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ABSTRACT: Agriculture intensification in Southern Brazil’s subtropical regions combined 
with the frequent occurrence of erosive rainfall has rendered the area a global water 
erosion hotspot. In this scenario, understanding and regulating erosion processes at 
the river catchment scale is critical for mitigating soil and water resource degradation. 
Traditional methods for tracing sediment sources are expensive and time-consuming 
and justify the development of alternative approaches. Therefore, in this study, we 
employed diffuse reflectance spectroscopy analyses in the ultraviolet-visible (UV-VIS), 
near-infrared (NIR), and mid-infrared (MIR) ranges, combined with multivariate models 
and spectral pre-processing techniques to estimate sediment source contributions in a 
homogeneous subtropical catchment (Conceição River, 804 km²). Soil samples (n = 181) 
were collected to characterize the four potential sediment sources, including: cropland  
(n = 78), stream bank (n = 36), unpaved road (n = 40) and pasture (n = 27). Moreover, 
44 sediment samples were collected, including suspended sediment (n = 8), fine sediment 
deposited on the riverbed (n = 15), and suspended sediment samples collected in the 
water column during storm events (n = 21). Vector machine (SVM) model outperformed 
the others, with better accuracy and reliability. While UV-VIS spectra proved less effective 
due to soil homogeneity across the catchment, NIR and MIR spectra provided valuable 
information for discriminating sediment sources. Furthermore, reducing the number of 
potential sources (from four to three or two) improved model predictions, especially when 
distinguishing between surface sources (cropland and pasture) and subsurface sources 
(unpaved roads and stream banks). The study’s findings shed light on the power of efficient 
and cost-effective alternative methods for assessing sediment sources, which are vital for 
promoting effective erosion control and sustainable land management in similar regions.
Keywords: erosion processes, spectral discrimination, sediment fingerprinting, support 
vector machine, land management.
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INTRODUCTION
Agriculture intensification without effective soil conservation management practices 
(often referred to locally as ‘conservationist’) associated with the high rainfall erosivity 
observed in subtropical regions of Southern Brazil make the region a global water erosion 
hotspot (Golosov and Walling, 2019). Therefore, measures to control erosion processes 
need to be adequately designed to mitigate soil and water resource degradation. At the 
river catchment scale, identifying and quantifying the contribution of the main sediment 
sources delivering material to the river system helps guide the efforts to control erosion 
processes more effectively (Collins et al., 2017).

Although monitoring studies of the impacts of human activity and climate change on 
natural resources (soil and water) is essential (Poesen, 2017), this type of research 
has remained relatively scarce in Brazil (Melo et al., 2020). Conventional techniques 
for tracing the sources of sediments delivered to the river network using tracers such 
as radionuclides, stable isotopes of specific organic compounds, or even geochemical 
composition are expensive and time-consuming methods (Collins et al., 2020).

In this context, diffuse reflectance spectroscopy in the visible and infrared wavelengths 
has emerged as a potential alternative to conventional analytical methods. This method 
relies on physical measurements that do not generate chemical residues since it requires 
only a small sample quantity for analysis and generates a large amount of information 
about the sample composition (Viscarra Rossel et al., 2006). Spectroscopy data has 
already been used to derive parameters related to soil organic constituents and mineral 
composition (Amorim et al., 2021), as well as color parameters (Tiecher et al., 2015; 
Pulley et al., 2018; Sellier et al., 2021) to be used as discrete variable tracers in mixture 
models. Another option is to use all spectra as a set of potential fingerprint properties 
through multivariate models. This method has already been used successfully to predict 
the contribution of sediment sources in contrasted catchments of Europe (Poulenard  
et al., 2009, 2012). In small heterogeneous catchments, the potential of this technique 
has also been demonstrated in Southern Brazil (Tiecher et al., 2016, 2021). In these 
studies, the magnitude of the source contributions to sediment predicted by the alternative 
method based on spectroscopy data was similar to those obtained by the conventional 
method based on geochemical tracers.

In contrast, the method has not yet been tested in a context where soil classes are 
homogeneous and more than two or three potential sediment sources may be found, 
such as in the Conceição river catchment in Southern Brazil (Ramon et al., 2020). Several 
studies have been conducted using diffuse reflectance spectroscopy as tracers and 
multivariate models to predict source contributions, as well outlined in the literature 
review of 28 scientific papers on this topic presented by Tiecher et al. (2021). However, 
they were conducted in smaller catchments with more contrasting characteristics of the 
sources. In this context, the combination of multiple spectral bands such as ultraviolet-
visible (UV-VIS), near-infrared (NIR) and mid-infrared (MIR) may provide an alternative 
to improve the accuracy of model estimates. The use of multiple spectral ranges may 
improve the model performance due to the different types of information regarding the 
soil and sediment properties contained in each region of the spectra (Viscarra Rossel  
et al., 2006). The UV-VIS spectra provide mainly information related to the organic matter 
and iron oxide content, while the MIR and NIR wavelengths may provide information 
related to the occurrence of different minerals types and organic matter compounds, 
which together may result in a wide set of contrasted properties (Tiecher et al., 2021; 
Viscarra Rossel and Behrens, 2010). In addition, spectral pre-processing techniques 
for parametric and non-parametric multivariate models, such as Partial Least Squares 
Regression (PLSR) and Support Vector Machine (SVM), may improve the accuracy of 
results by removing baseline shifts and enhancing spectral features. This strategy 
had already been applied successfully by Tiecher et al. (2021) in a small catchment  
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(1.23 km²) of Southern Brazil, where the SVM and PLSR associated with the first derivative 
of Savitzky-Golay spectral pre-processing offered the best results. However, this approach 
remains to be tested and validated in larger and more homogeneous catchments, 
especially when considering multiple potential sediment sources.

