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Abstract—Modern Cyber-Physical Systems (CPS) often in-
volve dependent real-time processes bound to different timing
constraints. These CPSs can be modeled using PolyGraph, a
formalism that extends the Cyclo-Static Dataflow model with
explicit real-time constraints. Unlike traditional real-time ap-
proaches where timing constraints are specified for every process,
PolyGraph can offer greater flexibility by binding real-time con-
straints for only a subset of processes (e.g., processes associated
with hardware components such as sensors and actuators), along
with end-to-end latency specifications. In that case, processes
without specified timing constraints only inherit ones from pro-
cesses with explicit and specified timing constraints due to data
dependencies. This paper aims to formalize a method to derive
timing constraints for an entire PolyGraph model where only a
subset of processes has explicit timing constraints in the model.
We demonstrate how this approach eases scheduling constraints
and enables early detection of missed deadlines through two
examples from a vehicle ADAS and the Ingenuity Mars helicopter.

Index Terms—Static Timing Analysis, Dataflow Model, System-
Level Verification, Real-Time Systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are reactive systems that
detect environmental shifts through sensors, process this infor-
mation using computational processes, and then use the output
to control actuators. CPSs range from digital signal processing
systems to centralized/distributed systems, embedded/cloud
infrastructures, soft/hard real-time systems, and even a mix
of all the above. These complex systems must operate reliably
without threatening their internal processes or the safety of
their users. For example, a failure of the actuator in an
autonomous car can lead to catastrophic consequences such
as a car crash or a pedestrian accident.

To ensure the safety of such systems, CPS designers can
use analysis tools based on deterministic Dataflow Models
of Computation (DF MoCs) [1]. These tools can formally
prove the correctness of CPSs regarding safety and temporal
properties, such as consistency, liveness, latency, and through-
put. In particular, some DF MoCs can ensure such guarantees
on CPSs with real-time constraints [2], [3]. In this paper,
we analyze CPS models with the PolyGraph formalism [2],
a DF MoC that expands the Cyclo-Static Dataflow (CSDF)
model [4] with explicit real-time constraints for a subset of
processes. Specifically, we go one step further by analyzing
how the explicit timing constraints in the CPS’s model are
propagated across the entire model, especially to processes
without explicit timing constraints in the model. Within the
scope of the paper, the processes are called actors. In other
words, our research question is: “Within a CPS model with

real-time constraints on a subset of actors, how do these actors
influence the timing behavior of the non-explicitly real-time
ones?”

The PolyGraph model allows designers to avoid imposing
real-time constraints on actors of the CPS model that do not
naturally endorse such constraints. This capability expands the
search space of static analysis algorithms and the optimization
potential for system execution. Actors with non-explicit real-
time constraints still inherit temporal limitations from their
real-time counterparts through their runtime dependencies.

1) Contribution and Scope of the Paper: Based on our
observations, we have developed an approach to improve the
laxity of timing constraints (release time, earliest finish time,
latest start time, deadline) for an entire dataflow model of a
CPS when only a subset of actors have real-time constraints
in the model specification. Our approach uses the PolyGraph
formalism to analyze the model of a CPS and assumes that the
Best-Case Execution Time (BCET) and Worst-Case Execution
Time (WCET) of the actors are provided. Challenges related
to system schedulability and scheduling, accurate computa-
tion of BCETs and WCETs, and deployment, execution, and
monitoring of the system on typical CPS hardware, such as
distributed heterogeneous MP-SoCs1, are orthogonal to the
problem addressed here.

2) Paper Organization: The paper starts by presenting the
background and the terminology of the PolyGraph model in
Section II. Our approach is presented in Section III. We present
our experimentation and discussion in Section IV and related
works in Section V. Section VI concludes the paper and
presents our future works.

II. BACKGROUND AND TERMINOLOGY

Our contribution is based on the PolyGraph model [2], a
superset of the SDF model [5]. We present the SDF model,
and then explain how the PolyGraph model expands it.

A. The SDF Model

An SDF model is an oriented graph G = (V,C) where V
is a finite set of actors and C is a finite set of channels. An
SDF model is characterized by a topology matrix ΓG of size
|C| × |V |. The entry (i, j) of ΓG is the number of tokens
produced or consumed by the actor vj on the channel ci each
time the actor vj is executed (this number is positive if the
tokens are produced, and negative otherwise). An execution of
an actor is called a job.

1Multi or Many-Core System(s) on Chip.



An actor v ∈ V has (optional) input and output ports
connected to input and output channels of C. A channel
ci = (vj , vk, nij , nik, initi) ∈ C connects an output port of
the actor vj ∈ V to an input port of the actor vk ∈ V . This
channel also has a production rate nij ∈ N∗ (which is the entry
(i, j) of ΓG), a consumption rate nik ∈ N∗ (the entry (i, k)
of ΓG), and a number of initial tokens initi ∈ N. An actor’s
job produces/consumes tokens to/from the buffer of its out-
put/input channels according to the production/consumption
rate. For the sake of simplicity in the rest of this paper, we
denote [ci] the number of initial tokens of the channel ci.

