistinguishable (at least in configuration space) baryon acous-
tic oscillation damping due to non-linear effects while also
matching the power spectrum of respresso at a higher k.

The TNS correlation function multipole moments were
finally determined by performing the Hankel transform on the
model power spectrum multipole moments,

ξTNS
ℓ (s) = iℓ

2ℓ + 1
2

∫
dk

k2

2π2 jℓ(ks)
∫ 1

−1
dν Ps(k, ν)Lℓ(ν), (28)

where jℓ and Lℓ denote the spherical Bessel function and Leg-
endre polynomials of order ℓ. The Hankel transform, that is,
the outer integral in the above equation, was performed rapidly
using the FFTlog algorithm (Hamilton 2000). Under the limber
approximation Limber (1953), the expression of the galaxy-
galaxy lensing signal is given by Marian et al. (2015)

∆Σgm(rp) = ρm

∫
d2k⊥
(2π)2 Pgm (k⊥, zl) J2 (k⊥R) , (29)

with J2 as the second-order Bessel function of first kind and ρm
as the co-moving matter density, constant over cosmic time. In

15 Wrapped around cosmoprimo
https://cosmoprimo.readthedocs.io/en/latest/index.html
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order to remove the contribution of non-linear modes, we com-
puted the annular differential excess surface density (ASAD)
estimator given by (Baldauf et al. 2010)

Υ
(
rp,R0

)
= ∆Σgm

(
rp

)
−

(
R0

rp

)2

∆Σgm (R0) , (30)

where R0 corresponds to a cut-off radius, below which the signal
is damped.

In addition, we parametrised the Alcock-Paczyński (AP) dis-
tortions (Alcock & Paczynski 1979) induced by the assumed
fiducial cosmology in the measurements via two dilation param-
eters that scale transverse, α⊥, and radial, α∥, separations. These
quantities are related to the co-moving angular diameter dis-
tance, DM = (1 + z)DA(z), and Hubble distance, DH = c/H(z),
respectively, as

α⊥ =
DM(zeff)
Dfid

M (zeff)
, (31)

α∥ =
DH(zeff)
Dfid

H (zeff)
, (32)

where c is the speed of light in the vacuum and zeff is the effective
redshift of the sample. We applied these dilation parameters to
the theoretical TNS power spectrum Ps(k, ν) in Eq. (28) so that
Ps(k, ν)→ Ps(k′, ν′), where

k′ =
k
α⊥

1 + ν2
 1

F2
AP

− 1
1/2

, (33)

ν′ =
ν

FAP

1 + ν2
 1

F2
AP

− 1
−1/2

, (34)

and FAP = α∥/α⊥. The terms ∆Σ and Υ, being projected quan-
tities, are only distorted by the perpendicular distortion factor

∆Σ(R′) = ∆Σ(α⊥R),
Υ(R′) = Υ(α⊥R).

(35)

Given a theoretical model for ξℓ and ∆Σ (Υ), we could per-
form a cosmological analysis assuming a Gaussian likelihood
as defined in Eq. (24). Here, our data vector is the con-
catenation of the redshift-space multipoles with the galaxy-
galaxy lensing signal, with the free parameters of the model
θ ⊂ (b1, b2, bΓ3 , f , σ8, α⊥, α∥, σv), with bG2 being fixed to the
Lagrangian prescription as bG2 = −2/7(b1−1) (Saito et al. 2014).
It is worth noting that as the TNS corrections and the galaxy
bias expansion are functions of the linear power spectrum only,
these can be rescaled at each iteration by the normalisation σ8.
The non-linear power spectrum evaluated with HMcode was first
sampled into a broad range of σ8 and then interpolated at any
value of σ8 within our prior. Specifically, we computed Pδδ in
the σ8 range [0.1,1.2] with a step size of dσ8 = 0.025. Hence,
the only quantities that we re-computed at each iteration were
the real space quantities Pθθ and Pδθ. We assumed as a fiducial
cosmology, the cosmology of the UCHUU simulation such that
AP distortions should be equal to unity.

