
HAL Id: cea-04708489
https://cea.hal.science/cea-04708489v1

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-step growth mechanism of the solid electrolyte
interphase in argyrodyte/Li-metal contacts

Charity-Grace Chaney, Andrei Golov, Ambroise van Roekeghem, Javier
Carrasco, Natalio Mingo

To cite this version:
Charity-Grace Chaney, Andrei Golov, Ambroise van Roekeghem, Javier Carrasco, Natalio Mingo.
Two-step growth mechanism of the solid electrolyte interphase in argyrodyte/Li-metal contacts. ACS
Applied Materials & Interfaces, 2024, 16 (19), pp.24624-24630. �10.1021/acsami.4c02548�. �cea-
04708489�

https://cea.hal.science/cea-04708489v1
https://hal.archives-ouvertes.fr


Two-step growth mechanism of the solid

electrolyte interphase in argyrodyte/Li-metal

contacts

Gracie Chaney,† Andrey Golov,‡ Ambroise van Roekeghem,† Javier Carrasco,‡,¶

and Natalio Mingo∗,†

†Universit Grenoble Alpes, CEA, LITEN, 17 rue des Martyrs, 38054 Grenoble, France

‡Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque

Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48,

01510 VitoriaGasteiz, Spain

¶Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

E-mail: natalio.mingo@cea.fr

Abstract

The structure and growth of the Solid Electrolyte Interphase (SEI) region between

an electrolyte and an electrode is one of the most fundamental, yet less-well understood

phenomena in solid-state batteries. We present an atomistic simulation of the SEI

growth for one of the currently promising solid electrolytes (Li6PS5Cl), based on ab

initio trained machine learning (ML) interatomic potentials, for over 30,000 atoms

during 10 ns, well-beyond the capabilities of conventional MD. This unveils a two-

step growth mechanism: Li-argyrodite chemical reaction leading to the formation of

an amorphous phase, followed by a kinetically slower crystallization of the reaction

products into a 5Li2SLi3PLiCl solid solution. The simulation results support the recent,
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experimentally founded hypothesis of an indirect pathway of electrolyte reduction.

These findings shed light on the intricate processes governing SEI evolution, providing

a valuable foundation for the design and optimization of next-generation solid-state

batteries.
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Introduction

Li-metal anode all-solid-state batteries (ASSBs) may replace current Li-ion batteries, since

they have higher theoretical energy densities,1 2 are potentially safer than their liquid elec-

trolyte counterparts3 and may also achieve longer cycling life and high power densities.4

Sulfide argyrodite electrolytes, such as Li6PS5Cl (LPSC), are particularly promising for

ASSB’s due to their combination of high ionic conductivities and mechanical softness.5–9

However LPSC is highly reactive when in contact with a Li-metal anode.10 Such a system

corresponds to open circuit conditions before even the first formation cycle is done. During
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the reaction of LPSC with the anode, an SEI layer develops from the reduction of the thio-

phosphate groups. Although an SEI can hinder the rate of charge and discharge, its presence

is sometimes able to protect the electrolyte from further degradation, and to increase the

electrochemical stability window. This is crucial for the practical application of argyrodites

in ASSB’s. Understanding the physics behind the growth of the SEI in Li-metal/argyrodite

contacts is therefore a priority. Experimental evidence for how this SEI forms in LPSC is

however limited, and a detailed description of this process at the atomic level is currently a

very sought after goal.11,12

Ever since the concept of SEI was proposed in 1979,13 many modeling efforts have at-

tempted to decipher the microscopic mechanisms behind the SEI’s initial formation stages

and long term growth.14,15 Each of these models predicts different mechanisms that deter-

mine the reaction rate (ie. ionic diffusion, electron conduction, electron tunneling, vacancy

diffusion, etc.) Although these different models are mutually incompatible in terms of mecha-

nism, most of them are able to replicate the experimentally reported SEI thickness evolution.