This research aimed to test and compare the performance of PLSR and SVM models for 
estimating the contribution of sediment sources to the river network in a homogeneous 
agricultural catchment using diffuse reflectance spectroscopy outputs as a set of potential 
fingerprints. In addition, our goal is to verify which spectral range and which pre-processing 
technique offers the best results for sediment source contribution predictions in a large 
catchment with highly weathered and homogeneous soils in Southern Brazil, as this 
type of environment is considered nowadays as one of the soil erosion hotspots of the 
world (Foucher et al., 2023).

MATERIALS AND METHODS

Study site

The study was conducted in the Conceição River catchment (804 km²), located in the 
northwest of the state of Rio Grande do Sul (Figure 1). According to the Köppen classification 
system, the climate is classified as Cfa, humid subtropical without a defined dry season, 
with an average annual rainfall between 1750 and 2000 mm per year and an average 
temperature of 18.6 °C. This catchment is representative of the basaltic plateau region 
of the Serra Geral Formation, where the main soil classes found are Ferralsols/Latossolos 
(80 %), Nitisols/Nitossolos (18 %) and Acrisols/Argissolos (2 %) (IUSS Working Group 
WRB, 2015/Santos et al., 2013), with mineralogy dominated by iron oxides and kaolinite. 
The main land-use is cropland (89 %), mainly cultivated under no-tillage with soybeans 
(Glycine max) in summer and wheat (Triticum aestivum) for grain production, oats (Avena 
sativa and Avena strigosa) and ryegrass (Lolium multiflorum) for feeding dairy cattle 
or used as a cover crop to protect the soil during winter. Improved soil management 
practices, such as no-till farming, have significantly contributed to notable reductions 
in erosion rates compared to the 1980s. Despite these advancements, the region still 
experiences high erosion rates due to the poor quality of the no-till system carried out 
in the region (Didoné et al., 2019).

The relief of the river catchment is characterized by gentle slopes (6-9 %) at the 
highest positions of the landscape and steeper slopes (10-14 %) near the drainage 
channels, with altitudes ranging from 270 to 480 m. The catchment outlet is located 
next to the monitoring point number 75,200,000 of the National Water Agency (ANA)  
(28° 27’ 22” S, 53° 58’ 24” O) in the municipality of Ijuí.

Source and sediment sampling

Soil composite samples (n = 181) were collected in representative sites to characterize 
the four potential sediment sources, including cropland (n = 78), stream bank (n = 36), 
unpaved road (n = 40) and pasture (n = 27). Samples were collected from the topsoil 
layer (0.00-0.05 m) of surface sources (cropland and pasture) (Figure 2). In stream 
banks, the samples were collected in the exposed sidewall, avoiding the material from 
the uppermost layer. Samples of unpaved roads were taken mainly in the roadsides 
where erosion is the most evident, which corresponds to the deeper layers of the soil. 
Moreover, this strategy avoids sampling material transiting from other sources before 
reaching the river network. For all source samples, around ten sub-samples were collected 
within a radius of approximately 50 m and well-mixed to prepare a composite sample 
representative of the area. Samples were collected at sites sensitive to erosion and 
connected to the stream network. A total of 44 sediment samples were collected from 
March 2011 to March 2013, including suspended sediment samples collected by time 
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Figure 1. Location of the Conceição River catchment in Southern Brazil and digital elevation model.

Figure 2. Lithological formations, soil types and source sample location (a); and land-use map for the year 2012 (b) in the Conceição 
River catchment, Southern Brazil.

(a) (b)
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integrating suspended sediment samplers (TISS) (n = 8), fine sediment deposited on 
the riverbed (n = 15) and suspended sediment samples collected in the water column 
during storm events (n = 21). Source and sediment samples were oven-dried at 50 °C, 
gently disaggregated using a pestle and mortar and dry-sieved to 63 µm to avoid the 
particle size effect (Laceby et al., 2017).

Artificial mixtures

Equal proportions of the samples from each sediment source were mixed in the laboratory 
to prepare a single reference sample for each corresponding source (cropland, pasture, 
unpaved roads, and stream bank). Subsequently, these four reference samples were 
mixed, combining 97 different proportions from each source. These mixtures were then 
used to calibrate the multivariate mathematical models used to estimate the respective 
source contributions to the sediment samples.