5.2. Covariance matrices

The covariance matrices were estimated with analytical pre-
scriptions. The Gaussian covariance for the multipoles of the
correlation function is given by (Grieb et al. 2016)

Cξ
ℓ1ℓ2

(
si, s j

)
=

iℓ1+ℓ2

2π2

∫ ∞

0
k2σ2

ℓ1ℓ2
(k) ȷ̄ℓ1 (ksi) ȷ̄ℓ2

(
ks j

)
dk, (36)

where the ȷ̄ℓ correspond to bin-averaged spherical bessel
functions,

ȷ̄ℓ (ksi) ≡
4π
Vsi

∫ si+∆s/2

si−∆s/2
s2 jℓ(ks)ds, (37)

with Vsi as the volume element of the shell. The expression for
σ2
ℓ1ℓ2

(k) is given by

σ2
ℓ1ℓ2

(k) ≡
(2ℓ1 + 1) (2ℓ2 + 1)

Vs

×

∫ 1

−1

[
P(k, µ) +

1
n̄

]2

Lℓ1 (µ)Lℓ2 (µ)dµ,
(38)

with Vs as the volume of the periodic box. The expression for the
Gaussian covariance of ∆Σ is given by Marian et al. (2015)

Cov[∆̂Σ]
(
Ri,R j

)
=

1
As

(ρm)2
∫

d2k⊥
(2π)2 J̄2 (k⊥Ri) J̄2

(
k⊥R j

)
×

{[
Pδδ (k⊥) +

1
n̄p

] [
Pgg (k⊥) +

1
n̄g

]
+ P2

gm (k⊥)
}
,

(39)

where As is the surface area of the box. The J̄2 corresponds to
bin-averaged Bessel functions, computed in the same way as
in Eq. (37) by integrating over the surface element instead. In
Eqs. (36)–(39), we assumed linear theory for the power spectra
such that Pδδ = Plin, Pgm = b1Pδδ, Pgg = b2

1Pδδ, and P(k, µ) =

b2
1Pgg(k)

(
1 + β2µ2

)2
(Kaiser 1987), with β = f /b. We inferred

the value of f from the UCHUU cosmology at the effective red-
shift of the LRG and ELG sample, respectively z = 0.7 and
z = 0.86, while the values of b1 were taken from Bautista et al.
(2021); Tamone et al. (2020). The shot-noise terms n̄p and n̄g
correspond to the number density of dark matter particles and
galaxies in the simulation box. No analytical cross-covariance
exists between ∆Σ and the ξℓ, so we approximated it to be zero.
To estimate the covariance ofΥ, we generated a sample of a thou-
sand ∆Σ from a multivariate normal distribution, given the ∆Σ
covariance estimate. We then applied Eq. (30) to each fake sam-
ple by considering its mean value for ∆Σ(R0). This had the effect
of reducing the noise in the final covariance estimation.

5.3. Analysis choices

We measured the multipoles of the correlation function, the
monopole, quadrupole, and hexadecapole with bins of size 5
h−1 Mpc in the range between 0 and 150 h−1 Mpc. We measured
∆Σ with 22 and 16 logarithm bins in the range between 10−1 and
102 h−1 Mpc for LRGs and ELGs, respectively. This binning was
chosen for each sample given the S/N of the observations. Since
our redshift-space model follows the exact same implementation
as in Bautista et al. (2021), we performed a fit of the multipoles
on the scales determined in their analysis, which provides unbi-
ased cosmological constraints for an LRG-like sample. These
scale cuts were determined by testing the TNS model against
the BOSS N-body NSERIES mocks, which were produced to
match the clustering amplitude of CMASS galaxies. Since the
BOSS CMASS and eBOSS LRG samples have a similar bias,
the scale cuts determined with the NSERIES mocks were used
to determine the cosmological constraints on the DR16 eBOSS
LRG sample (Bautista et al. 2021). We therefore used the min-
imum fitting range determined in their analysis, and we fit the
multipoles (monopole, quadrupole, and hexadecapole) between
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Table 3. Result of the cosmological fit from the optimal configurations determined from Fig. 8 and from Fig. 9 for the extended HOD model.

