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ABSTRACT

This paper presents a new method for estimating the parameters of a stochastic geometric model for multiphase
flow image processing using local measures. Local measures differ from global measures in that they are only
based on a small part of a binary image and consequently provide different information of certain properties
such as area and perimeter. Since local measures have been shown to be helpful in estimating the typical grain
elongation ratio of a homogeneous Boolean model, the objective of this study was to use these local measures
to statistically infer the parameters of a more complex non-Boolean model from a sample of observations. An
optimization algorithm is used to minimize a cost function based on the likelihood of a probability density
of local measurements. The performance of the model is analysed using numerical experiments and real
observations. The errors relative to real images of most of the properties of the model-generated images are
less than 2%. The covariance and particle size distribution are also calculated and compared.

Keywords: Local Measures, Maximum Likelihood, Minkowski Functionals, Statistical Inference, Stochastic
Geometry.

INTRODUCTION

Most physical and chemical recycling processes
are based on multiphase flow (liquid-liquid extraction,
dissolution, leaching, etc.), and require digital and
experimental fluid mechanics studies to understand the
possible effects of the flow on the physicochemical
efficiency of the processes. Experimentally measuring
flow properties, especially of the dispersed phase
(concentration, size and shape distributions, etc.) has
become an important issue in many energy industries,
from hydrocarbon refining to nuclear fuel recycling
or the recovery of valuable or polluting metals from
electric batteries. As a common form of multiphase
flow in physicochemical engineering, bubble flows
have been extensively studied numerically and
experimentally using image acquisition and image
processing methods (Bello et al. (1985), Bai et al.
(2012), Buffo et al. (2017)).

The various imaging techniques that can be
used to characterize 2D images of bubbly flows
(Paolinelli et al. (2018); Zhou et al. (2020); Torisaki
et al. (2020); Haas et al. (2020); Cerqueira et al.
(2018)) can be classified in two main categories.
Deterministic methods mainly rely on segmentation,
pattern recognition and geometrical methods to
characterize the images (Cerqueira et al. (2021);
Vinnett et al. (2020); De Langlard et al. (2018)). They

are usually fast but are less efficient for more complex
flows (higher particle densities, larger clusters, more
complex shapes). Stochastic methods, on the other
hand, usually involve models able to generate digital
images, the idea being to generate of large number
of representations from the stochastic model and then
determine the characteristics of the digital images
obtained for a given set of parameter values. A cost
function is then used to compare these characteristics
with the values observed in the real images, and
the best set of parameter values for the stochastic
model is estimated using an optimization process. The
main problem with this approach is that although
these models are usually able to capture some of the
complexity of real flows (De Langlard et al. (2021);
Kracht et al. (2013)), they can be difficult to optimize,
especially for more complex flows requiring a greater
number of parameters.

Parametric models are often optimised using the
covariance function (Serra (1988)), granulometry
(De Langlard et al. (2018)) and Choquet capacity
functional, along with global properties such as the
Minkowski functionals (Molchanov (1997); Chiu et
al. (2013)). This paper investigates the use of local
measures to estimate the parameters of a geometrical
model. This method is less time consuming than
those based on the covariance and granulometry and
more effective because it can discriminate binary
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images with the same global measures of surface
and perimeter. It has recently shown indeed (Eremina
et al. (2021)), that different geometrical models
may generate binary images with the same global
measures of area and perimeter when their local
geometric measures are different (Eremina et al.
(2021)). Moreover, images with the same covariance
(Rataj (2004); Benassi et al. (2010)) or granulometry
(Lefèvre (2009)) can be obtained from very different
random closed sets.

This article explores the possibility of using
local measures to estimate the parameter values of
a stochastic geometrical model for the geometrical
characterization of multiphase flow images. The first
section describes the way the real images used in
the study were acquired and presents the baseline
characterization using deterministic approaches. The
STORMFLOW (STOchastic geometRical model for
Multiphase FLOW) model is then introduced and the
way local geometric measures can be used to retrieve
its parameters is explained. The realizations of the
STORMFLOW model presented and evaluated in the
last section demonstrate the efficiency of the local
measures approach. Future prospects are discussed in
conclusion.