Spectral analyses

Diffuse reflectance spectral analyses were carried out in the ultraviolet–visible (UV-VIS, 
200–800 nm with 1 nm step), near-infrared (NIR, 1000-2500 nm with 1 nm step) and 
mid-infrared wavelengths (MIR, 2500–25,000 nm with 5 nm step). The UV-VIS spectra were 
measured for each powdered sample using a Cary 5000 UV-VIS-NIR spectrophotometer 
(Varian, Palo Alto, CA, USA) at room temperature, using BaSO4 as a 100 % reflectance 
standard. The NIR spectra was measured using a Nicolet 26,700 FTIR spectrometer 
(Waltham, Massachusetts, USA) in diffuse reflectance mode with an integrating sphere 
and a InGaAs detector with 100 readings per spectrum. The MIR spectra were measured 
with a Nicolet 510-FTIR (Thermo Electron Scientific, Madison, WI, USA) spectrometer in 
diffuse reflectance mode with 100 readings per spectrum. For MIR analysis, a direct current 
of air was used (dry and without CO2) to eliminate CO2 and water from the spectrometer 
in order not to interfere with scanning when obtaining the spectra.

Spectral pre-processing techniques and multivariate model calibration and 
validation

After the spectra acquisition, they were submitted to three different spectral pre-processing 
techniques to outline features of interest and reduce the physical variability due to light 
dispersion or systematic variations due to environmental and instrumental conditions 
(Barnes et al., 1989; Dotto et al., 2019). Standard Normal Variate (SNV), Detrend (DET) 
and Savitzky-Golay Derivate (SGD) pre-processing techniques were then compared to 
the raw spectra (RAW). These pre-processing techniques were chosen based on the 
performance of previous studies available in the literature, such as found in Tiecher et al. 
(2021). The SNV normalize the spectral data to correct for light scatter. The DET allows 
the correction of wavelength-dependent scattering effects, normalizing the spectral 
data. The SGD reduces the high-frequency noise in the signal by smoothing properties 
and reducing the low-frequency signal by differentiation. The SGD was applied with a 
first derivative using a first-order polynomial and an 11-nm search window, where the 
latter window search was defined based on prior testing.

To develop the prediction models, a parametric multivariate model, the PLSR (method 
‘pls’) (R pls package) (Mevik et al., 2016), and a non-parametric model, the SVM (method 
‘svmLinear’) (R e1071 package) (Meyer et al., 2019), were used. The PLSR are frequently 
used because of their simplicity, robustness, high performance and easy accessibility. In this 
method, the raw spectra are converted into latent variables to reduce the dimensionality, 
and multiple linear regressions are then implemented between the measured spectra and 
the variable of interest. The SVM has the advantage of being able to model non-linear 
relations, since the latter are expected between spectral variables and organo-mineral 
components of the soil (Tiecher et al., 2021; Viscarra Rossel and Behrens, 2010). More 
detailed information about the process utilized by these models to estimate source 
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contributions can be found in Tiecher et al. (2021) and Naibo et al. (2022). The models 
were calibrated and validated by cross-validation with 10 k-fold, using a random division 
into segments. The performance of the models in estimating the contribution from each 
source to sediment was evaluated by the following quantification statistics of accuracy: 
coefficient of determination (R²) (Equation 1) and root mean square error of prediction 
(RMSE) (Equation 2).

in which: ŷ is the predicted value, ȳ is the observed mean value, y is the observed value, 
and n is the number of samples.

Moreover, the model performance was also compared based on the prediction results of 
source contributions to sediment samples. For this purpose, as suggested by Legout et al. 
(2013) and Tiecher et al. (2021), we considered that the closer the total sum of the source 
contributions in sediment samples is from 100 %, the higher is the model performance. 
Sums of contributions from each source that differ from 100 % are a consequence of 
this approach, in which a model is calibrated and validated to predict the contribution 
of a single source based on artificial mixtures. Unlike mixing models, in which, through 
interactions, the model adjusts the contribution of each source so that the sum is 100 
%, in this approach, this interaction between models for each source does not occur. 
All pre-processing and data modeling was performed in R software (R Development 
Core Team, 2020). The statistical performance was compared with an ANOVA at a 5 % 
significance level. When significant, the difference between the means of the multivariate 
model, the pre-processing technique and the spectral range combination means were 
evaluated by the Tukey test (p<0.05).

Building spectroscopy models for different sediment sources

Spectroscopic models were built considering three approaches. First, the models were 
calibrated for each of the four potential sources considered (cropland, pasture, unpaved 
roads and stream bank). Previous studies conducted in the same catchment already 
showed a high similarity of the soil properties under cropland and pasture (Tiecher  
et al., 2018; Ramon et al., 2020). For this reason and to avoid misclassification between 
these two surface/agricultural sources, they were grouped as surface sources in a second 
approach. Merging sources with similar characteristics is a method that has already 
been used in previous studies to have greater reliability in model prediction (Poulenard  
et al., 2009). In addition, a third approach was tested grouping unpaved roads and 
stream banks into a single subsurface source category. Accordingly, in that case, only 
two sources (i.e., surface and subsurface) were considered.

Regardless of the source considered, in total, 56 models were calibrated for each sediment 
source with the combination of two multivariate models (PLSR, and SVM), four spectra 
pre-processing techniques (RAW, SNV, DET, and SGD) and seven spectral ranges (UV-VIS, 
NIR, MIR, UV-VIS+NIR, UV-VIS+MIR, NIR+MIR, UV-VIS+NIR+MIR). Therefore, altogether, 
504 models were constructed in the current research, considering four (n = 224), three 
(n = 168) and two (n = 112) potential sources, respectively.

