
HAL Id: cea-04706384
https://cea.hal.science/cea-04706384v1

Submitted on 23 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A frequency-independent second-order framework for
the formulation of experimental fluidelastic forces using

hidden flow variables
J. Antunes, Philippe Piteau, Xavier Delaune, Romain Lagrange, Domenico

Panunzio

To cite this version:
J. Antunes, Philippe Piteau, Xavier Delaune, Romain Lagrange, Domenico Panunzio. A
frequency-independent second-order framework for the formulation of experimental fluidelastic
forces using hidden flow variables. Journal of Fluids and Structures, 2024, 127, pp.104127.
�10.1016/j.jfluidstructs.2024.104127�. �cea-04706384�

https://cea.hal.science/cea-04706384v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 
 

A frequency-independent second-order framework for the formulation 

of experimental fluidelastic forces using hidden flow variables 
 

J. Antunesa*, P. Piteaub, X. Delauneb, R. Lagrangeb, D. Panunziob 

a Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade 

de Lisboa, 2695-066 Bobadela LRS, Portugal 
* jantunes@ctn.tecnico.ulisboa.pt 

b Université Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, F-91191 Gif-sur-

Yvette, France 

 

 

 
Keywords: Flow-induced vibrations, Flow-structure coupling, Fluidelastic instability, Tube bundles. 

 

 

ABSTRACT 

 
The importance of fluidelastic forces in flow-excited vibrations is crucial, in view of their damaging 

potential. Flow-coupling coefficients are often experimentally obtained from vibration experiments, 

performed within a limited experimental frequency range. For any given flow velocity, these coefficients 

are typically frequency-dependent, as amply documented in the literature since the seminal work of 

Tanaka and Takahara. Such frequency dependence, which seems quite natural in view of the flows 

intricacies, not only is awkward for attempting physical interpretations, but also leads to numerical 

difficulties when performing time-domain computations. In this work, we address this problem by 

assuming that the measured fluidelastic forces encapsulate "hidden" (non-measured) dynamics of the 

coupled flow. This leads to the possibility of modelling the flow-structure coupled dynamics through 

conventional ordinary differential equations with constant parameters. The substructure analysis of 

such a model, augmented with a set of "hidden" flow variables, readily highlights an inevitability of the 

frequency-dependence found in the measured flow forces, when these are condensed at the 

measurement degrees of freedom. The formulation thus obtained clearly suggests the mathematical 

structure of the measured fluidelastic forces, in particular providing the formal justification for a 

modelling approach often used in unsteady aeroelasticity. Then, inspired by previous work in the fields 

of viscoelasticity and soil-structure interaction, we proceed by identifying adequate frequency-

independent second-order flow-coupling matrices from the frequency-dependent experimental data, 

which is a challenging identification problem, even for the specific case of symmetric coupling detailed 

here. Finally, the developed concepts and procedures are applied to experimental results obtained at 

CEA-Saclay (France), for the fluidelastic interaction forces acting on a flexible tube within a rigid 

bundle, although the problem addressed embraces a much wider range of applications. The proposed 

flow modelling and identification approach shows significant potential in practical applications, with 

many definite advantages. 

 

1. Introduction 

 

When dealing with flow-induced vibrations, the importance of fluidelastic forces should not 

be underestimated, in view of their damaging potential. This has been amply documented by 

many researchers, see books by Chen (1987), Blevins (2001), Païdoussis et al. (2011), Kaneko 

et al. (2014) and Pettigrew et al. (2022), hence the need for advanced models of fluidelastic 

coupling, as well as for experimental coupling coefficients, to feed and validate such models. 

In this work, the problem of fluid-elastic data reduction is revisited in the context of heat-

exchanger tube bundle vibrations, although the main features of the proposed framework 

embrace a much wider range of flow-structure coupled systems. 

Flow-structure fluidelastic forces are difficult to model theoretically, due to complex fluid 

dynamics, often involving flow separation and severe vorticity. The physics are somewhat more 
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manageable for structures subjected to axial and azimuthal flows, with no or very limited 

separation, enabling the development of quite effective theoretical models, as documented in 

the extensive work by Païdoussis (2014, 2016), as well as for rotor-flow coupled problems, as 

addressed for instance by Antunes et al. (1996). The modelling problem is however quite 

different and more delicate whenever flow separation is an essential feature of the problem, 

which arises when structures are subjected to cross-flows, typified by the specific case of 

fluidelastic vibrations in heat-exchanger tube bundles. 