Parameter ∆α⊥ ∆α∥ ∆ f ∆σ8

LRG ξℓ σ8 fixed −0.012 ± 0.010 0.006 ± 0.018 −0.035 ± 0.039
LRG ξℓ σ8 free −0.013 ± 0.010 0.003 ± 0.018 0.325 ± 0.277 −0.155 ± 0.099
LRG ξℓ + ∆Σ rmin = 3 h−1 Mpc −0.013 ± 0.009 0.004 ± 0.017 −0.048 ± 0.051 0.007 ± 0.026
LRG ξℓ + Υ r0 = 1.2 h−1 Mpc −0.014 ± 0.009 −0.002 ± 0.017 −0.014 ± 0.054 −0.003 ± 0.028
ELG ξℓ σ8 fixed −0.004 ± 0.010 0.002 ± 0.016 −0.012 ± 0.026
ELG ξℓ σ8 free −0.007 ± 0.010 0.008 ± 0.017 0.341 ± 0.257 −0.128 ± 0.077
ELG ξℓ + ∆Σ rmin = 1 h−1 Mpc −0.007 ± 0.010 0.001 ± 0.015 0.062 ± 0.057 −0.033 ± 0.025
ELG ξℓ + Υ r0 = 1 h−1 Mpc −0.008 ± 0.010 0.001 ± 0.016 0.072 ± 0.062 −0.035 ± 0.027
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Fig. 8. Results from the cosmological
fit. Circle points with error bars cor-
respond to the fit of the LRG sample
at redshift z = 0.70 populated with the
standard and extended HOD framework,
while the triangles correspond to the
fit of ELGs at redshift z = 0.86. The
value of f and σ8 for LRGs (ELGs) are
0.814 (0.849) and 0.570 (0.529) at the
redshift z = 0.70(0.86). Values in paren-
theses correspond to the minimum scale
used in the fit in megaparsec per h. The
shaded area corresponds to a 10% vari-
ation around the fiducial value of each
parameter.

25 and 140 h−1 Mpc for the LRG sample. In theory, one could fit
ELGs clustering down to smaller scales, as these galaxies are (i)
at a higher redshift and (ii) located in lower dense regions. How-
ever, we kept the same range in our fitting procedure between the
two samples, with the scale cut for an ELG-like sample being
conservative. We tested the accuracy of the TNS model as a
function of different minimum scales used when fitting either ∆Σ
or Υ. The maximum scale that we used is 80 h−1 Mpc, as Lim-
ber approximation breaks down on larger scales. The fits were
performed on the average of ten HOD realisations to be robust to
stochastic variation due to halo occupation.

5.4. Results

We present in Fig. 8 the results of the MCMC chains of the com-
bined ξℓ + ∆Σ fit. Here, the inference pipeline was done with the
nautilus sampler16 (Lange 2023). Each chain was stopped after
reaching an effective number of 200 000 points, and sampled
points in the exploration phase were discarded. We present in
Table 3 the corresponding constraints. As expected, we obtained
unbiased constraints when fitting only the clustering while fix-
ing the value of σ8(z) to the fiducial value of the simulation.

16 https://nautilus-sampler.readthedocs.io/en/latest/

However, in the scenario where σ8 was allowed to vary, we
observed a strong degeneracy between f and σ8 that is not cap-
tured properly by the model given the amount of information
present in the multipoles. It is only when combining anisotropic
clustering with galaxy-galaxy lensing measurements that one
can break this degeneracy. For the LRG mocks, our model
provides unbiased constraints on each cosmological parameter,
regardless of the HOD, on scales above 3 h−1 Mpc for ∆Σ, with
the constraints on the eHOD that seem to converge faster towards
consistent results. This is surprising given the observed differ-
ence in Fig. 2. The main difference comes from the goodness
of fit, with the TNS model providing a better description of the
∆Σ measured with the eHOD galaxy population, ∆χ2 ≈ 20 com-
pared to the sHOD. The fact that the TNS model provides a
good fit, χ2

r = 0.8, for the eHOD measurements suggests that
our model is also capable of yielding a good description of the
observations down to a scale of ≈3 h−1 Mpc, in agreement with
the result of de la Torre et al. (2017).