This is due to their use of adjustable parameters.(see Single et al.16–18). Thus, it is urgent

to be able to perform ab initio simulations of SEI growth. In the specific case of solid-state

electrolytes, recent progress has taken place by combining bulk ab initio calculations with

analytical expressions and differential equations, in order to obtain the potential profile along

the SEI and elucidate the main ion transport mechanisms involved in its growth.19,20 How-

ever, fully atomistic modeling studies are still scarce. Ab initio molecular dynamics (AIMD)

modeling has been performed.21–24 However, AIMD is a resource-intensive method, where

simulations are limited to time scales of hundreds of picoseconds, and the interface models

include fewer than a thousand atoms, which seem insufficient to capture a realistic picture of

the SEI growth. This problem can be circumvented by the use of ab initio trained machine

learning interatomic potentials (MLIPs).25–31

Thus, the urgent need to understand the SEI growth in Li-metal/solid electrolyte contacts

at the atomic level, and the limitations inherent to AIMD in previous simulations, have
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Figure 1: Li(110)/LPSC(110) interface model I.

prompted us to carry out large scale ML-MD simulations on over 30,000 atoms for tens

of nanoseconds. The results unveil a rich and complex mechanism, inaccessible to shorter,

smaller sized simulations. Although other phenomena are expected to happen at longer time-

and length-scales, such as the coalescence and potentially the migration of the decomposed

phases, we believe that our results bring new insights into the first steps of SEI nucleation.

A broader analysis including mesoscopic and continuum-scale simulations could be necessary

to fully understanding the growth of secondary decomposition phases.

The paragraphs below describe our use of moment tensor potentials (MTPs) with the

MLIP-2 code32 to simulate SEI formation between a Li-metal anode and an LPSC elec-

trolyte at various temperatures, internal pressures, and initial velocities. In a 2022 paper by

Wang et al.,33 MTPs were also used to model the interface between Li-metal and the SEI

decomposition products. As a perspective, the authors call for subsequent investigations

of the formation of those products and of the full Li metal-SEI-LPSC interface, which is

what we provide here. We discover a two-step growth process consisting of an initial elec-

trolyte reduction followed by gradual crystallization of the reaction product. The value of

the exponent in the crystallization’s time dependence appears to be influenced by the MD

temperature, suggesting a qualitative change in the driving mechanism of crystallization.

Finally, we found that crystallization of the reaction product impedes the movement of Li

from the anode, which can slow down the rate of further reduction. The details of our
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computational methods are given in the Appendix.

Results and Discussion

We build two Li(110)/LPSC(110) interface models of different sizes following the methodol-

ogy described in Ref.21 The numbers in parentheses denote the crystallographic directions

of Li and LPSC planes at the interface. Model I includes LPSC and metal Li slabs with 288

formula units and 4212 atoms, respectively (7956 atoms in total) (Fig. 1). Model II includes

1152 LPSC formula units and 16848 atoms of metal Li (31824 atoms in total). The interface

surface areas of models I and II are 1345 Å2 and 5380 Å2, respectively. Direct visualization

of the MD trajectories shows the SEI to be a mixture of amorphous and crystalline regions,

the latter increasingly dominating over the former as time goes by (Figs. 2 and 3). To iden-

tify and quantify the extent of the crystalline regions, we employ a methodology developed

in Ref.34 (see below). In turn, we define the amorphous region as the part of the reduced

electrolyte that is not crystalline. Fig. 2 displays the evolution of these phases over time,

at three different temperatures, from two separate simulations per temperature, where the

velocities at the first time step where initialized from two different random seeds (see SI).

The curves in Fig. 2 clearly show the two basic steps leading to SEI growth: an initial re-

duction of argyrodite by metal Li results in the formation of the amorphous phase, followed

by the crystallization of the reaction product. This observation is in line with the earlier

hypothesis that this solid-state reduction proceeds indirectly via a metastable overlithiation,

which later crystallizes in the stable products.12,35

As previously shown using AIMD, our results also find that the crystalline products are

not a phase separated mixture of LiCl, Li2S, and Li3P, but a 5Li2SLi3PLiCl solid solution,

which corresponds to the antifluorite structure type.34 This is not incompatible with exper-

imental evidence: XPS measurements have been employed to identify the three products,11

however this experimental method, based on characterizing electronic binding energies of
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individual chemical species, faces difficulties in distinguishing between phase-separated do-

mains, or a singular solid solution, where the S sublattice comprises individual substitutions

by P and Cl. Indeed, in this study part of the signal was attributed to unknown reduced

P species, and the possibility of having a solid solution forming rather than separate phases

for the different thermodynamically stable products has also been postulated.35

In terms of microstructure, the simulation allows us to identify four different reaction

stages. Let’s take, for example, the 400 K, 1 bar results of Figs. 2 and 3:

(1) Within the first 5 ps of the simulations, the reaction between Li and the electrolyte

leads to the formation of a thin layer of amorphous product.