RESULTS AND DISCUSSION

Effect of multivariate model calibration

The three approaches, with the combinations of multivariate models, spectral ranges 
and pre-processing techniques, resulted in 504 models. Overall, the SVM provided more 
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accurate models compared to PLSR, as indicated by the higher R² and lower RMSE values 
obtained with SVM, regardless the number of sediment sources considered. Table 1 shows 
the statistics obtained for each combination of multivariate models, pre-processing 
technique and spectral range. The PLSR provided the lowest RMSE and the highest R² 
individual values among the three approaches. However, R² and RMSE varied widely 
depending on the source, the pre-processing technique and the spectral range considered. 
In contrast, the SVM model provided a lower variation in the associated R² and RMSE 
values, showing a better performance regardless of the spectral range or pre-processing 
technique considered (average values of each approach: R² >0.97 and RMSE <4.14 %) 
(Table 1). The SVM model managed to establish mathematical relationships to express 
non-linear correlations between the organo-mineral composition and the spectral behavior 
of sediment and soil samples (Viscarra Rossel and Behrens, 2010; Wijewardane et al., 
2016). Due to the ability and flexibility to handle non-linear relationships between spectra 
and soil/sediment properties, the SVM has been more appropriate for calibration of large 
heterogeneous samples, providing better results than PLSR models (Araújo et al., 2014; 
Lucà et al., 2017; Tiecher et al., 2021). Based on the general statistical performance of 
the multivariate model calibration, the SVM was considered the most robust model for 
predicting sediment source contributions. The PLSR model also provided satisfactory 
validation statistical values, with R² values close to one and low RMSE values, as already 
observed in other studies (Legout et al., 2013; Ni et al., 2019). Since there is no consensus 
in the literature on how to define the best prediction models and the best pre-processing 
method, preliminary tests considering all the possible combinations are recommended, 
in particular in large and complex catchments with a higher number of potential sources 
(Tiecher et al., 2021).

Effect of pre-processing techniques

Among the tested pre-processing techniques, the SGD showed the lowest RMSE and 
the highest R² values for the SVM model (Table 1). Although the three pre-processing 
techniques (SGD, SNV and DET) resulted in models with similar accuracies, only the 
SGD technique was significantly better than the RAW spectra. Based on this result, the 
SGD was considered the best pre-processing technique for SVM models. The opposite 
situation was observed for the PLSR model, in which the SGD pre-processing technique 
resulted in the highest RMSE and the lowest R² values, even when compared to the RAW 
spectra (without spectra pre-processing). With the PLSR models, the SNV resulted in the 
lowest RMSE values. However, it did not differ significantly from the RAW spectra in all 
the approaches and from other pre-processing techniques for the approaches considering 
four and two sources, respectively (Table 1). The SNV was significantly different from the 
SGD pre-processing technique in the approach with three sources. Tiecher et al. (2021) 
suggested that pre-processing techniques may potentially improve model calibration in 
larger catchments with soils showing homogeneous mineralogical compositions. However, 
this was not observed in the current research, since the pre-processing techniques 
did not result in major gains of model calibration. According to these results, the SGD 
pre-processing technique is recommended as an alternative to improve SVM model 
calibration. In contrast, for the PLSR model, no pre-processing is recommended, since 
none of the tested methods led to significant improvements in the statistical parameters.

Effect of spectral ranges

In all three approaches, with four, three and two potential sediment sources, the models 
calibrated with the UV-VIS spectra resulted in higher RMSE and lower R² values, regardless 
of the pre-processing or multivariate model used (Table 1). The other spectral ranges, 
including the UV-VIS spectra (especially UV-VIS+NIR and UV-VIS+MIR) also resulted in 
low accuracy models, mainly when combined with the PLSR approach (Table 1). The 
calibration of the SVM model provided better results than the PLSR model for UV-VIS 
spectra and better results than those obtained with most of the other spectral ranges. 
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With the exception of the UV-VIS spectra, the other spectral ranges resulted in R² values 
close to one. For the PLSR, the difference in model performance between the spectral 
ranges considered was higher, especially when comparing the RMSE values. The best 
results were observed for the combination of NIR+MIR, which differs statistically in all 
the approaches from the UV-VIS, UV-VIS+NIR and UV-VIS+MIR spectral ranges. The 
UV-VIS range is highly influenced by the content of iron oxide in soils and sediments 
(Viscarra Rossel and Behrens, 2010). In the Conceição River catchment, the occurrence 
of highly weathered and homogeneous soils with the absence of clear composition 
difference between soil layers and land-use sources, had already been demonstrated 
with other tracers (geochemical composition, magnetic and colour parameters), which 
complexifies their discrimination (Tiecher et al., 2018; Ramon et al., 2020). For similar 
reasons, differences are likely not sufficient between the considered sources to provide 
discrimination in the UV-VIS range.