For this important problem, semi-empirical models were developed since the sixties, such 

as the early jet-switch model by Roberts (1962), followed by the quasi-static  Connors (1970)-

Blevins (1974) approach. These efforts were later rethought and refined on a more physical 

ground since the early eighties, as reviewed by Price (1995), Païdoussis et al. (2011) and 

Kaneko et al. (2014). Particularly significant are the unsteady model of Tanaka and Takahara 

(1981) and Chen (1983a, 1983b), the semi-analytical model developed by Lever and Weaver 

(1982), the quasi-steady model by Price and Païdoussis (1984) and the quasi-unsteady model 

proposed by Granger and Païdoussis (1996). Numerical dynamical computations have recently 

been developed, based on coupled structural / flow numerical computations, as typified by the 

work of Anderson et al. (2014) and De Pedro et al. (2016). 

Research efforts on simplified physical modelling and understanding of the flow-structure 

coupling forces are actively pursued, leading to increasingly elaborate theoretical approaches. 

The work of Lever and Weaver (1982) already pointed the need for a postulated delay (or phase 

lag) between the structural motion and the ensuing flow-coupling force, in order to obtain 

fluidelastic instability. Such need was also corroborated by Price and Païdoussis (1984) and 

reiterated in most ulterior work, which focused on improving the somewhat fuzzy physical 

understanding of the delayed term, refining the delay modelling, as well as inferring the delay 

function from actual measurements. These aspects have been addressed in significant papers 

since Granger and Païdoussis (1996), including Meskell (2009), Hassan et al. (2010), El 

Bouzidi and Hassan (2015), Mureithi (2017), Li and Mureithi (2017) and Alyaldin and 

Mureithi (2022, 2023). 

On the course of these investigations, the simple time-lag originally used by Lever and 

Weaver (1982) and Price and Païdoussis (1984) evolved to a "memory function" developed by 

Granger and Païdoussis (1996), based on a linear combination of decaying exponentials, and 

more complex delay functions developed in more recent contributions. Interestingly, in the 

work by Granger and Païdoussis (1996) and by Mureithi and co-workers (2017, 2022, 2023) 

classic concepts from unsteady aeroelasticity are recalled, in order to develop fluidelastic time-

lag functions for tube bundles as generalized versions of the Theodorsen aerofoil theory, see 

Fung (1969) or Dowell (2022). 

Because of the difficulties in obtaining reliable models of fluidelastic forces, when the flows 

are complex, the coupling force coefficients are often experimentally identified from vibration 

experiments, in order to feed and/or validate the theoretical models. As conceptualized in Fig. 

1, fluidelastic forces are often addressed through linearized flow-coupling coefficients, that are 

measured under flow, see Blevins (2001), Païdoussis et al. (2011) and Kaneko et al. (2014). 

These coefficients are typically obtained from vibration experiments performed at various flow 

velocities and vibration frequencies, see Sawadogo and Mureithi (2014a, 2014b) and Piteau et 

al. (2012, 2018, 2019). Fig. 2 illustrates experimental dimensionless fluidelastic stiffness and 

damping coefficients ( )k RC V  and ( )d RC V , with / ( )R fV V fD , measured by Piteau et al. 

(2018) at CEA-Saclay (France) for a tube vibrating in the lift direction, within a rigid heat-

exchanger square tube bundle subjected to single-phase cross-flow with pitch velocity 
pV .  