It is important to note that these results provide a quanti-
tative description of how small-scale variations of ∆Σ impact
cosmological analysis. Indeed, we did not consider satellite seg-
regation and baryonic feedback in this work. Including these
effects would most likely impact the evolution of cosmological
constraints as a function of scale but would not change the
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Fig. 9. Same as Fig. 8 but this time
considering the annular excess surface
density Υ instead.

observed trends, for example, a better description of an eHOD
∆Σ with perturbative models.

For ELGs, one can see that both HOD models provide
constraints indistinguishable from one another, as both meth-
ods provide very similar clustering and lensing measurements.
Surprisingly, we find that the model provides unbiased and
consistent constraints over all the considered range down to
rmin = 1 h−1 Mpc. This means that our estimator of Pgm, which is
built upon a one-loop biased expansion of the non-linear matter
power spectrum estimated with HMcode, is valid up to non-
linear scales to describe ELGs, at least at an effective redshift
of z = 0.86. This might be related to their spatial distribution.
Indeed, Gonzalez-Perez et al. (2020) found that half of DESI
ELGs reside in filaments and a third in sheets, where density
fluctuations are small compared to the nodes where LRGs usu-
ally lie. This is consistent with the results of Hadzhiyska et al.
(2021), who found that ELGs are two times as likely to reside in
sheets compared to a mass-selected sample. In addition, ELGs
occupy lower mass halos, log M ≈ 12.2 h−1M⊙, compared to
LRGs, with log M in the range 12.8–13.2 h−1M⊙, such that the
one-halo term contribution to ∆Σ is expected to be smaller for
ELGs at around 1 h−1 Mpc. This explains why our bias perturba-
tive expansion provides a good description of the galaxy-galaxy
lensing signal of the ELGs down to small scales. As a baseline
configuration, we adopted rmin = 1 and 3 h−1 Mpc for ELGs and
LRGs, respectively.

Our analysis demonstrates the constraining power of ∆Σ
in combination with anisotropic clustering measurements, as
illustrated in Fig. 10. This methodology provides unbiased
constraints on the cosmological parameters α⊥, α∥, f , and σ8,
improving the precision compared to a ξℓ fit only by a factor
of about six and three for f and σ8, respectively. However, we
emphasize that this conclusion is obviously optimistic, as the
variance in observation is dominated by the shape-noise contri-
bution (Gatti et al. 2021), which is not considered in this work.
We leave to future work a more detailed analysis with a real-
istic light-cone. We compared the optimal LRG configuration
determined in this work, rmin = 3 h−1 Mpc, to the one determined

in DES analysis (Krause et al. 2021), rmin = 6 h−1 Mpc. We
observed similar constraints for the two configurations, with a
small 3% improvement in precision for σ8. When moving down
to highly non-linear scales, the two-point function captures less
and less information such that the gain in precision becomes
smaller.

We present in Fig. 9 the results of the fits when combining
the ξℓ with Υ compared to the baseline configuration deter-
mined from Fig. 8. Since the ELG fits for ∆Σ provide consistent
results up to 1 h−1 Mpc, the constraints when fitting Υ should
be the same, regardless of the value of R0, which is exactly
what we observed in this figure. The trend is similar for LRGs,
with consistent results when fitting Υ with a value of R0 above
1.2 h−1 Mpc. As a baseline configuration, we therefore adopted
R0 = 1 and 1.2 h−1 Mpc for ELGs and LRGs, respectively. We
present in Table 3 the corresponding constraints with our base-
line configuration for ∆Σ and Υ. Both methods provide similar
constraints with consistent results at the 1σ level. The difference
in χ2 is smaller between the extended and standard framework,
∆χ2 = 5, as observed differences in ∆Σ are smoothed out with
the annular excess surface density estimator. It seems that some
information is lost when using Υ as a proxy for galaxy-galaxy
lensing since the constraints on f and σ8 are larger by 5–8%.
However, this effect is marginal, below 1%, compared to the
statistical precision. We therefore conclude that both statistics,
either ∆Σ or Υ, can be used interchangeably when doing a joint
cosmological analysis of galaxy clustering and lensing.