Table 1. Comparison of spectroscopic model accuracy indicated by R2 and RMSE as affected by pre-processing technique and spectral 
range using PLSR and SVM methods considering four, three and two potential sources of sediments

Parameter

Combination 
of pre-

processing 
technique and 
spectral range

Four sediment sources (cropland, 
pasture, unpaved roads, stream 

bank)

Three sediment sources 
(surface, unpaved 

roads, stream bank)
Two sediment sources 
(surface, subsurface)

PLSR SVM PLSR SVM PLSR SVM

RMSE

Pre-processing

RAW 5.26 a 4.83 a 5.29 ab 4.44 a 6.92 a 5.13 a
SNV 5.62 a 4.27 a 4.66 b 3.96 ab 5.96 a 4.40 a
DET 5.48 a 4.10 ab 5.32 ab 3.83 ab 6.92 a 4.21 ab
SGD 6.86 a 3.10 b 6.85 a 2.93 b 7.52 a 3.38 b

Spectral range

UV 17.77 a 12.4 a 15.89 a 10.04 a 21.27 a 11.8 a
NIR 2.92 bc 2.56 b 2.29 c 2.58 b 2.39 d 2.88 b
MIR 4.17 bc 2.74 b 4.48 bc 2.84 b 6.17 bc 3.18 b

UV+NIR 5.16 b 2.61 b 4.68 bc 2.61 b 3.84 cd 2.77 b
UV+MIR 5.40 b 2.80 b 6.22 b 2.79 b 7.99 b 3.21 b
NIR+MIR 1.88 c 2.68 b 1.60 c 2.79 b 1.74 d 3.15 b
UV+NIR 

+MIR 3.33 bc 2.70 b 3.55 bc 2.79 b 4.40 cd 3.13 b

Mean 5.80 Aa 4.07 Ab 5.53 Aa 3.79 Ab 6.83 Aa 4.56 Ab

R²

Pre-processing

RAW 0.94 a 0.94 b 0.95 ab 0.96 b 0.93 a 0.96 b
SNV 0.94 a 0.96 ab 0.96 a 0.97 ab 0.95 a 0.96 ab
DET 0.93 a 0.97 ab 0.95 ab 0.98 ab 0.92 a 0.98 ab
SGD 0.90 a 0.99 a 0.91 b 0.99 a 0.89 a 0.99 a

Spectral range

UV 0.61 b 0.80 b 0.73 b 0.88 b 0.60 b 0.87 b
NIR 0.99 a 0.99 a 0.99 a 0.99 a 0.99 a 0.99 a
MIR 0.98 a 0.99 a 0.98 a 0.99 a 0.96 a 0.99 a

UV+NIR 0.96 a 0.99 a 0.96 a 0.99 a 0.99 a 0.99 a
UV+MIR 0.96 a 0.98 a 0.94 a 0.99 a 0.94 a 0.99 a
NIR+MIR 1.00 a 0.99 a 1.00 a 0.99 a 1.00 a 0.99 a
UV+NIR 

+MIR 0.98 a 0.99 a 0.98 a 0.99 a 0.98 a 0.99 a

Mean 0.93 Ab 0.96 Aa 0.94 Ab 0.97 Aa 0.92 Ab 0.97 Aa
Means followed by the same low case letters in the column, comparing pre-processing techniques and spectral ranges, are not significantly different 
according to the Tukey test at p<0.05. Means followed by the same capital letters in the raw, comparing the number of sediment sources considered, are 
not significantly different according to the Tukey test at p<0.05. Means followed by the same low case letters in the raw, comparing multivariate models, 
are not significantly different according to the Tukey test at p<0.05. PLSR: Partial Least Square Regression; SVM: Support Vector Machine; UV: Ultra-violet-
visible; NIR: Near Infrared; MIR: Mid Infrared. In the “Pre-processing” rows, values indicated are the average of all Spectral range and sources, while in the 
“Spectral range” rows, values are the average of all pre-processing and sources.
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Absorption features in NIR and MIR wavelengths are mainly related to the content in 
structural water, clay minerals and organic matter, and they can provide a large quantity 
of information about the sample composition (Viscarra Rossel and Behrens, 2010; Tiecher 
et al., 2017). Differences in organic carbon content between surface (22.0 to 25.9 g kg-1) 
and subsurface (7.4 to 15.7 g kg-1) layers (Ramon et al., 2020) may justify the better 
discrimination obtained in the approach with two sources (surface and subsurface), 
which presented a lower uncertainty associated with the discrimination of the sources  
(11.9 %) and a better percentage of correctly classified source samples (92.8 %) compared 
to the three-source approach (Tables 2, 3, and 4). Indeed, the NIR and MIR spectra 
have been widely and successfully used to predict soil organic carbon contents (Knox  
et al., 2015; Moura-Bueno et al., 2019; Ng et al., 2019) and, further, they may provide 
good discrimination between sources with different soil organic carbon contents. In 
addition, the MIR spectra have been proven to be efficient in predicting different soil 
organic carbon fractions (Reeves III et al., 2006; Bellon-Maurel and McBratney, 2011), 
providing further information about the organic composition of the samples that may 
improve the discrimination between sources.

