

Corium materials characterizations through electron microscopy and X-ray diffraction

Emmanuelle Brackx, Mohamed Jizzini, Hirotomo Hikeuchi, P
 Piluso, René Guinebretière

► To cite this version:

Emmanuelle Brackx, Mohamed Jizzini, Hirotomo Hikeuchi, P Piluso, René Guinebretière. Corium materials characterizations through electron microscopy and X-ray diffraction. IUMAS-8 - 8th Meeting of the International Union of Microbeam Analysis Societies, IUMAS, Jun 2023, Banff, Canada. cea-04724718

HAL Id: cea-04724718 https://cea.hal.science/cea-04724718v1

Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Corium materials characterizations through electron microscopy and X ray diffraction

Emmanuelle Brackx¹, Mohamed Jizzini^{1,2}, Hirotomo Hikeuchi³, Pascal Piluso⁴, René Guinebretière²

¹ CEA, DES, ISEC, DMRC, Univ. Montpellier, Marcoule, France

² IRCER, Univ. Limoges, Limoges, France

³ JAEA, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, Japan

⁴ CEA, DES, IRESNE, DTN, Saint Paul lez Durance, France

IUMAS, 11-16 June 2023

Corium formation with the severe nuclear accidents

Study on the distribution of boron in the in-vessel fuel debris

Study on the distribution of boron in the in-vessel fuel debris in conditions close to Fukushima Daiichi Nuclear Power Station Unit 2

• To evaluate carefully the potential risk of re-criticality during decommissioning of the Fukushima Daiichi NPS (1F).

- Chemical forms of B in fuel debris is scenario dependent.
 - ✓ Material composition
 - ✓ Temperature history
 - ✓ Red-ox condition

Study on the distribution of boron in the in-vessel fuel debris

Early stage	Eutectic stage	Core melt stage	Re-melting stage	Melt-oxidation stage							
Į											
Test No.	JVT-B	31	JVT-B3	JVT-B4							
Elemental system	n B-Fe-	0	B-C-Fe-O								
(Case assumed)	(The melt-oxida	ition stage)	(The euter	ctic stage)							
Loaded raw materia	als 47.5377070	0/1.393 6	0.353 / 1.137 / 2.134 / 0	60.640 / 1.142 / 2.144 / 0							
Fe/Fe ₂ O ₃ /B ₄ C/B ₂ O	In grai	m	in gram	in gram							
Atomic fraction o B/C/Fe/O	f 0.0421 / 0 / 0.89	948 / 0.0631	0.1180 / 0.0295 /	0.8362 / 0.0163							
Cooling condition	n Rapid co	oling	Rapid cooling	Slow cooling							

- **Cooling condition** Rapid cooling Rapid cooling (~10² K/min) (~10² K/min)
 - Solidification tests on melt of B-C-Fe-O system
 - Heat treatment in PLINIUS/VITI facility

(~10 K/min)

Study on the distribution of boron in the in-vessel fuel debris

- EPMA Light element analysis B-C-O.
- X- ray generation and emission of the light elements take place in extremely shallow surface volumes under the specimen surface.
- Carefully to the specimen preparation, used an anticontamination device

Chemical shift of boron and carbon

XRD phases analysis.

Study on the distribution of boron in the in-vessel fuel debris

JVT-B1

Metallic/Oxidic phases identified

Both test showed eutectic structure with B-C-O-Fe system.

Influence of the chemical bond on the shape and position of the emission line measured on the grey oxide phase.

6

B₂O₃ solid can be formed at temperatures from 450°C to 500 °C.

Around 1150 °C-1200°C, a liquid containing melted Fe₃ (B, C) and Fe₂B eutectic phases is formed.

Fe-B-C hypo eutectic alloy solidification bv begins а heterogeneous nucleation of the primary gamma-Fe phase with the formation of dendrites, while the residual melt is enriched in elements combining C and B.

XRD analysis confirmed the formation of this phases.

Summary

-Formation of boride and boron-carbides of Fe, and the oxide phase rich in B_2O_3 were clearly indicated.

-The observed phases can be reproduced by appropriate modeling by JAEA.

IUMAS 11-16 june

Corium-water (ICE) interaction/vapour explosion and prototypical corium formation U1-xZrxO2±y

Experimental platform, located at the CEA Cadarache site

PLINIUS:

Corium powder formed after interaction with water: Premixing, triggering, propagation then explosion (a few milliseconds).