6. Conclusion

In this paper, we have revisited the extended HOD framework
introduced in Yuan et al. (2022), built on top of the state-of-
the-art UCHUU simulation. This HOD model includes internal
(halo concentration and shape) and environmental (local density
and local shear) dependencies of central and satellite occupa-
tion. We applied this model to two eBOSS tracers, ELGs in the
range 0.6 < z < 1.1 and LRGs in the range 0.6 < z < 1.0, by
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Fig. 10. Comparison between a fit to the multipoles ξℓ only (left) and
a fit to the combined ξℓ + ∆Σ data vector. We present constraints for
the scale cuts used for γt in the DES y3 analysis (Krause et al. 2021),
rmin = 6 h−1 Mpc, and for the optimal configuration determined in this
work, rmin = 3 h−1 Mpc.

modelling the projected correlation wp and the galaxy-galaxy
lensing signal ∆Σ from highly non-linear (≈ Mpc scale) up to
linear scales. We find that the extended HOD model provides
a better description of both the clustering and lensing signal of
LRGs, reducing the mean observed discrepancy on ∆Σ from 36%
to 12% compared to the standard HOD model based on halo
mass only. Our results demonstrate the necessity of including in
the HOD framework environment-based secondary parameters
with a strong detection, at the 3σ level, of LRGs preferentially
occupying anisotropic and denser environments. As internal halo
property, we tested the concentration and shape of the dark mat-
ter halo, and we find that both properties can be used to improve
the HOD model. For ELGs, we find that given our statistical pre-
cision, either the standard or extended HOD framework provides
consistent and robust modelling for both the clustering and lens-
ing signal, with a slight preference for ELGs living in denser
regions, in agreement with previous results (Artale et al. 2018;
Delgado et al. 2022).

We then conducted a cosmological analysis of the redshift-
space correlation function and the galaxy-galaxy lensing signal
for both HOD frameworks using a perturbative model. For
LRGs, we find that our model provides unbiased and consis-
tent constraints on the linear growth rate f , on the amplitude
of fluctuations σ8, and on the Alcock-Paczynski parameters on
scales above 3 h−1 Mpc and 1.2 h−1 Mpc when fitting the galaxy-
galaxy lensing signal ∆Σ and the annular excess surface density
Υ, respectively. In addition, we find that our model provides a
better description of the extended HOD framework, suggesting
that the observed eBOSS galaxy-galaxy lensing signal can be

accurately modelled down to scales below 5 h−1 Mpc, where sig-
nificant discrepancies can be observed between the HODs and
the data. Moreover, we find for ELGs that we can derive robust
constraints from the galaxy-galaxy lensing signal down to very
small scales, rmin = 1.0 h−1 Mpc, regardless of the estimator of
the galaxy-galaxy lensing signal. This analysis will serve as a
cornerstone for a companion paper that will extract cosmological
information from the eBOSS galaxy-galaxy lensing signal and
pave the way for future cosmological analysis of joint clustering
and galaxy-galaxy lensing measurement for future cosmological
experiments such as DESI, Euclid (Euclid Collaboration 2024),
and the Vera C. Rubin Observatory.
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Simonović, M., Baldauf, T., Zaldarriaga, M., Carrasco, J. J., & Kollmeier, J. A.