Table 2. Discriminant function analysis outputs for the approach with four sources in the Conceição 
River catchment, Southern Brazil. This analysis was made after the application of the SGD pre-
processing technique
Selected PCA components 1, 15, 3, 4, 5, 6, 7, 14, 9, 10, 19
Wilk’s Lambda 0.1068
Variance explained by the variables (%) 89.32
Squared Mahalanobis distances
Cropland vs Pasture 1.98
Cropland vs Stream Bank 6.41
Cropland vs Unpaved Road 21.40
Pasture vs Stream Bank 6.65
Pasture vs Unpaved Road 28.36
Stream Bank vs Unpaved Road 15.79
Average 13.43
p-levels
Cropland vs Pasture <0.001
Cropland vs Stream Bank <0.001
Cropland vs Unpaved Road <0.001
Pasture vs Stream Bank <0.001
Pasture vs Unpaved Road <0.001
Stream Bank vs Unpaved Road <0.001
Correctly classified source samples (%)
Croplands 96.15
Pasture 40.74
Stream Bank 77.78
Unpaved Road 87.5
Average 82.3
Uncertainty associated with the discrimination of the source (%)
Cropland 21.54
Pasture 55.38
Stream Bank 30.58
Unpaved Road 14.14
Average 30.41
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All models were well-calibrated, except for the models calibrated with the UV-VIS spectra 
alone, showing a R² above 0.94 and an RMSE below 7.99 % (Table 1). This results are 
better than those observed for another small catchment in southern Brazil, where mean 
validation RMSE values for all pre-processing techniques and spectral ranges exceeded 
7.4 % for PLSR and SVM models (Tiecher et al., 2021). In the current research, the mean 
RMSE values remained below 6.83 % for the PLSR models and 4.56 % for the SVM models 
(Table 1).

Despite the satisfactory statistical values obtained for the model calibrations (Figure 3, 
as an example), the sum of individual source contribution predictions for each sediment 
sample was not always equal to 100 % when using multivariate models. This type of 
result differs from those of the conventional mixing models that require the prediction of 
individual source contributions to lie in a range comprised between 0 and 100 %, and that 
the sum of multiple sources equals 100 %. According to the literature, when unconstrained, 
the closer this sum is to 100 %, the better is the performance of the models (Legout et 
al., 2013; Tiecher et al., 2021). Table 5 shows the average absolute sums for all sediment 
samples and for each spectral range considered. The results showed the UV-VIS spectra 
alone provide the least satisfactory results, differing statistically from those obtained 
with other spectral ranges regardless of the number of sources considered, and the 
multivariate models used. Observing the PLSR model calibrated with UV-VIS spectra, after 
the SGD pre-processing, the predicted contributions were underestimated compared to 
the observed proportions, in particular for the model adjusted for cropland, pasture, and 
unpaved road sources (data not showed). This underestimation led to a lower contribution 
predicted for each of these sources and, consequently, a lower absolute sum, resulting 
in values closer to 100 %. In addition, a statistical difference between spectral ranges 
was also observed in the approach with three sources for the PLSR model, in which the 

Table 3. Discriminant function analysis outputs for the approach with three sources in the 
Conceição River catchment, Southern Brazil. This analysis was made after the application of the 
SGD pre-processing technique
Selected PCA components 1, 14, 3, 4, 5, 6, 7, 19, 9
Wilk’s Lambda 0.1369
Variance explained by the variables (%) 86.31
Squared Mahalanobis distances
Surface vs Stream Bank 5.83
Surface vs Unpaved Road 21.44
Stream Bank vs Unpaved Road 14.30
Average 13.86
p-levels
Surface vs Stream Bank <0.001
Surface vs Unpaved Road <0.001
Stream Bank vs Unpaved Road <0.001
Correctly classified source samples (%)
Surface 98.1
Stream Bank 77.78
Unpaved Road 82.5
Average 90.61
Uncertainty associated with the discrimination of the source (%)
Surface 6.48
Stream Bank 29.42
Unpaved Road 15.64
Average 17.18
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best quality result was observed for the combination for UV-VIS+NIR+MIR (142.1 %). 
This analysis contributed to the identification of the best spectral range to use for source 
tracing. However, from these results, the unique conclusion that can be drawn is the 
use of UV-VIS spectra requires more caution when they are considered potential tracers 
of sediment sources.

Effect of the number of sediment sources considered

Table 1 presents the average statistical values for each multivariate model calibration 
and the number of sources considered. Figures 4 and 5 show the Mahalanobis distances 
between source samples, and they illustrate that soil sample properties from cropland and 
pasture overlap. The combination of these two sources in the third approach increased the 
number of samples for the model calibration, and due to their similarity, this combined 
approach may result in better statistical results. The opposite situation is observed when 
combining unpaved roads and stream banks. Although they both consist of subsurface 
material, they are clearly more different from each other compared to the two types of 
surface sources. The increase in within-source variability when grouping sources together 
may reduce the quality of model calibration. Previous studies have already warned about 
the uncertainty of the method application in more complex catchments with variations 
in soil types and land-uses (Poulenard et al., 2012).

No significant difference was observed when the average statistical values for the 
three approaches are compared (Table 1). However, a higher uncertainty in the 
model predictions is expected with the increase in the number of sources (Poulenard  
et al., 2009; Evrard et al., 2022). Since no significant difference was observed between 

Figure 3. Support vector machine model calibration and validation with the MIR spectra after 
SGD pre-processing.
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the tested approaches and a better discrimination is expected when reducing the source 
number, a principal component analysis (PCA) was applied to the soil data to obtain the 
natural clustering of each source for the three approaches. Subsequently, a discriminant 
function analysis (DFA) was applied to the twenty-first PCA components to verify the 
discrimination capability between sources. The DFA was applied to analyze the impact of 
reducing the number of sources on the discrimination power. The percentage of correctly 
classified samples by the DFA increased with the reduction in source number, from 83.4 
to 90.6 % from four to two sources, respectively (Tables 2, 3, and 4). The uncertainty 
associated with the discrimination of the sources was also reduced, from 28.8 to 15.6 %. 
This is illustrated in figures 6 and 7, and this result further demonstrates the reduction 
of the source number minimizes the uncertainty in the model predictions.