KROTOS facility

Interpretation of asymmetric widening of diffraction lines

XRD in laboratory:

 $U_{1-x}Zr_{x}O_{2\pm y}$

8

IUMAS8 June 11-16, 2023 Banff, AB Canad

Structural analysis by X-ray and neutron diffraction

X-ray diffraction on the MARS beam line at the SOLEIL synchrotron: study of fluctuations in cationic composition

The instrumental resolution function: ($\lambda = 0,7276$ Å) Diffraction diagram collected on LaB₆ standard powder

MARS beam line SOLEIL synchrotron CX2 station: HR-XRD station equipped with 24 crystal analyzers.

Vanadium capilar

Neutron diffraction on line D2B to ILL: study of anionic composition, oxygen stoichiometry

The instrumental resolution function: (λ = 1,5941 Å) Diffraction diagram collected on Na₂Ca₃Al₂F₁₄ standard powder

IUMAS 11-16 june

Application of the decomposition method on prototypica corium

- Decomposition of a peak profile with a strong asymmetric broadening characteristic of a cationic composition distribution, into a series of N elementary peaks.
- > The mathematical function and the shape parameters are obtained from a standard (LaB6).
- > Each elemental peak represents a particular cationic composition.

- Extraction of composition fluctuations by global simulation of diffraction diagrams.
- The calculated diagram is the sum of 30 contributions, each corresponding to a given composition.

IUMAS 11-16 june

Quantification of the fluctuation of cation compositions and oxygen content by combined Rietveld X-ray and neutron diffraction analysis

 \rightarrow Combined Rietveld analysis with X ray and neutron diffraction accurate the determination of solid solution. this result are in good agreement with local **EPMA** microanalysis realized in the sample.

KA2-200 µm

KA2-50 µm

(Very fast

Local deformations analysis by **µ** Laue diffraction

deformation rate with the fast cooling.

A sample of prototypic concrete corium was prepared at the SICOPS AREVA G facility in Germany in order to follow an inter-laboratory comparison test round robin

SAFEST partner experimental platforms for studying Corium

\rightarrow 4 area was investigate by EPMA in SAFEST MCCI sample

IUMAS8 June 11-16, 2023 Banff, AB Canad

Corium-concrete interaction

\rightarrow Location 1: oxide zone

	0	0	Na	Na	Al	Al	Si	Si	K	К	Ca	Ca	Fe	Fe	Zr	Zr	U	U	S	S	Mg	Mg	Total
	(wt%)	(σwt%)	(wt%)	(ơwt%)	(wt%)	(σwt%)	(wt%)	(σwt%)	(wt%)	(σwt%)	(wt%)	(σwt%)	(wt%)	(ơWt%)	(Wt%)								
Phase dendritique (1)	13.16	0.13											0.57	0.17	9.13	0.54	75.86	1.21					98.74
Phase sombre (2)	42.55	0.44	0.31	0.06	2.36	0.05	28.00	0.17	0.80	0.07	7.16	0.20	13.38	0.49	3.68	0.38	2.11	0.32	0.02	0.03	0.17	0.02	100.54
Analyse globale zone oxyde	38.83	0.41	0.24	0.06	1.55	0.04	17.26	0.13	0.64	0.08	5.37	0.17	10.12	0.41	8.59	0.55	15.60	0.73	0.00	0.04			98.21
phase circulaire (3)	0.12	0.03											99.15	1.79									99.27

The dendritic phases consist of a mixed U-Zr-Fe-O type oxide, because of the total solubility of UO₂ and ZrO₂ and the insertion of traces of Fe.

The dark phase measured is a U-Zr-Fe-Ca-Si-Al-O type. The formation of this phase could be due to interaction with the concrete at high temperature.

The circular phases represent a pure iron phase with a thin layer of oxide on the surface.

\rightarrow Location 2: metallic zone

	0	0	Fe	Fe	S	S	Р	Р	С	С	N	N	Total
Phase	(wt%)	(o wt%)	(wt%)	(owt%)	(wt%)	(o wt%)	(wt%)	(owt%)	(wt%)	(owt%)	(wt%)	(o wt%)	(wt%)
Metallic	0.05	0.03	99.88	1.67	0.05	0.03	0.04	0.03	0.42	0.08	0.08	0.01	100.51
Précipitate	0.14	0.04	64.67	1.21	34.82	0.56							99.63

Special sample preparation technique using a carbon anticontamination cold trap. The analysis results show significant values for the trace elements S, C, and P. The steel measured could be similar to a 37-2 steel, which contains sulfur.

