

A penalized model for plasma-wall interaction valid in the gyrokinetic framework

Yann Munschy, G Dif-Pradalier, Y Sarazin, P Donnel, E Bourne, X Garbet, L Ghendrih, V de Gianni, A Grandgirard, K Kara, et al.

► To cite this version:

Yann Munschy, G Dif-Pradalier, Y Sarazin, P Donnel, E Bourne, et al.. A penalized model for plasma-wall interaction valid in the gyrokinetic framework. 50th EPS Conference on Plasma Physics, Jul 2024, Salamanque, Spain. . cea-04723551

HAL Id: cea-04723551 https://cea.hal.science/cea-04723551v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Yann Munschy, G. Dif-Pradalier, Y. Sarazin, P. Donnel,

E. Bourne, X. Garbet, Ph. Ghendrih, L. De Gianni,

V. Grandgirard, A. Kara, K. Obrejan, O. Panico

CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

A PENALIZED MODEL FOR PLASMA-WALL INTERACTION VALID IN THE GYROKINETIC FRAMEWORK

Context: gyrokinetic edge modelling requires plasma-wall interaction

- turbulent transport degrades tokamak confinement quality [Wootton 1990]
- Turbulence regulation mechanism: ExB sheared flows [Diamond 2005]
- Transport barriers formation at the separatrix is related to sheared flows [Wagner 1982]
- Global gyrokinetic codes need plasma-wall interaction to describe edge plasmas

Penalized sheath model valid in gyrokinetic framework

- Limiter included in simulation domain (immersed/penalized BC)
- Ion absorption in limiter using infinite penalization [Caschera 2018]

 $F_s(r, \theta, \varphi, v_{\parallel}, \mu) = F_s(1 - M_{lim}) + F_T M_{lim}$ $F_T \ll 1$ Maxwellian $M_{lim} = 1$ in limiter

Slow electrons reflected taking advantage of backward semi-Lagrangian method

Plasma-wall interaction triggers turbulence in edge plasma [Dif-Pradalier 2022]

> Plasma-wall interaction influences the SOL radial electric field $E_r \propto -\nabla T_e/e$ [Stangeby]

Difficulty: plasma-wall interaction is subgrid for gyrokinetic codes

Debye sheath

Gyrokinetic theory

(usual sheath-limited SOL values)

Length scale $\lambda_D = \sqrt{\frac{\varepsilon_0 T}{ne^2}} \approx 10 \ \mu m$

Length scale $\rho_i = \frac{m_i v_\perp}{\rho_B} \approx 100 \ \mu m$ <

Timescale $\omega_{pe} = \sqrt{\frac{ne^2}{m_e \varepsilon_0}} \approx 200 \text{ GHz}$

Timescale
$$\Omega_{ci} = \frac{eB}{m_i} \approx 100 \text{ MHz}$$

Debye sheath **positively charged**

 \neq Quasineutral plasma

Plasma-wall interaction model must ensure quasineutrality

 \gg

Preliminary study of plasma wall interaction : 1D1V kinetic model using Voice code

$$\begin{split} X_{GC} & X_{GC}^{\delta\star} \text{ time } t \\ t + \Delta t & plasma \\ M_{lim} = 0 \\ \\ M_{lim} = 1 \\ \langle \Gamma_i \rangle_{lim} = \langle \Gamma_e \rangle_{lim} - \int_{S_{lim}} d^2S \int_{-\infty}^{-v_c} d\bar{v}_{\parallel} \int_{0}^{+\infty} d\mu J_v J_0 F_i \left(\bar{v}_{\parallel} \mathbf{b}_{\parallel}^* + \mathbf{v}_{\perp} \right) \cdot \mathbf{n} \end{split}$$

- Fast electrons absorbed during reflection procedure
- Cutoff v_c computed to ensure vanishing current on spatial average over limiter surface

$$\langle \Gamma_i \rangle_{\lim} = \langle \Gamma_e \rangle_{\lim} - \int_{S_{\lim}} d^2 S \int_{-\infty}^{-\nu_c} d\nu_{\parallel} \int_{0}^{+\infty} d\mu J_{\nu} F_e (\nu_{\parallel} \boldsymbol{b}_{\parallel}^* + \boldsymbol{\nu}_{\perp}) \cdot \boldsymbol{n}$$

Results

 $\langle ... \rangle_{lim}$ limiter spatial avg.

n limiter normal vector

- Electron distribution function from GYSELA code (after few iterations, fixed v_c)
- ➢ Reflection slow electrons
- Smoothing procedure applied

[Munschy et al. 2024 Nucl. Fusion **64** 056027 & **64** 046013]

- ID plasma along field line, with two penalized models for the wall region: with / without currents in the wall;
- in both cases: equality of ion and electrons fluxes at the plasma boundary

Logical and conducting sheath approaches

- Methods applied on last grid point (≠ penalization)
 - > Limiter **not included** in simulation domain

Logical sheath [Parker 2015]

 $\Gamma_e = \Gamma_i$

Imposed on each point of limiter

surface determines v_c

Conducting sheath [Shi2015] $v_c = \sqrt{2e\phi_w/m_e}$ $\phi_w(r,\theta,\varphi)$ electric potential on limiter surface

The 5D global full-f Gysela code

With Strang splitting for gyrokinetic equation, advections with backward semi-Lagrangian scheme

> Currents are not matched precisely enough on limiter surface

- Absorption of ions & fast electrons, reflection of slow electrons : with penalized limiter;
- Electron and ion fluxes matched on spatial average over limiter surface;
- Kinetic electron response required in SOL;
- Apparition of negative charge on limiter surface to investigate. Possible causes: Numerical implementation « cleanliness »(limiter not aligned with mesh); > QN solver operates on whole plasma + limiter domain ;

A. J. Wootton et al 1990 Phys. Fluids P. H. Diamond et al 2005 Plasma Phys. Control. Fusion F. Wagner et al. Phys. Rev. Lett. 49, 1408 G. Dif-Pradalier et al. Commun Phys 5, 229 (2022). Y. Munschy et al 2024 Nucl. Fusion 64 056027

Y. Munschy et al 2024 Nucl. Fusion **64** 046013 S.E. Parker et al Journal of Computational Physics 1993 Shi EL et al Journal of Plasma Physics. 2017 V. Grandgirard et al, Computer Physics Comm. 2016 E. Caschera et al 2018 J. Phys.: Conf. Ser. 1125 012006

Yann Munschy – 2024 EPS conference, Salamanca