IMAGE ACQUISITION

The images used in this study come from
an experimental mock-up designed for R&D fluid
mechanics studies of a recycling process involving a
bubbly flow. This section details how the images were
acquired and discusses the information that can be
extracted to characterize them geometrically.

EXPERIMENTAL IMAGING SETUP

The experimental optical imaging setup used to
capture the images runs in ”a transmitted light”
configuration (also called backlight illumination in the
literature). A light source and an imaging sensor are
placed on either side of the flow, which in this case
was a static water phase with air bubbles rising inside
(Fig. 1).

In this setup, the size, number and shape of the
bubbles depend on the gas injection rate. Furthermore,
since the geometric characteristics of the bubbles
depend directly on the injection rate, the bubbles are
classified into families in terms of the gas flow rate
used.

Fig. 1: Experimental setup used to acquire bubbly flow
images.

IMAGES

The lens used to capture the optical images is
bi-telecentric, which suppresses perspective effects
in the field of view and allows the projected area
of the particles to be displayed on the imaging
sensor. The bubbles appear as opaque 2D ellipses.
Projection overlap leads to the formation of clusters of
increasing complexity as the flow rate increases (Fig.
2). Separating images of individual particles within
these clusters is a challenging problem.

Fig. 4: Performance of the deterministic ellipse
recognition algorithm. The particle images intersecting
the border of the observation window are ignored. The
red boxes highlight two incorrect fits due to the shape
of the clusters. Picture from De Langlard et al. (2018).

PARTICLE CHARACTERIZATION

For the sake of simplicity, gas bubbles (the black
shapes on the 2D images) are referred to as particles
from now on. The characteristic geometrical properties
of the particles are their shape (elongation ratio), size
(major and minor axis) and orientation distribution,
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(a) v = 5 L.h−1 (b) v = 10 L.h−1 (c) v = 30 L.h−1 (d) v = 50 L.h−1

Fig. 2: Typical images captured with the experimental imaging setup. The flow rate v (L.h−1) clearly affects the
shape of isolated particles and of particle clusters.
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(a) Distribution of the number of particles.
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(b) Distribution of the major axis and elongation ratio of the
particles.

Fig. 3: Data extracted from the images at a flow rate v = 10 L.h−1. (a) The average number of particles per
image is best fit by a normal distribution. (b) The major axis and the elongation ratio of the particles are clearly
correlated. (Each dot represents a particle.)

as well as their density and spatial distribution in the
images.

After binarizing the images, as is facilitated by
the fact that the particles appear as black objects
on a homogeneous light-grey background with well-
defined edges, De Langlard et al.’s (2018) ellipse
recognition algorithm was applied to obtain the size,
shape and orientation distribution of the particles.

Fig. 4 highlights the limitations of this algorithm.
Large, complex particle clusters are incorrectly
processed and particles or particle clusters that
overlap with the border of the images cannot be
correctly decomposed and are consequently ignored.
Finally, while the algorithm performs well when the
particles are perfectly elliptical, it is less robust when
dealing with non-elliptical shapes such as caps. Other
algorithms available, such as Bettaieb et al.’s (2020),
have the same limitations. The measurements obtained

are therefore incomplete, especially for high flow rates,
when particles become deformed and complex clusters
form.

The results of this characterization can
nevertheless be used as input for a geometrical model.
The spatial distribution of particles is assumed to be
uniform and the average number of particles follows
an approximately normal distribution of mean µv
and standard deviation σv ∼ σ̃v = 0.1µv regardless
of the flow rate. Finally, the size (major axis), shape
(elongation ratio) and orientation distribution of the
particles are strongly correlated.

2D binary images can thus be characterized at
any flow rate, despite the limitations of the ellipse
recognition algorithm, and the values obtained can be
used to define a stochastic geometric model whose
validity and robustness can be validated by comparison
with real observations.
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Flow rate v µv σv σ̃v Error
5 L.h−1 390.7 40.2 39.1 −2.7%

10 L.h−1 348.1 34.0 34.8 +2.3%
30 L.h−1 125.9 12.3 12.6 +1.9%
50 L.h−1 120.7 12.2 12.1 −0.9%

Table 1: Comparison of σv and σ̃v, respectively the
standard deviation of the normal distribution that
best fits the probability distribution of the number of
particles per image, and its approximation.