As shown in Fig. 2, fluidelastic coefficients have been found to be highly-dependent on the 

reduced velocity RV  (and therefore on the reduced frequency / 1/R p Rf fD V V  , hence the 

reduced circular frequency / 2p RD V f    ) and, regardless of the identification method 

used, such data is typically confined to a feasible limited experimental range of the reduced 

frequency. The frequency-dependency of fluidelastic coefficients is amply documented in the 

literature, since the seminal work of Tanaka and Takahara (1981). Such behavior is extensively 
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reported in more recent fluidelastic force identification work, see Inada et al. (2002), Sawadogo 

and Mureithi (2014a, 2014b), Nishida et al. (2018) and Piteau et al. (2012, 2018, 2019). One 

should notice that the frequency-dependency of coupling forces is also encountered in many 

other physical problems beyond flow-structure interaction. These are of particular relevance in 

the fields of viscoelasticity, hydroelasticity and soil-structure interaction, see Golla and Hughes 

(1985), Friswell et al. (1997), Cummings (1962), Damaren (2000), Wolf (1994), Cottereau et 

al. (2007) and Ropars et al. (2014). 

 

 

Fig. 1. Conceptual illustration of the identification of fluidelastic forces. 

 
Fig. 2. Experimental fluidelastic stiffness and damping dimensionless coefficients per unit length, as a function 

of the reduced velocity / ( )
R p

V V fD , measured by Piteau et al. (2018). 

In the context of flow-structure interaction, this frequency-dependency is essentially 

attributed to the complexity of the physical interaction phenomena. However, we believe that 

such dismissing view overlooks some important aspects, which will be detailed in the present 

work. For the sake of simplicity we will tacitly assume here that they solely depend on the 

reduced frequency, although such assumption is not strictly true, see Piteau et al. (2019) and 

Lagrange et al. (2019). The experimental flow coefficients depend on the reduced frequency in 

ways that cannot be anticipated. And, unfortunately, this behavior is very awkward for 

attempting physical interpretations, as the frequency-dependent fluidelastic coefficients 

( )mC  , ( )dC   and ( )kC   do not actually represent inertia, viscous damping and stiffness, but 

much more complex physical entities, something that is often forgotten.  

On the other hand, such frequency-dependency also leads to numerical difficulties when 

performing time-domain computations of the flow-coupled system responses, see Politopoulos 

et al. (2014) and Piteau et al. (2018). A common approach to deal with frequency-dependent 
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forces in the time-domain is through a convolution integral, which suffer from being 

computationally intensive. Moreover, convolution-based time-domain computations ask for 

adequate estimations of the fluidelastic impulse responses, which are typically obtained from 

the Inverse Fourier Transform (IFT) of the complex experimental flow-coupling matrix, thus 

imposing a very extended corpus of frequency-data to properly compute the IFT, which is 

seldom available experimentally. Naïve frequency-extrapolations of the experimental data will 

induce in particular causality issues, see Antunes et al. (2022). Actually, it appears that no ideal 

solution currently exists for an effective and physically appealing implementation of the 

experimental fluidelastic data in time-domain flow-structure coupled equations. 

In our view, most difficulties for achieving a satisfactory description of the experimental 

fluidelastic forces stem from the fact that the flow dynamics are not directly accessed in 

measurements, but only indirectly through their impact on the measured structural degrees of 

freedom (DOF). To elaborate on this idea, we start by noting that, for very specific flow-

structure configurations, the flow is highly constrained by the structure, so that one may safely 

assume that it lacks any "internal" self-dynamics and therefore can be described in terms of the 

structure DOF alone, at the flow-structure boundary interface. As illustrated in Fig. 3, two 

important systems for which such simplification is adequate are flow-conveying pipes and 

bearings/seals. 

 

 
                                                (a)                                                              (b) 

Fig. 3. Two systems for which the coupled flow does not entail additional degrees of freedom: (a) flow-

conveying pipes with internal flow velocity 
f

V ; (b) bearing/seals with rotor spinning velocity  . 

However, when addressing structures subjected to less constrained flows, the fluid moves 

more freely and often displays separation phenomena and significant vortical structures, which 

constitute "internal" dynamical phenomena. This is illustrated in Fig. 4, extracted from the 

work by Marcel (2011), which presents the instantaneous vorticity field given by 

Computational Fluid Dynamics (CFD) of the turbulent cross-flow within a rigid square bundle, 

at two dimensionless time-instants, clearly showing flow structures of various length-scales 

which develop in space and time/frequency. Modelling of such a physical problem would 

clearly entail the need for additional degrees of freedom, pertaining to the flow. This view has 

been explicitly formulated in the specific case of structures subjected to flow vortex-shedding, 

a paradigmatic example typically described in terms of a structural equation coupled with a 

Van der Pol "flow oscillator" equation, see Païdoussis et al. (2011). 