B. The PolyGraph Model

1) Brief Syntax and Semantic: The PolyGraph formalism
is a superset of the SDF formalism and expands it in two
ways: the production and consumption rates become periodic
sequences (as in CSDF [4]), and a subset of actors may have
timing constraints. The terminology of the static analysis of
an SDF model, i.e., consistency, liveness, consistent and live
execution, and hyperperiod [5], is extended to a PolyGraph
model. Consistency ensures the system can be executed within
a bounded memory, while liveness guarantees deadlock-free
execution. A hyperperiod is a partially ordered set of actors’
jobs that returns the system to its initial state.

a) Rational production and consumption rates: Let P =
(V,C) be a PolyGraph model and let ΓP = (γij) ∈ Q|C|×|V |

be its topology matrix. The production and consumption rates
are rational2: a channel ci ∈ C is a tuple (vj , vk, γij , γik, initi)
such that γij ∈ Q∗ and γik ∈ Q∗, and initi ∈ Q
(Q∗ = Q \ {0}). Rational rates imply that the number of
tokens produced/consumed can differ for each job. Specifi-
cally, a token is produced and stored in a channel if and only
if sufficient fractional token parts are symbolically produced.
Indeed, only an integer number of tokens may be produced or
consumed. In other words, an actor with a rational production
rate such as 1/n in the dataflow model actually produces
data once every n jobs during runtime, thus validating the
precedence constraint toward the consumer once every n of its
jobs. These peculiarities create non-trivial cases when timing
constraints (releases and deadlines) of actors without real-time
specification in the model are made explicit, as we will see in
our contribution.

The rational production and consumption rates are natural
consequences of the periodicity of real-time actors (with speci-
fied and imposed frequencies) together with the consistency of
the system’s model imposed by the topology matrix. The ratio-
nal rates are a compact notation for a CSDF equivalency [4].

b) Timing constraints: The actors of a PolyGraph model
may have a frequency constraint. Furthermore, they may also
have a phase (which usually models the system’s end-to-end
latency) if they have a frequency constraint. The frequency
dictates the actor’s execution at the specified rate, while the
phase postpones its initial execution. Actors with frequency
constraints are referred to as timed actors. An execution of a

2A channel of a PolyGraph model as defined in [2] has at least one integer
rate. However, for the sake of simplicity, we consider in this paper that both
rates are rational.

consistent and live PolyGraph model is an infinite repetition
of its first hyperperiod. Although the number of jobs is not
bounded during an execution, their timing constraints are
cyclic over a hyperperiod.

2) Visual Example: The system in Fig. 1 has three actors
and two channels. An actor’s job increases/decreases the
number of tokens in its output/input channels according to
the production/consumption rate. Production and consumption
rates are rational, so the number of tokens in the channels
is also rational. Table I illustrates the evolution of the tokens
inside the system’s channels in Fig. 1 for one hyperperiod.
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Fig. 1. A PolyGraph model is on the top side, and its execution diagram of
the first and second hyperperiods is below. The actor A has a period of 20
ms (i.e., a frequency of 50 Hz), and the actor C has a period of 10 ms (i.e.,
100 Hz). Neither A nor C has a phase specified.

TABLE I
THE EVOLUTION OF THE TOKENS INSIDE THE CHANNELS OF THE
POLYGRAPH MODEL OF FIG. 1 DURING THE FIRST HYPERPERIOD.

Actor’s job A1 B1 B2 B3 B4 C1 C2

Tokens in channels c1 2 3/2 1 1/2 0 — —
c2 0 1/2 1 3/2 2 1 0

III. APPROACH

A. Overview and Scope of the Approach

We propose an approach to maximize the execution win-
dows (release time and deadline), as well as the earliest finish
time and the latest start time, of all the actors of a PolyGraph
model at the job level while maintaining the real-time con-
straints of the system. The job level granularity is essential
as the number of tokens produced or consumed may differ
for each job, influencing the execution windows of the actors’
jobs. We assume that the shortest execution time of an actor,
called the Best-Case Execution Time (BCET), and the longest
execution time of an actor, called the Worst-Case Execution
Time (WCET), are provided [6]3. We also assume that the
sensors and actuators of the PolyGraph model are timed actors

3The assumption of available BCET and WCET values implies that we
have a prior allocation of jobs on the execution cores of any MP-SoC.



(they have a frequency constraint), the communication time
between processes should be considered as integrated into the
BCETs and WCETs, and the number of times an actor can be
preempted is bounded (the additional execution time induced
by the preemptions is included in the BCET and WCET).

Fig. 2 places our work in the workflow of a system design
process. We will discuss in section IV how the results of our
approach can be used to improve scheduling, monitoring, and
sizing methods. Note that an actual deployment and execution
of the model on hardware platforms brings additional chal-
lenges, e.g., the scheduling of real-time systems [7], [8] and
the computation of BCETs and WCETs [6]. Those challenges
fall out of the scope of this paper.

PolyGraph system model
(HW dependent)

Specifications
of the system

Consistency, liveness and
schedulability test Scheduling,

monitoring and
sizing methods

Refinement process

BCETs and
WCETs

PolyGraph system model
(HW independent)

Timing constraints 
at the job level

Fig. 2. The workflow of a system design process. Our contribution is the
derivation of the timing constraints at the job level from a hardware dependent
PolyGraph system model. HW stands for hardware.