Note finally that the average number of particles
does not follow a Poisson probability distribution,
which means that the Boolean model (Chiu et al.
(2013)) and Minkowski functionals cannot be used.
Moreover, even if the spatial distribution of the
particles were considered uniform, the images show
the presence of aggregates, which are not well taken
into account by the Boolean model.

GEOMETRICAL MODEL USING
LOCAL MEASURES

GERM-GRAIN MODEL

While copula-based approaches (Schmidt (2007))
are too complex to implement (they involve more
than 60 parameters), the much simpler STORMFLOW
model is built around just two parameters: µ , the
mean number of particles, and S, the joint probability
distribution of the major axis and elongation ratio
of the particles. The particles are assumed to be
uniformly distributed in space and the number of
particles is assumed to follow a normal distribution
N (µ,σ), with σ = 0.1µ . Moreover, the orientations
of the particles are assumed to follow a von
Mises distribution (Kurz et al. (1999)), which is
an approximation of a wrapped normal distribution
(Mardia et al. (1999)), i.e. a normal distribution
”wrapped” around a unit circle. The variance of this
distribution depends on the elongation ratio of the
particles, tending to infinity when the elongation ratio
tends towards 1, i.e. when the particles are close to
spherical, and decreasing when the elongation ratio
decreases, i.e. when the particles have a preferential
orientation.

The model can therefore be expressed as a type of
germ-grain model:

Ξ =
∞⋃

i=1

(zi +Zi), (1)

where the points (germs), zi, belong to a stationary
process in R2, wherein the average number of points

in a given observation window W follows a normal
probability distribution N (µ,0.1µ). As for the grains,
Zi, they are i.i.d. random compact sets in R+ ×
[0;1]× [0;2π[ and independent from the germs, zi.
The grains are typically elliptical and follow the same
probability distribution as Zi. A typical grain, Z0, with
a random major axis, M, a random elongation ration,
e, and a random major axis orientation, θ , would
be parametrized as Z0 = Z0(M,e,θ). As mentioned
above, the random variables M and e follow a joint
probability distribution S, and the orientations of the
particles follow a von Mises distribution:

fθ ,e(x) =
exp(κ cos(x))

2πI0(κ)
(2)

where I0 is the modified Bessel function of order 0 and
1/κ , which is analogous to the variance of a normal
distribution wrapped around a unit circle, depends
directly on the random elongation ratio e of the grains:

κ = 32× (1− e) (3)

meaning that fθ ,e is constant if e = 1, i.e. if the
particles are perfectly spherical. The latter equation
was determined empirically using the data from the
ellipse recognition algorithm. Fig. 6 shows examples
of the binary images generated with this model.

LOCAL MEASURES

A cost function is required to fit the
STORMFLOW model parameters to real data, with
the covariance function and the granulometry being
common choices (Matheron (1972); Diggle (1981);
Dereudre et al. (2014)). The global area, perimeter or
Euler-Poincaré number can also be used. As mentioned
in the introduction however, the intent here is to use
the local Minkowski measures proposed by Eremina
et al. (2021).

The principle of this approach is to place a
geometric probe (basically a disk D with a radius
usually very close to the average equivalent radius of
the grains) at a point in the random set Ξ of particle
positions. The local area, local perimeter and/or local
Euler-Poincaré number of the subset D∩Ξ are then
calculated. To avoid edge effects, the geometric probe
D must remain in the observation window W , i.e. D⊂
W . Here, only the local perimeter will be used since
Eremina et al. (2021) have shown that this is the most
discriminating measure.

Fig. 5 shows the histogram of local perimeter
measurements obtained from the real images. Note
that there is always a maximum for P = 0, where
the geometric probe verifies D ⊂ Ξ. The second
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maximum occurs at local perimeter values close to
the diameter of the disk D used as a probe. The local
measurement histograms corresponding to different
flow rates are themselves very different, validating the
strategy of relying on local measures to optimize the
STORMFLOW model.