In the metallic phase, FeS-type precipitates dominate, while two other randomly-scattered types Fe_3S_2 and Fe_3S of precipitate phase could also be measured. The formation of these precipitates can be explained if sulfur was included as an additive in the steel at the outset.

→ Location 3: metallic/concrete zone

	0	0	Na	Na	Al	Al	Si	Si	К	К	Са	Ca	Fe	Fe	Zr	Zr	U	U	S	S	Mg	Mg	Р	Р	Total
	(wt%)	(ơwt	(wt%)	(ơwt%)	(wt%	(ʊwt%)	(wt%)	(σwt	(wt%)	(σwt%	(wt%)	(σwt	(wt%)	(o wt%	(wt%	(σwt%)	(wt%)	(o wt%)	(wt%	(o wt%	(wt%)	(σwt	(wt%)	(ơwt%)	(wt%)
Global area of light																									
grey phase	46.21	0.47	0.61	0.07	3.58	0.06	34.08	0.19	2.29	0.11	5.07	0.17	7.37	0.36	0.14	0.13	-0.02	0.26	0.02	0.04	0.22	0.02	0.02	0.02	99.47
light grey phase in the																									
border	44.06	0.45	0.53	0.08	3.58	0.06	31.66	0.18	1.57	0.09	6.98	0.20	11.60	0.45	0.30	0.13	0.41	0.24	0.08	0.04					100.77

This complex corium phase was measured using average zones with 10 μm dimensions. They show that this is a U-Zr-Fe-Ca-Si-Al-O type corium phase with low uranium content.

The light border phase show that they are enriched in Fe.

Location 4: metallic/concrete zone

The analyses of the light grey phase enable the identification of an iron-enriched O-Na-AI-Si-Ca-Fe type corium phase with traces of K and of S.

The analyses of the whit dendritic phase enable the identification of an O-Na-Al-Si-Ca-Fe type corium phase with traces of K and of S, and a large proportion of Fe.

	0	0	Na	Na	Al	AI		Si	К	К	Ca	Ca	Fe	Fe	S	S	Total
	(wt%)	(σwt%)	(wt%)	(ʊwt%)	(wt%)	(ʊwt%)	Si (wt%)	(ʊwt%)	(wt%)	(ʊwt%)	(wt%)	(ʊwt%)	(wt%)	(ơwt%)	(wt%)	(ơwt%)	(wt%)
Ligth grey phase	38.68	0.40	0.37	0.06	2.73	0.06	23.79	0.16	0.73	0.07	12.05	0.28	20.19	0.64	1.29	0.43	99.82
Dendritic phase	34.17	0.35	0.15	0.05	1.01	0.04	18.69	0.14	0.60	0.06	2.71	0.11	41.05	1.01	0.15	0.06	98.52

Ligth grey phase

IUMAS 11-16 june

Conclusion

- Corium : heterogeneous and complex material (i.e geological material), Specific analytical procedure has to be developped through electron microscopy and X ray diffraction
- Quantitative analysis is allowed by WDS EPMA and light element can be measured like O, B, C.
- 3 study case of sever accident was analyzed (the distribution of boron in the in-vessel fuel debris, ICE corium, MCCI corium) and explained the material formation
- Diffraction methods give structural information
- Combined Rietveld analysis with X ray and neutron diffraction accurate the determination of solid solution, this result are in good agreement with local EPMA microanalysis realized in the sample.
- → LAUE micro-diffraction : Interplay between composition fluctuations and stresses into crystals of uranium-zirconium and can show an increase of local deformation rate with the fast cooling.
- → EBSD can measured the formation of grain size during process
- → The new methodology can do determination of the relationship between corium cooling process and the cationic-anionic composition variation into the uranium-zirconium solid solutions in radioactive corium materials.
- Analytical approach through electron microscopy and diffraction methods and condition parameters could be transfered (i.e, F.P, M.A, Pu) in hot cell condition

Thank you for your attention!

Thanks to :

Denis Menut scientist of MARS BEAM LINE at SOLEIL synchrotron

Emmanuelle Suard scientist of D2B at ILL

Jean Sébastien Micha scientist of BM32 at ESRF synchrotron

The authors gratefully thank the French Research Minister for the support to ICE- RSNR-Post-Fukushima program

CEA MARCOULE 30200 Bagnols sur Cèze France emmanuelle.brackx@cea.fr

emmanuelle.brackx@cea.f

Standard. + 33 4 66 33 92 54