2018, J. Cosmology Astropart. Phys., 2018, 030
Singh, S., Mandelbaum, R., Seljak, U., Slosar, A., & Vazquez Gonzalez, J. 2017,

MNRAS, 471, 3827
Sinha, M., & Garrison, L. H. 2020, MNRAS, 491, 3022
Tamone, A., Raichoor, A., Zhao, C., et al. 2020, MNRAS, 499, 5527
Taruya, A., Nishimichi, T., & Saito, S. 2010, Phys. Rev. D, 82, 063522
Vale, A., & Ostriker, J. P. 2006, MNRAS, 371, 1173
van den Bosch, F. C., More, S., Cacciato, M., Mo, H., & Yang, X. 2013, MNRAS,

430, 725
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261
von Wietersheim-Kramsta, M., Lin, K., Tessore, N., et al. 2024, A&A, submitted
Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A.

2002, ApJ, 568, 52
White, M., Blanton, M., Bolton, A., et al. 2011, ApJ, 728, 126
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341
Xu, X., Zehavi, I., & Contreras, S. 2021, MNRAS, 502, 3242
York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579
Yuan, S., Hadzhiyska, B., Bose, S., Eisenstein, D. J., & Guo, H. 2021, MNRAS,

502, 3582
Yuan, S., Garrison, L. H., Hadzhiyska, B., Bose, S., & Eisenstein, D. J. 2022,

MNRAS, 510, 3301
Zehavi, I., Contreras, S., Padilla, N., et al. 2018, ApJ, 853, 84
Zhai, Z., Tinker, J. L., Hahn, C., et al. 2017, ApJ, 848, 76
Zheng, Z., Berlind, A. A., Weinberg, D. H., et al. 2005, ApJ, 633, 791
Zheng, Z., Coil, A. L., & Zehavi, I. 2007, ApJ, 667, 760

A221, page 16 of 19

http://linker.aanda.org/10.1051/0004-6361/202449574/43
http://linker.aanda.org/10.1051/0004-6361/202449574/44
http://linker.aanda.org/10.1051/0004-6361/202449574/45
http://linker.aanda.org/10.1051/0004-6361/202449574/45
http://linker.aanda.org/10.1051/0004-6361/202449574/46
http://linker.aanda.org/10.1051/0004-6361/202449574/47
https://arxiv.org/abs/2310.15246
http://linker.aanda.org/10.1051/0004-6361/202449574/49
http://linker.aanda.org/10.1051/0004-6361/202449574/50
http://linker.aanda.org/10.1051/0004-6361/202449574/51
http://linker.aanda.org/10.1051/0004-6361/202449574/52
https://arxiv.org/abs/1211.4406
http://linker.aanda.org/10.1051/0004-6361/202449574/54
https://arxiv.org/abs/2403.02314
http://linker.aanda.org/10.1051/0004-6361/202449574/56
http://linker.aanda.org/10.1051/0004-6361/202449574/57
http://linker.aanda.org/10.1051/0004-6361/202449574/58
https://arxiv.org/abs/2105.13548
http://linker.aanda.org/10.1051/0004-6361/202449574/60
http://www.ascl.net/2204.006
http://linker.aanda.org/10.1051/0004-6361/202449574/62
http://linker.aanda.org/10.1051/0004-6361/202449574/63
http://www.ascl.net/1102.026
http://linker.aanda.org/10.1051/0004-6361/202449574/65
http://linker.aanda.org/10.1051/0004-6361/202449574/66
http://linker.aanda.org/10.1051/0004-6361/202449574/67
http://linker.aanda.org/10.1051/0004-6361/202449574/68
http://linker.aanda.org/10.1051/0004-6361/202449574/68
http://linker.aanda.org/10.1051/0004-6361/202449574/69
http://linker.aanda.org/10.1051/0004-6361/202449574/70
http://linker.aanda.org/10.1051/0004-6361/202449574/71
http://linker.aanda.org/10.1051/0004-6361/202449574/72
http://linker.aanda.org/10.1051/0004-6361/202449574/73
http://linker.aanda.org/10.1051/0004-6361/202449574/74
http://linker.aanda.org/10.1051/0004-6361/202449574/75
http://linker.aanda.org/10.1051/0004-6361/202449574/76
http://linker.aanda.org/10.1051/0004-6361/202449574/77
http://linker.aanda.org/10.1051/0004-6361/202449574/78
http://linker.aanda.org/10.1051/0004-6361/202449574/78
http://linker.aanda.org/10.1051/0004-6361/202449574/79
http://linker.aanda.org/10.1051/0004-6361/202449574/79
http://linker.aanda.org/10.1051/0004-6361/202449574/80
http://linker.aanda.org/10.1051/0004-6361/202449574/80
http://linker.aanda.org/10.1051/0004-6361/202449574/81
http://linker.aanda.org/10.1051/0004-6361/202449574/82
http://linker.aanda.org/10.1051/0004-6361/202449574/83
http://linker.aanda.org/10.1051/0004-6361/202449574/84
http://linker.aanda.org/10.1051/0004-6361/202449574/84
http://linker.aanda.org/10.1051/0004-6361/202449574/85
http://linker.aanda.org/10.1051/0004-6361/202449574/86
http://linker.aanda.org/10.1051/0004-6361/202449574/87
http://linker.aanda.org/10.1051/0004-6361/202449574/88
http://linker.aanda.org/10.1051/0004-6361/202449574/89
http://linker.aanda.org/10.1051/0004-6361/202449574/90
http://linker.aanda.org/10.1051/0004-6361/202449574/91
http://linker.aanda.org/10.1051/0004-6361/202449574/91
http://linker.aanda.org/10.1051/0004-6361/202449574/92
http://linker.aanda.org/10.1051/0004-6361/202449574/94
http://linker.aanda.org/10.1051/0004-6361/202449574/95
http://linker.aanda.org/10.1051/0004-6361/202449574/96
http://linker.aanda.org/10.1051/0004-6361/202449574/97
http://linker.aanda.org/10.1051/0004-6361/202449574/98
http://linker.aanda.org/10.1051/0004-6361/202449574/99
http://linker.aanda.org/10.1051/0004-6361/202449574/99
http://linker.aanda.org/10.1051/0004-6361/202449574/100
http://linker.aanda.org/10.1051/0004-6361/202449574/101
http://linker.aanda.org/10.1051/0004-6361/202449574/102
http://linker.aanda.org/10.1051/0004-6361/202449574/103
http://linker.aanda.org/10.1051/0004-6361/202449574/104