0 20 40 60 80 100

Local perimeter (px)

v = 10 L.h−1

v = 50 L.h−1

Fig. 5: Histogram of local perimeter measurements
with a geometric probe of radius r = 19 px performed
on real flow images at two flow rates (v= 10 L.h−1 and
v = 50 L.h−1).

More precisely, to obtain n local perimeter
measurements P1,P2, ...,Pn, nloc measurements are
performed per image on a set of N images so that
n = N × nloc. Thus, for each of the nloc observations
on every image I within the set of N images, the
local perimeter is calculated for Di ∩Ξv,I , where Di,
i = 1...nloc is the geometric probe placed at a randomly
chosen position in Ξv,I , the set of particle positions
in image I of a flow of particles with flow rate v.
Hence, Ξv,I can be seen as the restriction of Ξv to
an observation window the size of image I.

COST FUNCTION

Let fv,µ,S be the probability distribution function
of a random variable P, such as the local perimeter,
with (µ,S) defined as above. The likelihood of (µ,S)
and fv with respect to the sample of n observations
P1,P2, ...,Pn is defined by:

LΞv(µ,S) =
n

∏
i=1

fv,µ,S(Pi). (4)

As the N × nloc locations are independent and
identically distributed, so are the local perimeter
measures. The maximum likelihood of the average

number of particles µ and the joint probability
distribution S can then be estimated as:(

µ̂, Ŝ
)
= argmax

(µ,S)
LΞv(µ,S). (5)

The cost function of the STORMFLOW model, Mv, is
defined as the opposite of the log-likelihood, namely:

Mv =− log(LΞv(µ,S)) =−
n

∑
i=1

log
(

fv,µ,S(Pi)
)
. (6)

Indeed, since the logarithm function is increasing
and real-valued, maximizing the likelihood function
is equivalent to minimizing the opposite of the log-
likelihood function, which is easier to calculate.

The probability density function fv,µ,S can be
estimated from the histograms of local perimeter
measurements performed on the large set of images
generated with different parameter pairs, (µ,S). The
cost function of the STORMFLOW model at a flow
rate v will therefore be

Mv(µ,S) =−
n

∑
i=1

log
(

f̂v,µ,S(Pi)
)

(7)

where f̂v,µ,S is the estimator of fv,µ,S.

However, to allow the use of an efficient
optimization algorithm, the cost function has to be
defined over a spatial domain much smaller. The
STORMFLOW model was therefore adjusted to take
two real numbers (µ, t) ∈ R+× [0;1] as input instead
of (µ,S).

PARAMETRIC MODEL DEFINITION
To simplify the input of the first iteration of the

STORMFLOW model and strengthen the optimization
and validation steps, the data obtained with the ellipse
recognition algorithm (Fig. 3b) were used to build a set
of probability density surfaces, defined for each flow
rate v ∈ {5;10;30;50} by:

Sv(d) : R+→S (8)

where S is the spatial domain of the joint probability
distribution of the elongation ratio and major axis, and
d is a kernel parameter (Epanechnikov (1969)). Fig. 6
shows the joint probability distributions obtained from
the data shown in Fig. 3b using this function. The
idea is to normalize the real data at all flow rates, to
avoid scaling issues and define a fixed grid in R2

+. The
number of points inside a disk of radius d centered on
a given point of the grid are then counted and the result
is normalized to obtain a discrete joint probability
distribution.

Although four sets of 2D binary images were
available, one for each of the four different flow
rates, only the two extreme values v = 5 and v = 50

119
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(a) (b) (c) (d)

Fig. 6: Examples of the images generated using the geometrical model with the four probability density surfaces
shown, and different mean numbers of particles, µ: (a) 400, (b) 350, (c) 300, and (d) 250.The surfaces were
reconstructed using the data shown in Fig. 3b and an increasing kernel parameter d.

were considered in determining the estimators of
the joint probability density distributions Ŝ5 and Ŝ50.
The optimal values of (µ,d) that minimize the cost
function and maximize the likelihood, given the local
perimeter measurements, can be found by minimizing
the cost function, Mv(µ,S) defined by equation (7),

M̃v(µ,d) = Mv(µ,Sv(d)), (9)

Fig. 7 shows the joint probability distributions Ŝ5
and Ŝ50 obtained using an implementation of the
Nelder–Mead method in MATLABTM (Lagarias et
al. (1998)), along with the images generated by the
STORMFLOW model using these joint probability
distributions as first input.