(2) Starting from 5 ps, the first crystalline nuclei appear in the amorphous matrix. The

reaction continues with the growth of amorphous and crystalline regions. As discussed

below, electrolyte conversion has a logarithmic dependence on time, while SEI crystallinity

has a square root (at 300 K) or linear (at 400 K) dependence. Thus the amorphous phase

dominates over the crystalline at the initial stages of the reaction.

(3) At 165 ps, electrolyte conversion reaches 71%. This point corresponds to the maximal

amount of amorphous phase within reduced electrolytes. This is also when the so far separate

crystalline domains start to coalesce. Subsequent growth of crystalline nuclei with a limited

amount of unreacted electrolyte will lead to a decrease in the percentage of amorphous

product, and a drastic slowdown in the amount of Li diffusing into the electrolyte. This

slowdown might be related to the decreased Li diffusivity in the crystalline region compared

to that in the amorphous one, and also to the fact that as time progresses there remains less

of the original LPSC left to react with the diffusing Li.

(4) At 1 ns, all electrolyte is reduced and the crystal nuclei reach their maximum size. A

further slight increase in crystallinity is due to changes in the structure of grain boundaries.

We cannot expect 100% crystallinity even with longer MD simulations due to the presence

of defects and grain boundaries.

Fig. 2, also shows that as temperature decreases, the system takes longer to reach its
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long-term growth regime, which can be attributed to the sluggish atomic kinetics. The cases

with 1 bar of internal pressure are rather similar to those with 1 kbar of internal pressure,
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Figure 2: Percentage of reduced solid electrolyte vs time, model II. The thick and thin curves
correspond to two independent MD simulations with different initial velocities.
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since the fluctuations of our MD simulations are themselves over 1 kbar.

An important finding is that the amount of reduced electrolyte in the simulation increases

over time t roughly as log(t) (Fig. 2). This behavior can arise if the rate of Li inflow into

the electrolyte is not limited by diffusion, but by the difference in Li chemical potentials,

Figure 3: Evolution of the SEI. Red: crystalline regions. Yellow: amorphous reduced regions.
Blue dots: Li-metal. Purple polyhedra and green lines correspond to thiophosphate groups
and Li-Cl, Li-S bonds, respectively, in the original argyrodite structure. The snapshots
correspond to the model II interface for various temperatures at a pressure of 1 bar (seed
no. 1 for the initial velocities.) For the sake of clarity, the snapshots at 10 ns, showing full
crystallization, are included in the SI rather than in this figure.
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∆η = µA
Li − µE

Li between the metal anode and the electrolyte. According to the Butler-

Volmer approximation (assuming a symmetry factor α = 0.5), J ∝ e
∆η

2kBT − e
− ∆η

2kBT .36 The

difference in chemical potentials progressively decreases as the electrolytes Li concentration,

n, increases, and it becomes zero when the electrolyte is completely reduced, at n = nr. As

a first approximation we can then write

1

2

∆η

kBT
= γ(n− nr), (1)

which for n << nr yields

J ∝ e−γ(n−nr) ≡ Ae−γn, (2)

where A = eγnr . Since the amount of reduced electrolyte is proportional to n, we have

dn

dt
= J ∝ e−n. (3)

Therefore dt ∝ dn
e−n ⇒ t ∝ en, which implies n ∝ log(t).

The intuitive picture behind this logarithmic law is one where Li atoms roam unimpeded

through the electrolyte, and the only limit to their flow comes from the dwindling chemical

potential difference between the two reacting materials. The log(t) behavior also suggests

that the electrolyte becomes reduced via a continuous lithiation process through which there

is no sharp structural phase transition. It is only after being reduced, that the (by then

amorphous) structure crystallizes, with an associated decrease of Li mobility. (Logarithmic

growth laws are not the most common ones in physics. Another example of logarithmic

behavior is the time dependence of p-MOSFET degradation, which however has a different

origin.37)

After the initial reduction of the electrolyte, crystallization occurs. The crystallization

time dependence is very different from that of the amorphous reduction, and its functional
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form depends on temperature (Fig. 4). For 300 K and 350 K, crystallization begins at

approximately 10 ps and grows with a square-root of time dependence. Such a trend is

common for diffusion-limited processes.38–40 Above 400 K, however, crystallization acquires

a linear time dependence, which is much more common for interface-limited processes.41

As mentioned earlier the rates of reduction and crystal growth appear to plateau in

Fig. 2. It is tempting to associate this to the nearly complete reduction of the electrolyte.