B. Preliminary Definitions

We assume the static analysis we want to perform is applied
to consistent and live PolyGraph models extended with BCET
and WCET on their actors. We refer to such PolyGraph models
as well-defined PolyGraph models.

Definition 1 (Well-defined PolyGraph model):
A well-defined PolyGraph model is a weakly connected4,

consistent and live graph. In addition, actors without prede-
cessors/successors (i.e., sensors/actuators) are timed actors,
meaning they have a frequency constraint. All actors within
the model have both a BCET and a WCET, such that the
BCET is less than or equal to the WCET.

The remainder of the paper is based on arithmetic relations
between the index of tokens and the instance of an actor’s job.

Definition 2 (Token index and job instance):
Let P = (V,C) be a well-defined PolyGraph model, and

let σ be a consistent and live execution of P . The index of a
token identifies the tokens transiting through a channel c ∈ C
along σ. The instance of an actor’s job v ∈ V is the number
of jobs of v that have been executed along σ. In other words,
the n-th job of v is the job of instance n of v.

C. A PolyGraph Execution Model

A PolyGraph execution model is a well-defined PolyGraph
model along with the release time, the earliest finish time, the

4A directed graph is weakly connected when its undirected induced graph
is connected [7].

latest start time, and the deadline computed with Theorem 1
and Corollary 3. The static timing analysis we proposed
is performed on a well-defined PolyGraph model with an
additional requirement: no actor may have all its precedence
constraints met before runtime. In other words, all actors must
have at least one input channel with a number of initial tokens
below its consumption rate5.

Before delving into our contribution, we remind that for a
given channel ci, its number of initial tokens is denoted [ci].

Lemma 1 (Proposition 1 of [9]):
Let P = (V,C) be a well-defined PolyGraph model, let

vj , vk ∈ V be two actors of P , and let ci ∈ C be a channel
of P from vj to vk. We define ΓP = (γij) ∈ Q|C|×|V | to be
the topology matrix of P , and ri = [ci] − ⌊[ci]⌋ with ⌊[ci]⌋
being the floor function applied to [ci]. Let σ be a consistent
and live execution of finite length of P and let x be a vector
such that the component xi is the number of jobs of the actor
vi executed along σ. Then, the following holds:

(i) The number of tokens produced by the actor vj to the
channel ci along σ is ⌊xj · γij + ri⌋.

(ii) The number of tokens consumed by the actor vk from
the channel ci along σ is ⌈xk · |γik| − ri⌉.

Corollary 1:
Under the assumptions of Lemma 1, the following holds:
(i) The total number of tokens produced to the channel ci

after the n-th job of the actor vj is ⌊n · γij + ri⌋.
(ii) The total number of tokens consumed from the channel

ci after the p-th job of the actor vk is ⌈p · |γik| − ri⌉.
Lemma 2:
Under the assumptions of Lemma 1, also assuming that the

initial tokens of ci (if any) have an index from 1 to ⌊[ci]⌋, and
each subsequent token increments its index by one, then the
following holds:

(i) The job of instance n of the actor vj produces to the
channel ci the tokens from index ⌊(n− 1) · γij + [ci] + 1⌋ to
⌊n · γij + [ci]⌋, or no token at all if ⌊(n − 1) · γij + [ci]⌋ =
⌊n · γij + [ci]⌋. Moreover, the first token produced by or after
the job of instance n of vj has index ⌊(n− 1) ·γij +[ci]+1⌋.

(ii) The job of instance p of the actor vk consumes from
the channel ci the tokens from index ⌈(p− 1) · |γik| − ri⌉+1
to ⌈p · |γik| − ri⌉, or no token at all if ⌈(p− 1) · |γik| − ri⌉ =
⌈p·|γik|−ri⌉. Moreover, the last token consumed by or before
the job of instance p of vk has index ⌈p · |γik| − ri⌉.

Proof of assertion (i) of Lemma 2:
Let us first define tokensprod(n, i, j) = ⌊n · γij + ri⌋.

From Corollary 1, the actor vj has produced a total of
tokensprod(n−1, i, j) tokens after its job of instance n−1 and
a total of tokensprod(n, i, j) tokens after its job of instance
n. Furthermore, the token with index tokensprod(n − 1, i, j)
is produced by the job of instance n− 1 of vj . Therefore, the
job of instance n of vj produces the tokens with index from
tokensprod(n−1, i, j)+1 to tokensprod(n, i, j). Adding ⌊[ci]⌋
to both interval boundaries permits us to consider the initial
tokens of the channel ci: the initial tokens of ci have an index
from 1 to ⌊[ci]⌋.

5In this case, a pre-processing step may perform “offline executions” prior
to runtime until this requirement is met.



Since ri = [ci]−⌊[ci]⌋ and ∀x, y ∈ N : ⌊x⌋+⌊y⌋ = ⌊x+y⌋,
we can rewrite tokensprod(n−1, i, j)+1+⌊[ci]⌋ as ⌊(n−1) ·
γij +[ci]+1⌋. The same logic holds for tokensprod(n, i, j)+
⌊[ci]⌋, which is equal to ⌊n · γij + [ci]⌋.