The last step is to define an interpolation function:

s : [0;1]→S (10)

so that
s(t) = (1− t)× Ŝ5 + t× Ŝ50. (11)

This function allows probability density surfaces to
be defined from an interpolation parameter t ∈ [0;1].
Given the estimators for the two extreme flow rates
(Ŝ5 and Ŝ50), the values of µ and t are optimized to
minimize the cost function Mv(µ,s(t)). Note that by
definition, s(0) = Ŝ5 and s(1) = Ŝ50.

A model (Fig. 8) can then be built using parameter
pairs (µ, t) ∈ R+× [0;1] derived from a first iteration

of the STORMFLOW model using (µ,s(t)) as input.
This second iteration is much easier to optimize, and
since it uses only two of the four sets of images (v = 5
and v= 50), the two remaining sets (v= 10 and v= 30)
can be used for validation.

RESULTS

VALIDATION AND SIMULATED DATA
The optimal parameter pairs (µ, t) can be

estimated by minimizing the cost function Mv(µ,s(t))
for v ∈ {5,10,30,50}. A sufficient number of images
can then be generated to determine all the relevant
characteristics, such as the global area A , perimeter
P or Euler-Poincaré number χ . It is also possible
to estimate the mean elongation ratio E(e) of the
particles, the mean major axis E(M), the equivalent
radius E(Rm), the covariance, the particle size
distribution (PSD), and the cumulative PSD (Fig.
9). The latter can be calculated by generating m
images and applying morphological openings (with
reconstruction) to every single observation with the
use of homothetic structuring elements, i.e. disks, of
increasing radius: 1 < ... < m.

The covariance CΞ of a random closed set Ξ in R2

is defined as the following probability:

∀~r ∈ R2, CΞ(~r) = P(z ∈ Ξ, z+~r ∈ Ξ), (12)
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Fig. 7: Probability density functions reconstructed with the data obtained from the ellipse detection algorithm for
v = 5 (top) and v = 50 (bottom) and comparison of the virtual and real images.

where z ∈ R2 and Ξ~r is the translation of Ξ by the
vector ~r. Thus, for a homogeneous isotropic random
set, as is the case with the STORMFLOW model, CΞ

only depends on the distance r = ‖~r‖. The covariance
is known to be rich in morphological information
(Serra (1988)), for instance:

CΞ(0) = A (Ξ), and lim
r→+∞

CΞ(r) = A (Ξ)2. (13)

Although the STORMFLOW model can be used to
calculate various average grain properties, its main
function is to provide precise estimates of many of the
characteristics of digital images. Indeed, the joint and
marginal distributions of every single random variable
including the orientation, major and minor axes, and
the elongation ratio of the particles are fully described.

Fig. 10 compares the probability density
distributions of the major axis and elongation ratio
produced by the STORMFLOW model for v = 10 to
the ones obtained from the ellipse detection algorithm
applied to real images. The agreement is clearly very
good, demonstrating the model’s ability to fully and
accurately characterize the images.

Flow rate v = 5 L.h−1

Properties A P χ E(e) E(Rm) E(M)
Real images 0.38 21.86 46.38 0.38 17.29 18.64
Virtual images 0.38 21.49 40.66 0.38 17.58 18.64
Error (%) ∼ 0% −2% −12% ∼ 0% +2% ∼ 0%

Flow rate v = 10 L.h−1

Properties A P χ E(e) E(Rm) E(M)

Real images 0.41 18.55 68.44 0.37 19.98 21.52
Virtual images 0.4 18.36 32.44 0.39 19.57 21.12
Error (%) −1% −1% −53% +5% −2% −2%

Flow rate v = 30 L.h−1

Properties A P χ E(e) E(Rm) E(M)

Real images 0.42 12.87 18.19 0.46 27.57 31.42
Virtual images 0.41 13.35 17.69 0.46 27.84 31.42
Error (%) −2% +4% −3% ∼ 0% +1% ∼ 0%