Paviot, R., et al.: A&A, 690, A221 (2024)

Appendix A: Robustness of the analysis

In our main analysis, we fix the number density in the simula-
tion box to be twice the mean number density of LRG, where
n̄LRG

gal = 7.8 × 10−5h3Mpc−3. This choice was motivated by the
fact that increasing the number density provides higher S/N mea-
surements such that averaging over ten realisations is enough to
get robust likelihood estimates. This is particularly important for
numerical speed, as we do not use any emulator to compute ∆Σ.
In Fig. A.1, we present the posterior distributions, this time fixing
the number density of galaxy in the box to 4 times the number
density of LRG. As we can see, the environmental dependence
on halo occupation is unchanged.

Additionally, we modified the NFW radial profile as done in
Avila et al. (2020). We introduce an additional nuisance param-
eter s, and we modify the concentration of each halo by cnew =
s × c. We allowed s to vary in the range [0.5, 1.5]. We present
the result in Fig. A.2. This additional degree of freedom does not
introduce significant change in the environmental dependence of
halo occupation. Additionally, we can see that the data seems to
favour an NFW profile.
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Fig. A.1. Full posterior distributions of the assembly bias and envi-
ronmental parameters in our baseline configuration. We also present
our result with a different number density from the one defined in the
main text. The dependence of halo occupation on the environment is
unchanged.
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Fig. A.2. Full posterior distributions of the assembly bias and environ-
mental parameters in our baseline configuration. We also present our
result with a modified NFW profile. The dependence of halo occupa-
tion on the environment is unchanged.

Appendix B: Additional parameters

We present in Fig. B.1 the normalised distribution in the range [-
1,1] of internal (concentration and ellipticity) and external (local
density and local shear) halo properties on the left and right
panel respectively. We present in Fig. B.2 the relation between
the two different local density estimators described in this work.
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Fig. B.1. Distribution of internal and external halo properties as defined
in Sect. 3.2. The left panels present the distribution of concentration (c)
and ellipticity (e), while the right panels present the local density (d)
and local shear (s).