Nevertheless, certain simulations for the smaller system (specifically, the 1 kbar, seed 1 case

of Fig. S1) show a reaction that stalls before all of the available electrolyte is reduced. This

could be attributed to a negative-feedback effect in which Li-diffusion initially promotes

crystallization by reducing the electrolyte, and then the growing crystals impede further

Li movement within the electrolyte. Ultimately, this is because the crystalline interphase

products are poor ionic conductors.33 It appears from Fig. 3 that separate crystalline nuclei

(shown in red) begin near the anode layers, before extending along all directions in three-

dimensional space. Eventually, the crystal regions merge. At first, there are some pores left

for the input Li to enter the electrolyte, but by 1 ns in Fig. 3, the crystal regions block

nearly all incoming Li (see also section S4 of the SI).

Interestingly, the effect of different seeds on the initial velocities is marked only for the

smaller systems, but becomes minor on the largest (31,824 atom) interface models. We

believe this is due to the fact that crystallization proceeds akin to a percolation process.

Throughout reaction stages 2, 3 and 4 (see Fig. 2), the crystalline domains start nucleating

(2), coalescing (3), and finally merging into a continuous polycrystalline layer (4) that splits

the electrode off the rest of the electrolyte, at which the reaction nearly stalls due to lack of

Li inflow. The start of stage 4 can be viewed as the percolation threshold, at which there are

no more amorphous regions left that continuously link electrode and remaining electrolyte.

It is known in percolation theory that the experimental or simulated value of a system’s

percolation threshold becomes more reliable as the system size grows. This explains why

the model I systems still present rather different electrolyte reduction and SEI crystallinity
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Figure 4: Amount of polycrystalline reduced electrolyte, given as a percentage of the total
possible reduction, as a function of time, for the model II interface at 1 bar of internal
pressure. Notice the different time scales.

curves (Fig. S1), depending on the seed, whereas the model II ones have a good match of

the curves up to 10 ns (Fig. 2).

The initial stages of SEI formation just described are a fast process taking place at the

timescale of nanoseconds (ns), after which the slower, long-term growth begins, limited by
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the less ion-conductive 5Li2SLi3PLiCl solid solution polycrystalline layer. Directly observing

the initial reaction stages poses a challenge. Perhaps nano-indentation techniques, in com-

bination with in operando transmission electron microscopy, might enable real time imaging

of the SEI time evolution at the atomistic level, in a similar way as the reorganization of

metal chains during break-junction experiments was imaged some 25 years ago.42

The results presented are for unbiased electrolyte/electrode contacts. A welcome future

development would be the ability to perform similar atomistic simulations in the presence of

applied external electric fields and perhaps finite electron currents. This will require the use

of new methods, including fourth-generation machine learning interatomic potentials under

bias, and possibly involving non-equilibrium electron transport approaches.

Conclusion

In conclusion, we have deciphered the evolution of the atomic structure during the early

stages of SEI growth at a Li-metal/LPSC interface. Machine learning-enhanced MD has

enabled us to simulate systems up to 36 times larger than those previously modeled by

AIMD, for trajectories up to 100 times longer.21 This much larger timescale unveils previously

unknown facts:

1) SEI formation is a two step process: Li-LPSC redox reaction leading to the formation

of the amorphous phase, followed by the crystallization of the reaction products into a

polycrystalline solid solution. This aligns with Schwietert et al.’s hypothesis of an indirect

pathway.12

2) The redox reaction follows a logarithmic time dependence, suggesting that it is driven

by a chemical potential difference. In turn, crystallization increases either linearly, or as a

square-root of time, depending on temperature. This suggests interface- and diffusion-limited

processes, respectively.

3) Over the 10 ns simulation we observe the onset of four distinct reaction stages: forma-
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tion of the amorphous product, crystal nucleation, crystal coalescence, and reaction stalling.

After the onset of the last stage, growth proceeds at orders of magnitude slower rate. The

growth curves become fairly consistently reproducible, irrespective of initial velocities, when

the system size exceeds 30,000 atoms.

