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Laboratoire de Physique des PlasmasLaboratoire de Physique des Plasmas

 Tokamak confinement largely governed by turbulence
 Simulations shows that turbulence organises at mesoscale into

avalanches, zonal flows & staircases

 2 correlation slopes:
Eddy size: 𝑙𝑐 ≈ 4 − 6 𝜌𝑠
Avalanche size: 𝐿𝑎 ∼ 10 − 20 𝜌𝑠
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1. Motivation: avalanche-like transport

Objectives:

2. Tokam1D: reduced flux-driven model

𝜕𝑡𝑁 + 𝜙,𝑁 − 𝑔 𝜕𝑦 𝜙 − 𝑁 = 𝜎𝛻∥
2 𝑁 − 𝜙 + 𝐷 𝛻⊥

2𝑁 + 𝑆𝑁

𝜕𝑡Ω + 1 + 𝜏 𝑔𝜕𝑦𝑁 + 𝛻⊥,𝑖 𝜙, 𝛻⊥,𝑖 𝜙 + 𝜏𝑁 = 𝜎𝛻∥
2 𝑁 − 𝜙 + 𝜈𝛻⊥

2Ω

Electron density continuity equation

Charge balance equation (generalized vorticity Ω = 𝛻⊥
2(𝜙 + 𝜏𝑁))

𝑁 = ln𝑁
𝜙 = 𝑒𝜙/𝑇𝑒
𝜏 = 𝑇𝑖/𝑇𝑒

 2 competing instabilities: 

Interchange (RBM / ITG -like)
B-field inhomogeneity: 𝑔 = 2𝜌⋆ 𝑎/𝑅

Collisional Drift Waves (CDW)
Parallel conductivity : 𝜎 = 𝜔𝑐𝑒/𝜈𝑒𝑖

 Flux-driven: source of particle 𝑆𝑁
 Reduced to 1d-radial: single mode retained for the 

fluctuations (𝑘∥, 𝑘𝜃)

 Adiabatic parameter : 𝐶 = 𝑘∥
2𝜎

3. Simulations: avalanche transport at large 

magnetic curvature

4. Experiments: Hints of avalanches in TCV using 

Doppler reflectometry

6. Conclusion
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 Develop nonlinear flux-driven model:
 Self-consistent generation of avalanches & flows
 Various turbulence regimes

 Find signatures for experiments in different turb. regimes
 Explore link with zonal flows & staircases

Radial wavenumber 𝑘𝑥

Equilibrium velocity spectrum

𝑆 𝑉
𝑒
𝑞 𝑔

Radial struc.

5. Avalanches reinforce staircases at large g

𝜕𝑡𝑉𝑒𝑞 = −𝜕𝑥Π𝑅𝑆 + 𝜈𝜕𝑥
2𝑉𝑒𝑞 − 𝜇𝑉𝑒𝑞

Turbulent drive: Reynolds stresses
Electric:         Π𝐸 = ෦𝑣𝐸𝑟 ෦𝑣𝐸𝜃 = −2kyℑ(𝜙𝑘

∗𝜕𝑥𝜙𝑘)

Diamagnetic: Π∗ = 𝑣∗ ෦𝑣𝐸𝜃 = −2𝑘𝑦ℑ(𝜏𝑁𝑘
∗𝜕𝑥𝜙𝑘)

Viscous & friction damping

[Smolyakov 2000] ; [Sarazin 2021] 𝑉𝑒𝑞 = −〈𝐸𝑟〉
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 High g: Flows structured in staircases
‘reactivated’ by passing avalanches
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Turbulent flux statistics
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Γ𝑡𝑢𝑟𝑏 = 〈𝑛 𝑣𝐸𝑥〉
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Γ𝑡𝑢𝑟𝑏 = 〈𝑛 𝑣𝐸𝑥〉