If ⌊(n − 1) · γij + [ci]⌋ = ⌊n · γij + [ci]⌋, then no tokens
are produced by the job of instance n of vj since the token of
index ⌊(n−1) ·γij +[ci]⌋ has already been produced. Finally,
the index of the first token produced by or after the job of
instance n of vj is equal to tokensprod(n−1, i, j)+1+⌊[ci]⌋
(which is the left boundary of the interval of tokens produced
by the n-th job of vj , if any).

Proof of assertion (ii) of Lemma 2:
Let us first define tokenscons(p, i, k) = ⌈p · |γik| − ri⌉.

From Corollary 1, the actor vk has consumed a total of
tokenscons(p, i, k) tokens after its job of instance p and a
total of tokenscons(p− 1, i, k) after its job of instance p− 1.
Furthermore, the token with index tokenscons(p − 1, i, k) is
consumed by the job of instance p − 1 of vk. Therefore, the
job of instance p of vk consumes the tokens with index from
tokenscons(p− 1, i, k) + 1 to tokenscons(p, i, k).

If ⌈(p − 1) · |γik| − ri⌉ = ⌈p · |γik| − ri⌉, then no tokens
are consumed by the job of instance p of vk since the token
of index tokenscons(p − 1, i, k) has already been consumed.
Finally, the index of the last token consumed by or before the
job of instance p of vk is equal to tokenscons(p, i, k) (which
is the right boundary of the interval of tokens consumed by
the p-th job of vk, if any).

Lemma 3 (Proposition 2 of [9]):
Under the assumptions of Lemma 1, the following holds:
(i) The token of index m that transit through the channel ci

along σ is consumed by the job of instance 1 + ⌊m−1+ri
|γik| ⌋ of

the actor vk.
(ii) The token of index m that transit through the channel

ci along σ is produced by the job of instance ⌈m−[ci]
γij

⌉ of the
actor vj .

Lemma 4:
Under the assumptions of Lemma 1, the following holds:
(i) The tokens produced by the job of instance n of

the actor vj are consumed by the job of instance 1 +

⌊ ⌊(n−1)·γij+[ci]⌋+ri
|γik| ⌋ to 1+⌊ ⌊n·γij+[ci]⌋−1+ri

|γik| ⌋ of the actor vk.
(ii) The tokens consumed by the job of instance p

of the actor vk are produced by the job of instance
⌈ ⌈(p−1)·|γik|−ri⌉+1−[ci]

γij
⌉ to ⌈ ⌈p·|γik|−ri⌉−[ci]

γij
⌉ of the actor vj .

Proof of Lemma 4:
The proof is a composition of Lemma 2 and Lemma 3.

Corollary 2:
Under the assumptions of Lemma 1, the following holds:
(i) The first token produced by the job of instance n

of the actor vj is consumed by the job of instance 1 +

⌊ ⌊(n−1)·γij+[ci]⌋+ri
|γik| ⌋ of the actor vk.

(ii) The last token consumed by the job of instance p of the
actor vk is produced by the job of instance ⌈ ⌈p·|γik|−ri⌉−[ci]

γij
⌉

of the actor vj .

Theorem 1 (Derivation of the execution windows):
Let P = (V,C) be a well-defined PolyGraph model. We

define periodv and phasev to be the period and phase of
an actor v ∈ V if v is a timed actor. Let bcetv/wcetv be the
BCET/WCET of an actor v ∈ V . Under the assumptions of
Lemma 1, the following holds:

(i) Let vk ∈ V be a non-timed actor of P . Then, assuming
releasenvj

returns the release of the n-th job of an actor vj ∈
V , the release of the p-th job of vk is computed as follows:

releasepvk
= max

i∈[0,|C|]
j∈[0,|V |]
st γij<0

releaseα1(p,i,j,k)
vj + bcetvj

+
(
p− β1(p, i, j, k)

)
· bcetvk

(1)

with
α1(p, i, j, k) =

⌈⌈p · |γik| − ri⌉ − [ci]

γij

⌉
and

β1(p, i, j, k) = 1 +
⌊⌊(α1(p, i, j, k)− 1

)
· γij + [ci]⌋+ ri

|γik|

⌋
(ii) Let vk ∈ V be a timed actor of P . Then, by denoting

release
p

vk
the release computed by equation (1), the release

of the p-th job of vk is computed as follows:

releasepvk
= max

(
release

p

vk
, periodvk ·(p−1)+phasevk

)
(2)

(iii) Let vj ∈ V be a non-timed actor of P . Then, assuming
deadlinepvk returns the deadline of the p-th job of an actor
vk ∈ V , the deadline of the n-th job of vj is computed as
follows:

deadlinenvj = min
i∈[0,|C|]
k∈[0,|V |]
st γik>0

deadlineα2(n,i,j,k)
vk

− wcetvk

−
(
β2(n, i, j, k)− n

)
· wcetvj

(3)

with

α2(n, i, j, k) = 1 +
⌊⌊(n− 1) · γij + [ci]⌋+ ri

|γik|

⌋
and

β2(n, i, j, k) =
⌈⌈α2(n, i, j, k) · |γik| − ri⌉ − [ci]

γij

⌉
(iv) Let vj ∈ V be a timed actor of P . Then, by denot-

ing deadline
n

vj the deadline computed by equation (3), the
deadline of the n-th job of vj is computed as follows:

deadlinenvj = min
(
deadline

n

vj , periodvj · n+ phasevj

)
(4)

Proof of assertion (i) of Theorem 1:
Let vk be a non-timed actor of P . The releases of vk

are computed from the ones of its predecessors. Thus, we
first prove how the release is computed when vk has (1) one
predecessor and then when it has (2) many predecessors. If
vk has no predecessor, it is a sensor. Thus it is a timed actor,
which contradicts our assumption.