By employing predictive atomistic simulations we can surpass inconclusive models of SEI

growth based on adjustable parameters. The outcomes and insights from this study, focusing

on the LPSC/Li-metal contact, serve as an illustration of the potential of this approach for

various other solid electrolyte systems currently under investigation. Further developments

in the field of ASSBs can highly benefit from large-scale, atomistic simulations akin to the

ones showcased in this work.

Supplementary Information

In the supplementary information, we include: (1) phase evolution plots for both models of

the interface, (2) active learning and cross-validation errors, (3) evidence for the diffusion

bottleneck, and (4) atomic configurations of the system at 10 ns.

Acknowledgements

GC, AVR and NM thank T. Ayadi, F. Bruneval, and M. Nastar for helpful discussions.

Project funded by CEA through program FOCUS-batteries. AVR and NM also acknowledge

support from France 2030 through the project ANR-22-PEBA-0002.

References

(1) Wang, C.; Sun, X. The Promise of Solid-State Batteries for Safe and Reliable Energy

Storage. Engineering 2023, 21, 32–35.

(2) Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A. Designing solid-state electrolytes for

safe, energy-dense batteries. Nature Reviews Materials 2020, 5, 229–252.

13



(3) Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q. Recent Advances in En-

ergy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem

2019, 5, 74–96.

(4) Janek, J.; Zeier, W. G. A solid future for battery development. Nature Energy 2016,

1, 1–4.

(5) Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X.

Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity,

stability and application. Energy Storage Materials 2018, 14, 58–74.

(6) Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S. Design Strate-

gies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes

for All-Solid-State Batteries. Advanced Energy Materials 2018, 8, 1800035.

(7) Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.;

Maier, J.; Armand, M.; Chen, L. New horizons for inorganic solid state ion conductors.

Energy & Environmental Science 2018, 11, 1945–1976.

(8) Kudu, . U.; Famprikis, T.; Fleutot, B.; Braida, M.-D.; Le Mercier, T.; Islam, M. S.;

Masquelier, C. A review of structural properties and synthesis methods of solid elec-

trolyte materials in the Li2S P2S5 binary system. Journal of Power Sources 2018, 407,

31–43.

(9) Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G.

Design principles for solid-state lithium superionic conductors. Nature Materials 2015,

14, 1026–1031.

(10) Xiao, Y.; Wang, Y.; Bo, S.-H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding

interface stability in solid-state batteries. Nature Reviews Materials 2020, 5, 105126.

14



(11) Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J. Interfacial reactivity

and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid

State Ionics 2018, 318, 102–112.

(12) Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; de Klerk, N.

J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y.; van der Maas, E.; Kelder, E. M.;

Ganapathy, S.; Wagemaker, M. Clarifying the relationship between redox activity and

electrochemical stability in solid electrolytes. Nature Materials 2020, 19, 428–435.

(13) Peled, E.; Golodnitsky, D.; Ardel, G. Advanced Model for Solid Electrolyte Interphase

Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society

1997, 144, L208.

(14) Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X. Recent development of lithium argy-

rodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability

and dynamics. Nano Energy 2021, 83, 105858.

(15) Peled, E.; Menkin, S. ReviewSEI: Past, Present and Future. Journal of The Electro-

chemical Society 2017, 164, A1703.

(16) Single, F.; Horstmann, B.; Latz, A. Dynamics and morphology of solid electrolyte

interphase (SEI). Physical Chemistry Chemical Physics 2016, 18, 17810–17814.

(17) Single, F.; Latz, A.; Horstmann, B. Identifying the Mechanism of Continued Growth

of the SolidElectrolyte Interphase. ChemSusChem 2018, 11, 1950–1955.

(18) Single, F. Theory-based Investigation of the Solid Electrolyte Interphase in Lithium-ion

Systems. Dissertation, Universitt Ulm, 2021.

(19) Swift, M. W.; Qi, Y. First-Principles Prediction of Potentials and Space-Charge Layers

in All-Solid-State Batteries. Physical Review Letters 2019, 122, 167701.

15



(20) Swift, M. W.; Swift, J. W.; Qi, Y. Modeling the electrical double layer at solid-state

electrochemical interfaces. Nature Computational Science 2021, 1, 212–220.