Γ𝑡𝑢𝑟𝑏 = 〈𝑛 𝑣𝐸𝑥〉 : average
turbulent flux of particles

𝜕𝑡𝑁𝑒𝑞 = −𝜕𝑥Γ𝑡𝑢𝑟𝑏 + 𝐷𝜕𝑥
2𝑁𝑒𝑞 + 𝑆𝑁
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 skewness & kurtosis ↗ with g
 avalanches intensity and 

width ↗
 Polynomial dependance of 

kurtosis on skewness for all g

 2 correlation slopes in cases 
dominated by avalanches:
 𝑙𝑐 : eddy size 

≈ 4 − 7 𝜌𝑠
 𝐿𝑎: avalanche size 

≈ 30 − 50 𝜌𝑠
 Structure size ↘ with g

[Lin 1998]
[Diamond 2005]

[Dif-Pradalier 2010]
[Kosuga 2014]

[Panico 2024 (sub.)]

[Hasegawa-Wakatani 1983] ; [Sarazin 1998] ; [Bian 2003]

 Dual V-band system in X-mode: 𝑘⊥ ∈ 4,10 𝑐𝑚−1

 Signal scattered off density fluctuations 𝑛 at radial cutoff
 2 channels  allows for spatial correlation

measurements at 𝑘⊥

[Labit 2007]
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[Sarazin 2011]

Ballistic transport 
of heat & particle

[Hahm 1995] 
[Idomura 2014]

avalanche

Correlation found at small & large scales when
avalanche-like transport is present

Transition to avalanche-like transport at large g

Scan of 𝒈 = 𝟐𝝆⋆𝒂/𝑹 at fixed 𝑪 = 𝟏𝟎−𝟑

 Avalanches propagate both
in & outwards but turbulent 
flux always positive

 Reference channel at fixed position & 
hopping channel scanned radially

 Doppler shift      𝑣⊥ ≈ 𝐸𝑟/𝐵
 Cross-spectrum  correlation & delay

Reference

Hopping

 Low g: Meandering / splitting & merging
events observed at steady-state
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Correlation found at small & large scales

Distance to reference Δ/𝜌𝑠
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Reference at 𝜌 ≈ 0.97

𝐿𝑎 ≈ 11 𝜌𝑠

Method

Simulations
 Reduced model for avalanche, flow & turbulence interaction
 Transition to avalanche & staircase in interchange dominated plasmas 

(large magnetic curvature):
 Eddy & avalanche size similar to experiments

 Staircases appear together with avalanches
 Staircases strengthened by passing avalanches 

Experiments
 Correlation measurements using two DBS channels
 Robust scenario & diagnostic method
 Two correlation lengths obtained close to the Er well

Future prospects
 Simulations: 
 On-going additions: equilibrium flows, SOL and electromagnetic effects

 Experiments:
 Varying 𝜌𝑠 through gas scan from D to H (isotope effect) & heating

scheme  explore different turbulent regimes
 Explore experimental signatures of staircases in 𝐸𝑟 measurements

 But difficult experimental observations 
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Spatial displacement Δ/𝜌𝑠
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Correlation Doppler backscattering (CDBS)
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[Politzer 00]

𝑔 ∝
𝑇𝑒
1/2

𝑅𝐵
;   𝐶 ∝ 𝑘∥

2 𝑇𝑒
5/2

𝑛𝐵

Parameter dependencies

Which turbulent regimes favour turbulence self-organisation?
Can we identify experimental signatures of avalanche & 
staircases using reduced modelling?

𝑙𝑐 ≈ 4𝜌𝑠

𝐿𝑎 ≈ 40𝜌𝑠 Δx [McKee 2001] 
[Hennequin 2004]
[Schirmer 2007]

[Hornung 2017] 
[Schneider 2021]

𝑙𝑐 ≈ 6 𝜌𝑠

Spatial correlation function
#81069 @0.8-1.0s

 [work in progress]
 measurement at different 𝜌𝑠 and heating

conditions
 Explore experimental signatures of staircases

2-slope correlation function similar to 
simulations only on amplitude signal

 Staircases expected to limit radial 
extension of avalanches

 Current simulations show that
avalanches reinforce staircases instead
(at large g)

[Dif-Pradalier 2017] 