1. Let vj ∈ V be the unique predecessor of vk such that
vj ̸= vk and let ci ∈ C be the channel from vj to vk. Let



p be the job instance of vk for which we compute the
release. Assume that the release of the n-th job of vj is
returned by releasenvj . The release of the p-th job of vk
will be computed in five steps: (1.1) determine the index
of the last token consumed by or before the p-th job of vk,
(1.2) determine which job instance of vj produced that
token, (1.3) determine which job instance of vk consumed
that token, (1.4) from that latter job instance, determine
the required number of jobs of vk such that the p-th job
of vk is executed, and (1.5) combine the previous steps.

1.1. From (ii) of Lemma 2, the function index(p, i, k) =
⌈p · |γik| − ri⌉ returns the index of the last token
consumed by or before the p-th job of vk.

1.2. From (ii) of Lemma 3, the token with the index
index(p, i, k) is produced by the job of instance
α1(p, i, j, k) = ⌈ index(p,i,k)−[ci]

γij
⌉ of vj . Here, we

have releasepvk ≥ release
α1(p,i,j,k)
vj + bcetvj .

1.3. From (i) of Corollary 2, the first token produced
by the job of instance α1(p, i, j, k) of vj is con-
sumed by the job of instance β1(p, i, j, k) = 1 +

⌊ ⌊(α1(p,i,j,k)−1)·γij+[ci]⌋+ri
|γik| ⌋ of vk.

1.4. As p is the job instance of vk for which we compute
the release, p−β1(p, i, j, k) gives the number of jobs
of vk required until the p-th job of vk is executed.

1.5. Hence: releasepvk = release
α1(p,i,j,k)
vj +bcetvj+

(
p−

β1(p, i, j, k)
)
· bcetvk .

2. Stage (1) allows for the computation of the release
of the p-th job of vk, under the assumption that vk
has a unique predecessor. However, if vk has multiple
predecessors, it inherits a release constraint from all
its predecessors. Hence, the release becomes the most
restrictive one, that is, the maximum: releasepvk =

max
i∈[0,|C|]
j∈[0,|V |]
st γij<0

release
α1(p,i,j,k)
vj + bcetvj +

(
p− β1(p, i, j, k)

)
·

bcetvk , with α1(p, i, j, k) and β1(p, i, j, k) defined as in
stage (1).

Proof of assertion (ii) of Theorem 1: If vk is a timed
actor, it has a frequency constraint. Thus, it also inherits
a release from that frequency constraint. By definition of
the frequency constraint, the p-th job of vk must start after
periodvk · (p − 1) + phasevk . The final release of the
p-th job of vk is the most restrictive release, that is, the
maximal, between the inherited release from its predecessors,
as computed by the assertion (1) of the current theorem, and
the inherited release from the frequency constraint.

Proof of assertion (iii) of Theorem 1: The principles
follow the same reasoning as the proof of assertion (i) of the
current theorem. Let us consider an actor vj ∈ V that has a
unique successor vk ∈ V such that vj ̸= vk. Let n be the
job instance of vj for which we compute the deadline. First,
determine the index of the first token produced by or after
the n-th job of vj . Second, determine which job instance of
vk consumed that token. Third, determine which job instance

of vj produced that token. Fourth, from the n-th job of vj ,
determine the required number of jobs of vj such that this
token is produced. Finally, combine the previous steps. The
proof is then extended to the case when vj has multiple
successors.

Proof of assertion (iv) of Theorem 1:
This proof follows the same reasoning as the proof of

assertion (ii) of the current theorem. The n-th job of vj must
finish before its deadlines inherited from the successors and
the one inherited from the frequency constraint.

Corollary 3:
Under the assumptions of Theorem 1, the following holds:
(i) Let v ∈ V be an actor of P . Then, the earliest finish

time (eft) of the n-th job of v is eftnv = releasenv + bcetv
where releasenv is given by assertion (2) or (1) of Theorem 1,
depending on that v is a timed actor or not.

(ii) Let v ∈ V be an actor of P . Then, the latest start
time (lst) of n-th of v is lstnv = deadlinenv − wcetv where
deadlinenv is given by assertion (3) or (4) of Theorem 1,
depending on that v is a timed actor or not.

IV. APPLICATION AND DISCUSSIONS

A. The ADAS Use Case

We apply our approach to a PolyGraph model from an
Advanced Driver-Assistance System (ADAS) presented in
Fig. 3. The ADAS system is an MP-SoC (e.g., R-CAR H3).
Its PolyGraph model has 14 actors and only six with specified
timing constraints. The construction of the model is detailed
in reference [2]. We adjusted both the frequency of the LDR
actor from 30 to 40 Hz to ensure an integer period value and
the production rate of the OBD - SPC channel accordingly to
maintain model consistency and liveness.

We have set the BCET/WCET of all actors at 3 ms/5 ms.
Thus, the ADAS model is well-defined.