The "flow degrees of freedom" are therefore instrumental for better understanding the flow-

structure coupled dynamics. However, in current practice, only the dynamics of the structural 

DOF are explicitly formulated, therefore the flow "hidden dynamics" are encapsulated in the 

measured frequency-dependent and/or time-delayed fluidelastic forces. The present work is 

concerned with the practical exploitation of experimentally obtained fluidelastic force 

coefficients, by explicitly addressing the flow internal dynamics through "hidden" (non-
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measured) degrees of freedom. We show that the frequency-dependency of the coupling 

coefficients is unavoidable, even for very simple coupled subsystems with constant parameters, 

as a direct consequence of the condensation of the hidden dynamical variables of the 

unmeasured subsystem (e.g., the flow) on the structural variables accessible to the 

measurements. 

 

 
t*=50 

 
t*=52 

Fig. 4. Illustration of a system for which the coupled flow entails additional degrees of freedom: CFD iso-

contours of the instantaneous vorticity (component perpendicular to the flow plane) within a rigid tube bundle at 

two dimentionless time-instants 
*

/t tU D


 , with Re 60000 , see Marcel (2011). 

Then, by assuming that the measured fluidelastic forces encapsulate hidden DOF of the 

coupled flow, this leads to the possibility of formulating the full flow-structure coupled 

dynamics through conventional second-order ordinary differential equations (ODE) with 

frequency-independent flow-coupling standard matrices, which truly represent inertia, viscous 

dissipation and stiffness effects. Among many advantages, such a formulation may shed light 

on the system physical features, second-order representations being the most familiar to 

vibration practitioners. Moreover, the formulation thus obtained provides a formal clarification 

for a family of empirical modelling approaches widely used in the field of unsteady 

aeroelasticity, see Tewari (2015). 

These ideas are developed using concepts and techniques common in model reduction 

theory and system analysis. In the course of the present work, we became aware that the use of 

hidden variables in augmented models, and hence similar efforts, have been developed in other 

fields, namely the modelling of viscoelastic structures and soil-structure interaction, where 

coupling coefficients are also strongly dependent on frequency. Such work in the above-

mentioned fields led to comparable formal contexts and useful identification techniques well 

adapted to the general formulation developed here. Acordingly, the present work borrows 

important identification features from Cottereau et al. (2007), which somewhat connects with 

previous work from Golla and Hughes (1985), Paronesso and Wolf (1995) and Friswell et al. 

(1997). 

A general framework is developed in the present paper for converting the experimental 

frequency-dependent fluidelastic data into a standard second-order matrix formulation of the 

flow-structure coupled system. The mathematical details of the actual conversion are somewhat 
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involved, even in the specific case of symmetric fluidelastic coupling, which is detailed here. 

The general case involving both symmetric and anti-symmetric coupling entails further 

mathematical difficulties and will be addressed in subsequent work. To embody the 

presentation, we apply the developed formulation and procedures to actual experimental data 

obtained at CEA-Saclay by Piteau et al. (2018). The measured fluidelastic lift force acting on 

a flexible tube within a rigid square bundle was modeled using the described techniques, with 

seemingly satisfactory results. 

We believe that the proposed framework shows significant potential in a wide range of 

practical applications, with many definite advantages when dealing with measured fluidelastic 

forces, as summarized in the paper concluding section. 

 

 

2. A common flow-structure formulation  

 

2.1 Flow-structure equations 

 

For compactness, in sections 2 to 4 we will express the experimental fluidelastic dynamical 

matrix  FS

mm D  in terms of its physical values (in N/m), as a function of the physical circular 

frequency. Their relation with the corresponding dimensionless fluidelastic quantities will be 

addressed in section 6. In the following, the generic notation 
mnA  (standing for any 

structural/flow mass, damping or stiffness matrix) denotes a dense matrix (or sub-matrix) of 

size M N , with subscripts 1,2, ,m M  and 1,2, ,n N . When referring to diagonal 

square matrices, such as when dealing with modal quantities, the matrix notation is italicized 

as 
mmA . 