(21) Golov, A.; Carrasco, J. Molecular-Level Insight into the Interfacial Reactivity and Ionic

Conductivity of a Li-Argyrodite Li6PS5Cl Solid Electrolyte at Bare and Coated Li-

Metal Anodes. ACS Applied Materials and Interfaces 2021, 13, 4373443745.

(22) Cheng, T.; Merinov, B. V.; Morozov, S.; Goddard, W. A. Quantum Mechanics Reac-

tive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface. ACS Energy

Letters 2017, 2, 1454–1459.

(23) Camacho-Forero, L. E.; Balbuena, P. B. Exploring interfacial stability of solid-state

electrolytes at the lithium-metal anode surface. Journal of Power Sources 2018, 396,

782–790.

(24) Wang, C.; Aoyagi, K.; Aykol, M.; Mueller, T. Ionic Conduction through Reaction

Products at the ElectrolyteElectrode Interface in All-Solid-State Li+ Batteries. ACS

Applied Materials & Interfaces 2020, 12, 55510–55519.

(25) Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401.

(26) Behler, J. Constructing high-dimensional neural network potentials: A tutorial review.

International Journal of Quantum Chemistry 2015, 115, 1032–1050.

(27) Behler, J. Perspective: Machine learning potentials for atomistic simulations. The Jour-

nal of Chemical Physics 2016, 145, 170901.

(28) Botu, V.; Batra, R.; Chapman, J.; Ramprasad, R. Machine learning force fields: con-

struction, validation, and outlook. The Journal of Physical Chemistry C 2017, 121,

511–522.

16



(29) Deringer, V. L.; Caro, M. A.; Csányi, G. Machine learning interatomic potentials as

emerging tools for materials science. Advanced Materials 2019, 31, 1902765.

(30) Gokcan, H.; Isayev, O. Learning molecular potentials with neural networks. Wiley In-

terdisciplinary Reviews: Computational Molecular Science 2022, 12, e1564.

(31) Friederich, P.; Hse, F.; Proppe, J.; Aspuru-Guzik, A. Machine-learned potentials for

next-generation matter simulations. Nature Materials 2021, 20, 750–761.

(32) Novikov, I. S.; Gubaev, K.; Podryabinkin, E. V.; Shapeev, A. V. The MLIP package:

moment tensor potentials with MPI and active learning. Machine Learning: Science

and Technology 2020, 2, 025002.

(33) Wang, J.; Panchal, A. A.; Sai Gautam, G.; Canepa, P. The resistive nature of decom-

posing interfaces of solid electrolytes with alkali metal electrodes. J. Mater. Chem. A

2022, 10, 19732–19742.

(34) Golov, A.; Carrasco, J. Unveiling Solid Electrolyte Interphase Formation at the Molec-

ular Level: Computational Insights into Bare Li-Metal Anode and Li6PS5xSexCl Argy-

rodite Solid Electrolyte. ACS Energy Letters 2023, 8, 4129–4135.

(35) Schwietert, T. K.; Vasileiadis, A.; Wagemaker, M. First-Principles Prediction of the

Electrochemical Stability and Reaction Mechanisms of Solid-State Electrolytes. JACS

Au 2021, 1, 1488–1496.

(36) Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P. Rechargeable Alkali-Ion Battery

Materials: Theory and Computation. Chemical Reviews 2020, 120, 6977–7019.

(37) Wang, Q.; Brox, M.; Krautschneider, W.; Weber, W. Explanation and model for the

logarithmic time dependence of p-MOSFET degradation. IEEE Electron Device Letters

1991, 12, 218–220.

17



(38) Chen, Z.; Jenkins, M. J.; Hay, J. N. Annealing of poly (ethylene terephthalate). Euro-

pean Polymer Journal 2014, 50, 235–242.

(39) Hay, J. N. Secondary crystallization kinetics. POLYMER CRYSTALLIZATION 2018,

1, e10007.

(40) Louat, N. P. On the theory of normal grain growth. Acta Metallurgica 1974, 22, 721–

724.

(41) Chason, E.; Aziz, M. J. Effect of pressure on crystallization kinetics of cordierite glass.

Journal of Non-Crystalline Solids 1991, 130, 204–210.

(42) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Quantized conductance through individual

rows of suspended gold atoms. Nature 1998, 395, 780–783.

(43) Podryabinkin, E.; Garifullin, K.; Shapeev, A.; Novikov, I. MLIP-3: Active learning on

atomic environments with Moment Tensor Potentials. 2023; https://arxiv.org/abs/

2304.13144v1.