1 1LDR
25 ms

1/4 1[3/4]
OBD

1 1

1

1

SPC
EBS

100 ms
+ 20 ms

1 1ODM
100 ms

1

1

1 1

1 11/2

1[1/2]

1/5

[4/5] 1

LCM
100 ms

1

1
TSD

IFD
100 ms
+ 50 ms1 1

TLD

1

1

APD

1

1

PDD

1 1/2[1/2]
RMD

1
1/5

[2/5]
DMD

1/5

1
[4/5]RCM

100 ms

Fig. 3. A PolyGraph model of an ADAS. Actors EBS and IFD have a phase
of 20 ms and 50 ms, respectively.



B. CPSs Sizing

Table II (rows LDR to IFD) presents the application of our
method on the PolyGraph model from the ADAS and shows
the release time, earliest finish time, latest start time, and
deadline for all actors at the job level. Since the ADAS model
is well-defined, the timing analysis of the jobs over the first
hyperperiod suffices to determine the timing constraints at the
job level for an entire execution.

The length of the jobs’ execution windows for actor OBD
varies from 107 ms to 167 ms (cf. column 6 of Table II).
Although the release of all OBD jobs remains the same,
their deadlines differ. This is primarily due to two reasons.
Firstly, OBD has no frequency constraint. Therefore, its job’s
deadlines are inferred from its successor (the actor SPC).
Secondly, with a production rate of 1/4, only one job in
every four has a precedence constraint with a job of SPC.
Therefore, as long as the jobs of OBD that produce a token are
executed early enough to meet the deadlines of SPC, the timing
constraints of the jobs of OBD that do not produce a token are
relaxed. This leads to an increased execution window length.

The derivation of execution windows at the job level enables
more flexible scheduling constraints. Jobs can be executed at
any time within their execution windows and distributed over
time, thus decreasing the computing performance requirement
of the CPS. Consequently, less powerful CPUs are actually
required, leading to a potential reduction in system costs.

Valuable insights can be extracted from the length of the
execution windows. In particular, it can help to choose the
appropriate algorithm for an actor. This ensures that the actor’s
execution time remains within the limits of its execution
window. For instance, a more precise algorithm may require
additional computation time.

C. Optimizing Processor Utilization

Our method computes the largest laxity allowed for every
job instance that preserves real-time properties. Our definition
of “largest laxity” involves ensuring that the execution window
is as long as possible such that no deadlines are missed,
assuming a fault-free execution. Our approach minimizes the
earliest finish time to maximize the gap between a job’s
completion and its corresponding deadline, and maximizes the
latest start time so that any further delay would result in the
possibility of missed deadlines.

For the purpose of processor utilization comparison, we
consider in this section an ADAS model specified with a
real-time approach. Such a model is the same as the one in
Fig. 3 but with timing constraints specified on all actors. The
timing constraints on the sensors and actuators are kept the
same. We also impose the natural period inherited from the
predecessors and successors for all other actors. For instance,
as the production and consumption rate on the LDR - OBD
channel is 1, then the period of the OBD actor is 25 ms. As
the production rate of the channel OBD - SPC is 1/4, and the
consumption rate is 1, then the period of SPC actor is 100 ms.
The same reasoning is applied to all other actors: TSD has a
period of 100 ms, TLD of 100 ms, PDD of 100 ms, RMD of
200 ms, DMD of 500 ms, and APD of 100 ms.

Our method yields timing constraints that lower the pro-
cessor utilization of the system. To illustrate, suppose there
is only one CPU to execute the ADAS model. The processor
utilization of the ADAS model with a strictly periodic real-
time approach is 94%, while with the timing constraints
derived from our method, the processor utilization is only
72%6. Thus, the processor utilization can be reduced by up to
22%. This decrease in processor utilization can be allocated to
other tasks by the operating system or contribute to reducing
the system’s energy consumption.

D. Early Detection of a Runtime Fault: Ingenuity Use Case

Besides CPS sizing and optimizing processor utilization,
our method also enables early detection of missed deadlines.
We showcase this approach with an application on a simpli-
fied PolyGraph model of the Ingenuity Mars helicopter, an
aerospace vehicle that completed over 70 flights above the
Martian surface from 2021 to 2024.

1) PolyGraph Model of the Vision Processing System of
Ingenuity: The vision processing system of the Ingenuity Mars
helicopter [10] is modeled in Fig. 4. This system detects visual
features on camera frames, and either stores them as reference
features (modeled as pseudo-landmarks) or tracks them from
one frame to another. After a filtering procedure, the tracked
visual features are matched with pseudo landmarks, enabling
the computation of visual drift to enhance position estimation.