The general linearized formulation for the flow-coupled structure, as applied to a structure 

( S ) with 1,2, ,m M  DOF, assumed measurable, reads in the frequency-domain  : 

  2 ( ) ( ) ( )S S S Ext FS

mm mm mm m m mi        M C K x f f  (1) 

where S

mmM , S

mmC  and S

mmK  are the symmetric mass, damping and stiffness matrices of the 

structure (with size M M ), respectively, while the excitation force vector is ( )Ext

m f  and the 

flow-structure (FS) coupling force vector is ( )FS

m f  (both with size 1M  ), formulated with 

respect to the response vector ( )m x  at the 1,2, ,m M  measured structural DOF: 

         2( ) ( ) ( )FS FS FS FS FS

m mm mm mm m mm mi              f M C K x D x  (2) 

where  FS

mm M ,  FS

mm C  and  FS

mm K  are the so-called added mass, damping and stiffness 

flow-structure coupling matrices (also with size M M ), which are in general frequency-

dependent. From the inverse of formulation (2), it is clear that in general the fluidelastic forces 

( )FS

m f  couple the structural DOF ( )m x . 

Hence, the fluidelastic forces ( )FS

m f  are described through the measured dynamical flow-

coupling dynamic matrix ( )FS

mm D : 

 
2( ) ( ) ( ) ( )FS FS FS FS

mm mm mm mmi        D M C K  (3) 

and the coupled problem is formulated as: 

  2 ( ) ( ) ( ) ( )S S S FS Ext

mm mm mm m mm m mi         M C K x D x f  (4) 

or: 

       2 ( ) ( ) ( ) ( ) ( )S FS S FS S FS Ext

mm mm mm mm mm mm m mi            M M C C K K x f  (5) 

which, in the time-domain, may be loosely written as: 

      ( ) ( ) ( ) ( ) ( ) ( ) ( )S FS S FS S FS Ext

mm mm m mm mm m mm mm m mt t t t       M M x C C x K K x f  (6) 
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2.2 Flow-structure equations in the time-domain 

 

As stated before, a common approach to deal with frequency-dependent forces in the time-

domain is through the convolution integral obtained from (2): 

  1

0

1

2
( ) ( ) ( ) with ( ) ( ) ( )FS FS FS FS FS i t

m mm m mm mm mm

t

t t d t e d


     







     f D x D D DF  (7) 

so that, from (4) and (7), the system time-domain response is computed as: 

 
0

( ) ( ) ( ) ( ) ( ) ( )S S S FS Ext

mm m mm m mm m mm m m

t

t t t t d t      M x C x K x D x f  (8) 

which formally rigorous, compared to the loose form (6). It is clear from (8) that the 

convolution formulation for frequency-dependent fluidelastic forces leads to a computationally 

intensive integro-differential matrix equation. Moreover, as pointed before, expression (7) 

highlights the need for extensive experimental frequency-data ( )FS

mm D , in order to properly 

compute the impulse responses ( )FS

mm tD  through the Inverse Fourier Transform (IFT). 

 

2.3 Flow-structure eigen-formulation 

 

The coupled system modes ( ) 1,2, ,n N  are computed from (6), with ( )Ext

m mt f 0 , by 

seeking solutions of the form    ( )( )
( ) expm m nn

t x  . Then, the eigen-formulation reads: 

        2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )S FS S FS S FS

n mm mm n n mm mm n mm mm n m mn
         M M C C K K 0  (9) 

with  ( ) ( )
Im

n n
  . The complex eigenvalues 

( ) ( ) ( )n n ni     and eigenvectors  
( )m n

  are 

computed from (9), for each mode ( )n , and the system stability can be inferred from the sign 

of the real part ( )n . However, the eigen-formulation (9) is clearly non-standard because of the 

frequency-dependence of the operators ( )FS

mm M , ( )FS

mm C  and ( )FS

mm K , which is a drawback, 

as it calls for specific numerical search/iterative schemes to compute the system eigen-

solutions. 