Fig. B.2. Comparison between the local density estimated on a mesh
with a Gaussian filter of size R = 2.25 rvir and the local density estimated
by summing halo and sub-halo masses around rvir and 5 h−1 Mpc. The
dashed line corresponds to δvir = δannulus.

Appendix C: Posterior of the luminous red galaxies
halo occupation distribution

We present here the full posterior contours in Fig. C.1 in the fidu-
cial configuration. Additionally, we present in Table C.1 the pos-
terior distributions for all configurations presented in Sect. 4.3.

We only present Mmin for the posterior distributions presented in
Fig. 4 to save computational time, as Mmin is not a free param-
eter and is computed for each point of the chain given Eq. (7).
In addition, for completeness, we also present the full posterior
contours.
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Fig. C.1. Full posterior distribution of the LRG-extended HOD, including the assembly bias parameters in the fiducial configuration.

Table C.1. Result of the Gaussian process emulating the likelihood function after 4000 iterations for the eBOSS LRG sample.

Method sHOD1 sHOD2 eHOD
δvir,c

eHOD
T i j

vir,c
eHOD
T i j

vir,b/a
eHOD
δannulus ,c

eHOD
δannulus,b/a

eHOD
T i j

5Mpc ,c
M1 [13.7,15.0] 14.17+0.13

−0.12 14.02+0.07
−0.06 14.02+0.12

−0.09 13.91+0.15
−0.14 13.86+0.10

−0.09 13.92+0.14
−0.11 13.91+0.12

−0.11 13.94+0.13
−0.11

σ [0.1,1.2] 0.53+0.11
−0.12 0.40+0.11

−0.13 0.50+0.11
−0.13 0.77+0.10

−0.12 0.65+0.13
−0.13 0.74+0.09

−0.14 0.79+0.11
−0.10 0.79+0.10

−0.09
α [0.1,1.5] 1.11+0.14

−0.15 1.12+0.16
−0.10 0.83+0.20

−0.20 0.83+0.15
−0.14 0.92+0.13

−0.19 0.73+0.14
−0.18 0.82+0.11

−0.11 1.02+0.09
−0.16

κ [0.1,1.5] 0.59+0.30
−0.31 0.72+0.21

−0.22 0.79+0.13
−0.16 0.29+0.29

−0.15 0.73+0.20
−0.32 0.69+0.14

−0.31 0.58+0.26
−0.32 0.45+0.16

−0.12
fic [0.1,1.0] 0.64+0.20

−0.15 0.45+0.10
−0.07 0.41+0.08

−0.07 0.42+0.15
−0.18 0.34+0.08

−0.07 0.45+0.11
−0.10 0.43+0.10

−0.09 0.45+0.09
−0.07

Acent [-0.5,0.5] −0.01+0.15
−0.12 0.24+0.23

−0.31 0.01+0.19
−0.13 0.04+0.14

−0.10 0.12+0.24
−0.16 0.26+0.15

−0.38
Bcent [-0.5,0.5] −0.24+0.09

−0.08 −0.27+0.10
−0.09 −0.20+0.07

−0.06 −0.23+0.06
−0.06 −0.26+0.07

−0.08 −0.20+0.06
−0.06

Asat [-0.5,0.5] 0.13+0.20
−0.31 −0.21+0.36

−0.18 −0.02+0.24
−0.14 −0.14+0.12

−0.11 0.01+0.16
−0.32 −0.10+0.12

−0.24
Bsat [-0.5,0.5] −0.08+0.11

−0.09 0.20+0.14
−0.27 −0.08+0.21

−0.10 −0.02+0.12
−0.15 0.04+0.21

−0.22 0.04+0.08
−0.10

Mmin 13.28+0.09
−0.09 13.27+0.14

−0.17

Notes. We present here the 16, 50, and 84 percentiles of the posterior distributions. The priors are presented in brackets and correspond to uniform
priors within the quoted ranges.
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