2) Early Detection of Missed Deadlines: In the 6th flight of
Ingenuity, a runtime fault occurred with its vision processing
system, resulting in a loss of a camera frame. This fault can
be replicated in the model of Fig. 4, with a job of pseudo-
landmarks taking longer to execute than its WCET, leading
to a missed deadline. Since Ingenuity’s vision processing
operates on a single CPU [10], the job that missed a deadline
could be preempted, resulting in an undefined behavior such
as loss of camera frame. If we assume the BCETs and WCETs
of the actors in Fig. 4 are provided, e.g., 3 ms/5 ms (as for
the ADS use case), our methodology allows us to compute
the deadlines of the n-th job of pseudo-landmarks which is
equals to 75+n · 80 (cf. row PL of Table II). Thus, a runtime
verification procedure could check if a job finish before its
deadline and engage a fault mitigation procedure otherwise.

camera (CAM)
40 ms

feature
tracking (FT)

1/2

1/2

[1/2]
feature

detection (FD)

1/2
[1/2]filtering

procedure (FP)

1/2pseudo
landmarks (PL)

feature match (FM)
40 ms

+ 40 ms

[1]

Fig. 4. A PolyGraph model of a simplified vision processing system of
the Ingenuity Mars helicopter. Rates of 1/2 are also a simplified model of
the mode-controlled dataflow graph, which can be considered in extensions
of PolyGraph . Initial tokens (between brackets) model that the first set of
features is pseudo landmarks. Rates of 1 are omitted for clarity.

6Note that this processor utilization is a lower bound of the real utilization
as we work at the model level. We do not fully consider the number of cores
or the scheduling policy. However, it would not be too difficult to derive a
linear program to give a tighter evaluation.



TABLE II
TIMING CONSTRAINTS AT THE JOB LEVEL OF THE POLYGRAPH MODEL OF THE ADAS (CF. FIG. 3) AND THE VISION PROCESSING SYSTEM OF

INGENUITY (CF. FIG. 4). EFT STANDS FOR EARLIEST FINISH TIME, LST FOR LATEST START TIME, Exec. Windows FOR EXECUTION WINDOWS, CAM
FOR CAMERA, FD FOR FEATURE DETECTION, PL FOR PSEUDO LANDMARKS, FP FOR FILTERING PROCEDURE, AND FM FOR FEATURE MATCH.

Actor Timing constraints of the n-th job
Release EFT (= Release + 3) LST (= Deadline - 5) Deadline Exec. Windows

A
D

A
S

(F
ig

.3
)

LDR 25 · (n− 1) 3 + 25 · (n− 1) −5 + 25 · n 25 · n 25 ms

OBD 3 + 25 · (n− 1) 6 + 25 · (n− 1)


105 + 100 · ⌊n−1

4
⌋ if (n− 1) mod 4 = 0

190 + 100 · ⌊n−1
4

⌋ if (n− 1) mod 4 = 1

195 + 100 · ⌊n−1
4

⌋ if (n− 1) mod 4 = 2

200 + 100 · ⌊n−1
4

⌋ if (n− 1) mod 4 = 3


110 + 100 · ⌊n−1

4
⌋

195 + 100 · ⌊n−1
4

⌋
200 + 100 · ⌊n−1

4
⌋

205 + 100 · ⌊n−1
4

⌋


107 ms
167 ms
147 ms
127 ms

SPC 6 + 100 · (n− 1) 9 + 100 · (n− 1) 10 + 100 · n 15 + 100 · n 109 ms
EBS 20 + 100 · (n− 1) 23 + 100 · (n− 1) 15 + 100 · n 20 + 100 · n 100 ms
ODM 100 · (n− 1) 3 + 100 · (n− 1) −5 + 100 · n 100 · n 100 ms
TSD 3 + 100 · (n− 1) 6 + 100 · (n− 1) 5 + 100 · n 10 + 100 · n 107 ms
LCM 100 · (n− 1) 3 + 100 · (n− 1) −5 + 100 · n 100 · n 100 ms
PDD 3 + 100 · (n− 1) 6 + 100 · (n− 1) 35 + 100 · n 40 + 100 · n 137 ms
TDL 3 + 100 · (n− 1) 6 + 100 · (n− 1) 40 + 100 · n 45 + 100 · n 142 ms
RMD 3 + 200 · (n− 1) 6 + 200 · (n− 1) 35 + 200 · n 40 + 200 · n 237 ms
DMD 3 + 500 · (n− 1) 6 + 500 · (n− 1) 335 + 500 · (n− 1) 340 + 500 · (n− 1) 337 ms
RCM 100 · (n− 1) 3 + 100 · (n− 1) −5 + 100 · n 100 · n 100 ms
APD 6 + 100 · (n− 1) 9 + 100 · (n− 1) 40 + 100 · n 45 + 100 · n 139 ms
IFD 50 + 100 · (n− 1) 53 + 100 · (n− 1) 45 + 100 · n 50 + 100 · n 100 ms

In
ge

nu
ity

(F
ig

.4
) CAM 40 · (n− 1) 3 + 40 · (n− 1) −5 + 40 · n 40 · n 40 ms

FD 3 + 40 · (n− 1) 6 + 40 · (n− 1)

{
65 + 80 · ⌊n−1

2
⌋ if (n− 1) mod 2 = 0

100 + 80 · ⌊n−1
2

⌋ if (n− 1) mod 2 = 1

{
70 + 80 · ⌊n−1

2
⌋

105 + 80 · ⌊n−1
2

⌋

{
67 ms
62 ms

FT 46 + 80 · (n− 1) 49 + 80 · (n− 1) 105 + 80 · n 110 + 80 · n 64 ms
PL 6 + 80 · (n− 1) 9 + 80 · (n− 1) 70 + 80 · n 75 + 80 · n 69 ms
FP 49 + 80 · (n− 1) 52 + 80 · (n− 1) 110 + 80 · n 115 + 80 · n 66 ms
FM 40 · (n− 1) 3 + 40 · (n− 1) −5 + 40 · n 40 · n 40 ms

E. Other Ways to Use the Proposed Method

1) Improving Scheduling and Energy Consumption: The
timing constraints of the PolyGraph execution model can be
used further in the system’s design process, e.g., to improve the
scheduling synthesis and simulation [7], [11]. As a concrete
example, the earliest finish time, i.e., the time from which a
job can release a contention on a shared resource (if any), can
be used to improve scheduling.