 

 

3. The proposed flow-structure formulation  

 

3.1 Flow-structure equations in the frequency-domain 

 

In the previous section we pointed several difficulties stemming from a common 

formulation of the experimental fluidelastic forces. Here we develop a second-order standard 

formulation for the coupled flow-structure, by augmenting the structure ( S ) dynamic model 

DOF  mx  ( 1,2, ,m M ) with additional DOF hx  ( 1,2, ,h H ), which will describe 

explicitly the flow ( F ) internal dynamics and are hidden from experimentation. In the field of 

dynamic substructuring, the DOF of such partitioned system are often designated "master" and 

"slave" coordinates, see Leung (1993). Then, the partitioned model of the linearized coupled 

system: 

  2 ( ) ( )Exti      M C K x f  (10) 

reads: 

 2
( ) ( )

( )

Ext
mm mh mm mh mm mh m m

hm hh hm hh hm hh h h

i
 

 


          
            

          

M M C C K K x f

M M C C K K x 0
 (11) 

with a total of P M H   degrees of freedom, with M  measured structure DOF and H  hidden 

flow DOF. For instance, for a tube bundle subjected to transverse flow, mx  will be the vector 



8 
 

of tube displacements, while hx  will be a vector of relevant hidden flow motion variables. For 

convenience, the equations of this section will be written in terms of physical quantities. They 

will be adapted in section 6 to the dimensionless parameters used for fluidelastic forces.     

Concerning the explicitly measured degrees of freedom, Ext

mf  is the vector of external 

excitation forces applied to the structure, while matrices S F

mm mm mm M M M ,  
S F

mm mm mm C C C  and S F

mm mm mm K K K  express the structure dynamical features, as well as 

the flow forces directly interacting at the measured degrees of freedom. On the other hand, 

concerning the flow non-measured (hidden) degrees of freedom, the flow-structure linearized 

effects are encapsulated in the square "internal" flow matrices 
F

hh hhM M , 
F

hh hhC C  and 

F

hh hhK K , as well as the rectangular flow-coupling matrices 
F

mh mhM M , 
F

hm hmM M , 

F

mh mhC C , 
F

hm hmC C , 
F

mh mhK K  and 
F

hm hmK K . All the flow-related matrices are assumed 

real and, with the mentioned assumptions, equation (11) reads: 

 
2

( ) ( )

( )

S F F S F F S F F Ext
mmm mm mh mm mm mh mm mm mh m

F F F F F F
hhm hh hm hh hm hh h

i
 

 


            
             

         

xM M M C C C K K K f

xM M C C K K 0
 (12) 

Compared to the common flow-structure coupled formulation (4), equation (12) displays 

more flow-related coefficients, but they are not frequency-dependent. As will be shown in the 

following, this is because formulation (4) condenses all the coupled system dynamics into the 

measured DOF mx , while (12) is formulated in terms of both the measured and the flow hidden 

DOF hx . Both formulations can, in principle, be applied to any given flow-structure problem. 

Formulation (4) is based on directly accessible experimental flow parameters, which however 

are frequency-dependent and, as discussed before, lead to a non-standard eigen-problem. By 

contrast, formulation (12) is obviously more informative, is built on frequency-independent 

coefficients and leads to a standard eigen-problem, however it depends on flow quantities 

which are not directly accessible through experiments. At this point, the flow matrices in 

formulation (12) will be assumed without any specific structure. This aspect will be developed 

in the following and particularized with respect to symmetric flow-coupling. 

Now, from classic model-reduction and substructuring concepts, see Leung (1993), 

interesting information can be extracted from (12), which is equivalent to the following pair of 

equations: 

 
 

   

2

2 2

( )

( ) ( ) ( )

S S S

mm mm mm m

F F F F F F Ext

mm mm mm m mh mh mh h m

i

i i

  

      

  

        

M C K x

M C K x M C K x f
 (13) 

and: 

    2 2( ) ( )F F F F F F

hm hm hm m hh hh hh h hi i            M C K x M C K x 0  (14) 

Then, equation (14) leads to the following relation between hx  and mx : 