Appendix: Computational Methods

An overview of the training set generation, energy and force calculation, and MLIP training

is given below.

Molecular Dynamics simulations

The dynamical evolution of the system is followed for 10 ns in an NPT ensemble with a Nos-

Hoover thermo- and barostat. For each system, we investigated three temperatures (300 K,

350 K, and 400 K), two internal pressures (1 bar and 1 kbar), and two random seeds for

initializing the velocities. We used a 1 femtosecond (fs) timestep for all systems, except for
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the model II interface system at 400 K, 1 bar, seed 2, which required 0.5 fs timesteps to

avoid instability.

Training Set

In general, our training set consists of structural descriptors as inputs and DFT data (energies

and forces) as target values. We created our initial 2732-configuration training set, using

some of the AIMD results of Golov and Carrasco’s 2021 paper.21 Using active learning, as

described below, we are able to grow and refine our training set.

MLIP-2

MLIP-2 defines the local interatomic potential of an atom as a linear expansion of basis

functions that are polynomial and consist of moments of inertia. These moments of inertia

are the structural descriptors, consisting of radial and angular information about the local

environment. A cutoff radius must be set by the user at the beginning of training to ensure

smooth behavior of the radial basis functions. We chose a cutoff of 5.0 Å. It is also necessary

for the user to choose the level of moments of the starting potential. The general rule is that

a higher level increases the accuracy but extends the time of MLIP training. We tested a

few levels before choosing a value of 8. We note that a newer version of MLIP has recently

been released, but we did not use it in these calculations.43

Active Learning

Traditionally, ML models have relied on large training sets whose qualities can determine the

accuracy and predictive usefulness of the model itself. Thus, a pre-step to training is often

examining and refining the training data. Such a process can be tedious, time-consuming,

and may even bias the data if the refining is done manually. An alternative is active learning,

which is an automated process that expands the data set by selecting configurations that lead
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to extrapolation. Fig 3 of Novikov’s 2020 paper32 illustrates the basic active learning process

including (B) finding new structures in the training set and (D) calculating the energies and

forces for the new structures. MLIP-2 determines which structures to add to the training set

with the D-optimality criterion, based off of the extrapolation-grade limits, set by the user.

The extrapolation-grade limits determine the ranges in which the active learning algorithm

may select a non-redundant structure to add to the training-set. We gradually decrease the

upper extrapolation grade from 5.5 to 2.5, while keeping the lower extrapolation grade at

1.5.

Model Accuracy

We determine when to end active learning by examining the training-set size over time. As

seen in Fig. S3, the active learning algorithm stops selecting new configurations after 40

iterations. That means the configuration space has already been explored enough to achieve

a reliable accuracy.

We use k-fold cross-validation to determine the accuracy of our final model on both

training and test sets. Specifically, we calculate the root-mean squared absolute difference

errors on 10 k-fold samples. The mean energy/atom errors are 18.36 meV/atom and 20.89

meV/atom for the training and test sets respectively.

Tracking total amount of reduction

We can track the amount of reduced electrolyte by analyzing the phosphorus coordination

numbers. Throughout the reduction reaction, P atoms change their oxidation state from +5

to -3:

Li+6 P
5+S2−

5 Cl− + 8Li0 → 5Li+2 S
2− + Li+Cl− + Li+3 P

3−.

The electrolyte reduction can be viewed as a stepwise breaking of P-S bonds:

(P5+S2−
4 )3− + 2e− →(P3+S2−

3 )3− + S2−

(P3+S2−
3 )3− + 2e− → (P+S2−

2 )3− + S2−
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(P+S2−
2 )3− + 2e− → (P−S2−)3− + S2−

(P−S2−)3− + 2e− → P3− + S2−

According to the equation, the complete reduction of one formula unit of the electrolyte

requires 8 electrons. Consequently, for Z formula units, 8 Z electrons are required. At any

step of molecular dynamics, the number of electrons transferred from metal Li to the elec-

trolyte can be found from the number (N) of partially and completely reduced thiophosphate

groups. Thus, the percentage of reduced argyrodite (α) can be calculated using the following

formula: α =(8N(P)+6N(PS)+4N(PS2)+2N(PS3))/8Z

The P-S coordination numbers were calculated based on a distance criterion of 3Å.
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