Our method also shows potential for enhancing energy
efficiency in CPSs. In reference [12], the authors present a
technique for reducing power consumption in a CPS modeled
with a directed acyclic graph where all actors have real-time
constraints. The authors determine the execution windows of
the actors and use these windows to minimize power consump-
tion. Our approach permits the application of their findings on
CPSs that contain only a select number of processes with real-
time constraints.

2) Schedulability Test: Our approach offers a simple way
to do a schedulability test. Let P = (V,C) be a PolyGraph
model, let VT be the set of timed actors in P , and let
n exec(v) be the number of times an actor v ∈ V is executed
within a hyperperiod of P . Suppose that the allocation of
processes on the system’s cores is statically defined. In that
case, the system is schedulable with the Earliest Deadline First
scheduling if the value obtained from equation (5) is less than
or equal to 1 for each core. It is also easy to proceed to the
relevant test for other scheduling policies, such as RMS [8].

∑
v∈VT

wcetv
periodv

+
∑

v∈V \VT

1

n exec(v)

n exec(v)∑
i=1

wcetv
deadlineiv − releaseiv

(5)

V. RELATED WORKS

The reference [13] deals with the deadline assignment
problem for systems constrained by an end-to-end deadline.
The authors suggest multiple strategies to assign a deadline
to the system’s actors. The most straightforward strategy
(known as Ultimate Deadline in [13]) assigns to each actor
a deadline equal to the end-to-end deadline of the system,
while the most complex one (known as Equal Flexibility in
[13]) divides the laxity (the difference between the end-to-
end deadline and the sum of the WCET of the actors) among
the actors proportionally to their execution times and their
position in the processing chain. Another relevant reference
[14] addresses the deadline assignment problem in dynamic
systems where configuration changes frequently, such as real-
time distributed databases or video streaming systems. In this
case, the system can reject an input flow if the workload it
introduces may result in a missed deadline. Our approach
differs by considering the sensors as periodic actors whose
inputs cannot be dismissed. A third approach to distributing the
system’s laxity is presented in [15], which involves solving a
Mixed Integer Linear Programming problem. These references
[13]–[15] all aim to distribute the system’s laxity among actors
and derive their deadline accordingly, while our work seeks to
derive a deadline that results in zero laxity.

The execution windows assignment problem, similar to the
one addressed in this paper, is tackled in references [16]–[18].
As in [13]–[15], the references [16], [17] distribute the laxity
of the system among the actors. The reference [16] presents
two widely used metrics to divide the laxity among the actors:
pure laxity and norm laxity. While the former divides fairly
the overall laxity among the actors, the latter gives a laxity



proportional to the execution time of the actors. The work of
[17] enhances the reference [16] by introducing an execution
time threshold and a virtual execution time to influence the
execution windows length. For instance, the virtual execution
time can make a process appear to have a longer execution
time than what it actually takes. The authors of [18] approach
the execution windows assignment problem differently. In the
context of mixed-criticality systems and with the help of
integer linear programming, they assign execution windows in
a fault-tolerant manner. Critical tasks have execution windows
long enough to be re-executed in case of failure without
compromising the system’s end-to-end deadline.

In the literature, methods have been proposed to automat-
ically derive real-time parameters (such as period, deadlines,
and delay) for all actors. One approach, presented in [19],
involves deriving a set of constraints with real-time param-
eters as free variables. Another approach, described in [20],
utilizes an algorithm to derive real-time parameters for systems
modeled with Homogeneous SDF (HSDF), a less expressive
dataflow model than the PolyGraph model.

Our methodology differs from previous approaches, such
as those outlined in [13]–[17], in that we do not distribute
the system’s laxity among its actors. Instead, we adopt the
approach presented in the more recent work of [21], which
determines the latest start time for each job to ensure that
there is no laxity, i.e., the time by which a job can be delayed
without missing its deadline. It is worth noting that while the
work of [21] allows for event-triggered actors, a PolyGraph
model only allows for time-triggered actors.

VI. CONCLUSION AND FUTURE WORKS

We have presented an offline and automatic method to
improve a CPS’s laxity (release time, earliest finish time,
latest start time, deadline) with real-time constraints on some
processes only. These results can be used for multiple pur-
poses, including schedulability tests, enhancing the scheduling
synthesis and simulation, and improving runtime monitoring
procedures. Our method applies to CPSs modeled with the
PolyGraph model. Moreover, as the PolyGraph model is a
superset of some DF MoCs, such as SDF and CSDF, our
method also applies to CPSs modeled with these DF MoCs.

Our upcoming research will explore the runtime monitoring
of the latest start times and deadlines of processes to enable
early detection of missed deadlines. More generally, we aim
to improve the detection of timing anomalies during the CPS’s
design phase to enhance the CPS validation and verification
process.
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