Flow rate v = 50 L.h−1

Properties A P χ E(e) E(Rm) E(M)

Real images 0.5 12.15 30.87 0.49 33.94 39.41
Virtual images 0.5 12.72 11.19 0.5 34.03 39.16
Error (%) ∼ 0% +5% −64% +1% ∼ 0% −1%

Table 2: Model performance. The global area A ,
perimeter P and Euler-Poincaré number χ were
calculated directly from he real and virtual images.
The expected values of the elongation ratio, mean
equivalent radius and major axis were given by
the geometrical model for the virtual images and
calculated for the real images using the ellipse
recognition algorithm.

DISCUSSION
As shown in Table 2 and Fig. 9, the values

obtained are in good agreement with those determined
directly on real images for all the characteristics
except the Euler-Poincaré number. The larger errors
for this property can be explained by the limitations of
the STORMFLOW model, especially the assumption
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Fig. 8: Examples of realizations of the STORMFLOW model for different parameter pairs (µ, t). The values of
µ for the extreme cases t = 0 and t = 1, are obtained by minimizing the cost function Mv(µ,s(t)) defined by (7),
and the intermediate values are obtained by interpolation.

that the particles have a uniform spatial distribution.
Moreover, the error on the fit of the orientation
distribution of the grains affects the estimated number
of connected components and holes, and is thereby
magnified in the Euler-Poincaré number, which is the
difference of the two. The Euler-Poincaré numbers
of the virtual images are too low, which means that
there are too many holes and/or too few connected
components. In this respect, a more regular spatial
distribution of germs might be helpful since it would
increase the number of connected components. Note
also that working close to the percolation threshold
may have caused instabilities.

CONCLUSION AND PROSPECTS

CONCLUSION

This paper shows that local geometric measures
can be used to infer the parameters of a stochastic
geometrical model for multiphase flow images.
Overall, minimizing a cost function based on the
likelihood of a probability density function of local
measurements fitting a sample of real data seems to
provide good estimates of the model’s parameters. The
results obtained for the global characteristics of the
images, the characteristics of typical grains, and for
other indicators such as the covariance function and the
cumulative PSD are clear evidence of the relevance of
this approach.

The relative errors are almost always less than 2%
when comparing the area and perimeter of the model
images with those of real ones. The relative errors
on the expected elongation ratio, mean equivalent
radius and major axis are also almost all under
2% when compared to the values obtained with a
deterministic ellipse recognition algorithm. The values
obtained for the Euler-Poincaré number are not as
accurate, possibly because the image sample size
used was too small, because the spatial distribution
of the particles in the images was unfavourable (too
irregular), and/or because of numerical instability
close to the percolation threshold.

PROSPECTS

Since the parameters of the STORMFLOW
model were estimated using only local perimeter
measurements, a logical next step would be to
use the local area or a combination of the local
area and perimeter (perhaps even the local Euler-
Poincaré number) instead. Methods based on local
measurements seem to be faster than those based on
covariance or the particle size distribution (PSD). It
would be interesting to quantify this gain in efficiency
by benchmarking.

Several features of the STORMFLOW model can
also be improved. First, improving the modeling of the
spatial distribution of the germs and/or of the particle
orientations would probably improve the accuracy of
the Euler-Poincaré numbers obtained.
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Fig. 9: Comparison of the covariance and cumulative particle size distribution (PSD) of real and virtual flow
images at different flow rates v.
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(a) Elongation ratio distributions
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Fig. 10: Comparison of the probability density distributions produced by the STORMFLOW model with those
obtained by analyzing real images with the ellipse recognition algorithm for (a) the elongation ratio and (b) the
major axis of the particles, at a flow rate v = 10 L.h−1.

Second, while grains in STORMFLOW are
assumed to be perfect ellipses, gas bubbles in fact
become more and more irregular as the flow rate
increases (Fig. 2c & 2d). Adding more complex shapes
(caps, wobbling particles, etc.) by taking into account
physical parameters (viscosity, density, etc.) in the
STORMFLOW model would also no doubt improve
its accuracy.
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