Figure 4. Principal component analysis biplots with four sources for the SVM model calibrated with the combination of MIR spectral 
range and SGD pre-processing technique (left). Two-dimensional scatter plot of the first and second functions derived from the DFA 
(right). CR: cropland; PA: pasture; SB: stream bank; and UR: unpaved road.
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Figure 5. Mahalanobis distance from the discriminant analysis to differentiate subsurface samples 
from surface samples in the Conceição River catchment, Southern Brazil. CR: cropland; PA: pasture; 
SB: stream bank; and UR: unpaved road.
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Although the DFA results were obtained from the MIR spectra after SGD pre-processing, 
it can be seen from figures 8, 9 and 10 that the reduction in source numbers decreases 
the differences between all 56 models with the combination of multivariate models, 
pre-processing and spectral range in the prediction of the source contributions. In the 
approach with two sources, for almost all model combinations, there was no significant 
difference between them (Figure 8). Only five models, the SVM model obtained from 
the UV-VIS spectra alone and the PLSR model calibrated with UV-VIS spectra after SNV 
pre-processing, differed statistically from all the others. For the approach with three 
sources, nine models were statistically different and provided lower-quality results than 

Figure 6. Principal component analysis biplots with three sources for the SVM model calibrated with the combination of MIR spectral 
range and SGD pre-processing technique (left). Two-dimensional scatter plot of the first and second functions derived from the DFA 
(right). Surface: surface sources (cropland+pasture); SB: stream bank; and UR: unpaved road.
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Figure 7. Principal component analysis biplots with two sources (left). Two-dimensional scatter plot of the first and second functions 
derived from the DFA (right). Surface: surface sources (cropland+pasture); Subsurface: subsurface sources (stream bank and unpaved 
road).
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the best set, while for the approach with four sources, sixteen model combinations were 
found in that situation. As the number of sources is reduced, the mean of the absolute 
sum of individual source contributions becomes closer to 100 % and the effect from the 
pre-processing technique, spectral range and multivariate model is expected to decrease. 

Sediment source contributions

According to the statistical analysis already discussed in the previous section, the 
combination SVM-SGD-MIR provided the best suite to predict sediment source contributions. 
Therefore, the sediment source contributions predicted by this combination are presented 
here for the approaches with different numbers of potential sources. A higher uncertainty was 
observed in the first approach with four sources, with source contributions exceeding 100 %  
and including negative contributions predicted for cropland in particular (Figure 11). 
The low discrimination between pasture and cropland samples (Figure 4) indicates the 
occurrence of limited differences in the soil properties between these two superficial 
sources. Consequently, the model calibration for these two sources may result in unreliable 

Table 4. Discriminant function analysis outputs for the approach with two sources in the Conceição 
River catchment, Southern Brazil. This analysis was made after the application of the SGD pre-
processing technique
Selected PCA components 1, 10, 3, 4, 5, 6, 7, 14, 9
Wilk’s Lambda 0.34
Variance explained by the variables (%) 66.27
Squared Mahalanobis distances  
Surface vs Subsurface 7.97
p-levels  
Surface vs Subsurface <0.001
Correctly classified source samples (%)  
Surface 97.14
Subsurface 86.84
Average 92.82
Uncertainty associated with the discrimination of the source (%)
Surface 5.64
Subsurface 18.16
Average 11.90

Table 5. Comparison of the absolute sum of source contributions to individual sediment samples affected by spectral range using PLSR 
and SVM methods considering four, three and two potential sources of sediments, in the Conceição River catchment, Southern Brazil

Spectral range

Four sediment sources
(cropland, pasture, unpaved 

roads, stream bank)

Three sediment sources
(surface, unpaved roads, 

stream bank)
Two sediment sources
(surface, subsurface)

PLSR SVM PLSR SVM PLSR SVM
 % 

UV 284.3 b 528.7 a 285.1 a 536.4 a 230.0 a 486.9 a
NIR 280.4 b 288.1 b 180.3 bc 181.9 b 152.1 b 150.5 b
MIR 228.1 bc 203.5 d 150.0 bc 152.7 b 127.8 b 133.3 b
UV+NIR 294.1 a 318.3 b 184.7 b 204.7 b 149.9 b 172.3 b
UV+MIR 211.7 c 208.7 cd 157.1 bc 158.5 b 146.1 b 129.2 b
NIR+MIR 333.0 a 309.8 b 165.0 bc 190.2 b 161.5 b 150.5 b
UV+NIR+MIR 271.8 abc 279.6 bc 142.1 c 178.5 b 128.0 b 140.7 b

Means followed by the same letters in the column, comparing spectral ranges, are not significantly different according to the Tukey test at p<0.05. 
PLSR: Partial Least Square Regression; SVM: Support Vector Machine; UV: Ultra-violet-visible; NIR: Near Infrared; MIR: Mid Infrared.
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predictions due to their similar properties, even with the optimum fit of the models for 
the two sources (Figure 3). The results show an underestimation of cropland contributions 
with negative values, while pastures displayed higher contributions, especially for Event 
and TISS samples, where, in some cases, their contribution exceeded 100 % (Figure 11).

Figure 8. Mean test of the source contribution absolute sum average of the sediment samples 
for the approach with four sources in the Conceição River catchment, Southern Brazil. The vertical 
black line indicates the 100 %. Means followed by the same letters are not significantly different 
according to the Tukey test at p<0.05. Statistically equal means are grouped by colour. UV or UV-
VIS: ultraviolet-visible wavelength.
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Differences in source contributions were observed according to the types of sediment 
samples. Pasture provided the main sources of suspended sediment during rainfall events 
and also for the TISS samples (Figure 11). However, considering the low discrimination 
between cropland and pasture sources, it can be assumed that the main sediment sources 
for Event and TISS samples are surface sources, as indicated in figure 12. This result 
agrees with those obtained by previous studies conducted in this catchment (Tiecher et 
al., 2018; Ramon et al., 2020). In addition, the absence of runoff control, appropriate soil 

Figure 9. Mean test of the source contribution absolute sum average of the sediment samples 
for the approach with three sources in the Conceição River catchment, Southern Brazil. Vertical 
black line indicates the 100 %. Means followed by the same letters are not significantly different 
according to the Tukey test at p<0.05. Statistically equal means are grouped by colour. UV or UV-
VIS: ultraviolet-visible wavelength.
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conservation practices and the high erosivity potential of rainfall events in the region, may 
generate significant transfers of suspended sediment (Didoné et al., 2017). Accordingly, 
surface sources supplied a greater contribution to sediment samples collected during 
events as well as for the TISS material. It is usually during the flood events that most of 
the sediment fluxes take place (Minella et al., 2017), which indicates that large amounts 
of sediment and associated nutrients may be transported from agricultural areas and 
delivered to water bodies, requiring interventions to avoid soil and nutrient losses from 

Figure 10. Mean test of the source contribution absolute sum average of the sediment samples 
for the approach with two sources in the Conceição River catchment, Southern Brazil. Vertical 
black line indicates the 100 %. Means followed by the same letters are not significantly different 
according to the Tukey test at p<0.05. Statistically equal means are grouped by colour. UV or UV-
VIS; ultraviolet-visible wavelength.
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Figure 11. Sediment source contributions according to the sampling method predicted from the 
SVM-SGD-MIR models in the Conceição River catchment, Southern Brazil. Event: Rainfall runoff 
event; FBS: Fine bed sediment samples; TISS: Time integrated suspended sediment samples; CR: 
cropland; PA: pasture; SB: stream bank; and UR: unpaved road.

Figure 12. Sediment source contributions according to the sampling method predicted from the 
SVM-SGD-MIR models in the Conceição River catchment, Southern Brazil. Event: Rainfall runoff 
event; FBS: Fine bed sediment samples; TISS: Time integrated suspended sediment samples; 
Surface: surface sources (cropland+pasture); SB: stream bank; and UR: unpaved road.
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the field and contamination of the water bodies. In contrast, the sediment collected on 
the riverbed shows larger contributions from the stream bank, which is in agreement 
with the results observed in previous studies conducted in the same catchment (Tiecher 
et al., 2018; Ramon et al., 2020). The reduction in source number and the combination 
of similar sources confirm the preliminary observations showing that surface sources 
provide the main suspended sediment source, for both event-based and TISS samples 
(Figures 12 and 13). In contrast, the subsurface sources, in general, and stream banks, 
in particular, provide the main source for riverbed sediment samples.

CONCLUSIONS
Diffuse reflectance spectroscopy was shown to have potential in estimating the contribution 
of sediment sources from a large and homogeneous subtropical catchment, and may 
provide a more cost-effective method than the more conventional techniques. In this 
environment, the support vector machine model was found to be the most powerful for 
estimating sediment source contributions. Ultra-violet-visible spectra were not efficient for 
tracing the sediment sources in this catchment with homogeneous and highly weathered 
soils, while near and mid-infrared showed good accuracy values. Reducing the number 
of potential sources reduced the uncertainties with source discrimination and model 
predictions. Besides the satisfactory statistical values obtained for both approaches, when 
a larger number of potential sources is considered, more caution with model calibration 
is required and testing different models, pre-processing techniques and spectral range is 
recommended. The approach with four sources indicates pastures provide the main source 
for the suspended sediment collected during events and by the time-integrated sampler. 
However, a high uncertainty is associated with this result. Based on the approaches with 
three and two sources, the model predictions indicate surface sources provide the main 
sediment source to suspended sediment samples collected during rainfall events and 
for time-integrated sediment samples, while the stream bank provides the main source 
to the riverbed sediment samples.

Figure 13. Sediment source contributions according to the sampling method predicted from the 
SVM-SGD-MIR models in the Conceição River catchment, Southern Brazil. Event: Rainfall runoff 
event; FBS: Fine bed sediment samples; and TISS: Time integrated suspended sediment samples.
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