    
1

2 2( ) ( )F F F F F F

h hh hh hh hm hm hm mi i     


       x M C K M C K x  (15) 

which enables recovering the hidden variables from the measured ones, if the system flow 

matrices are known. Then, replacing (15) into (13), the following coupled formulation is 

obtained in terms of the structural DOF alone, similarly to (4): 

  2 ( ) ( ) ( ) ( )S S S FS Ext

mm mm mm m mm m mi         M C K x D x f  (16) 

with the following flow-structure interaction force: 

 
   

    

2

1
2 2 2

FS F F F

mm mm mm mm

F F F F F F F F F

mh mh mh hh hh hh hm hm hm

i

i i i

  

     


   

         

D M C K

M C K M C K M C K
 (17) 

or, in more compact notation: 

  
1

( ) ( ) ( ) ( ) ( )FS F F F F

mm mm mh hh hm    


 D D D D D  (18) 
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The dynamical coupling matrix ( )FS

mm D  formulated in (17)-(18) expresses how the 

structure "feels" the flow, and this general form is relevant for any flow-structure configuration, 

if the previous assumptions apply. The first term 
2( )F F F F

mm mm mm mmi     D M C K  stems 

from the flow-coupling effects directly connected with the measured structural DOF. These are 

the only relevant terms for systems with highly constrained flows, such as those illustrated in 

Fig. 3, which therefore typically lead to frequency-independent coupling matrices.  

The remaining, more complex terms, stem from the flow dynamics, connected with the flow 

hidden DOF. Notice in (17)-(18) that the term 
2( )F F F F

hh hh hh hhi     D M C K , intrinsically 

related to the flow "internal" DOF, is inverted, while the "mixed" flow-structure coupling terms 
2( )F F F F

mh mh mh mhi     D M C K  and 
2( )F F F F

hm hm hm hmi     D M C K  appear in a quadratic 

manner. Because we have by definition the transfer function  
1

( ) ( )F F

hh hh 


H D , the result 

(18) can also be written as: 

 ( ) ( ) ( ) ( ) ( )FS F F F F

mm mm mh hh hm     D D D H D  (19) 

and relation (19) demonstrates why the interaction forces expressed by ( )FS

mm D  are quite 

complex, even for simple coupled subsystems. The reason is because the modal behavior 

encapsulated in the flow transfer function ( )F

hh H , which is possibly the crucial term of the 

formulation, conveys into the measured ( )FS

mm D  the dynamical properties of the hidden 

coupled subsystem. In the framework of the present "flow hidden variables" view, the general 

mathematical form (17)-(18) applies to any flow-structure configuration, whatever the nature 

of the system addressed, and this fact stands as a general feature. 

At this point, comparing the common flow-structure formulation (3) with the result (17): 

  

    

2

2

1
2 2 2

( ) ( ) ( ) ( )FS FS FS FS

mm mm mm mm

F F F

mm mm mm

F F F F F F F F F

mh mh mh hh hh hh hm hm hm

i

i

i i i

     

 

     


   

   

         

D M C K

M C K

M C K M C K M C K

 (20) 

it becomes clear that no easy correspondence between ( )FS

mm M , ( )FS

mm C , ( )FS

mm K  and the 

frequency-independent flow-coupling matrices in (12) and (17) may be found. Also, it is clear 

from (20) that the flow-coupling matrices  FS

mm M ,  FS

mm C ,  FS

mm K  are the result of 

complex dynamical interactions within the flow-structure system, invalidating the supposed 

"pure" inertia, damping and stiffness nature of such operators. One must therefore be careful 

when attempting a physical interpretation of them, from specific test results. 

Formulation (12) can only be useful if a proper strategy is devised for the identification of 

all the flow matrices. That crucial aspect will be addressed in section 4. 

 

3.2 Flow-structure equations in the time-domain 

 

Time-domain computations also become very straightforward, from the standard 

formulation stemming directly from (12): 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

S F F S F F S F F Ext
m m mmm mm mh mm mm mh mm mm mh m

F F F F F F
h h hhm hh hm hh hm hh h

t t t t

t t t

              
              

            

x x xM M M C C C K K K f

x x xM M C C K K 0
 (21) 

 

3.3 Flow-structure eigen-formulation 

 

From equation (21), with ( )Ext

m mt f 0 , the coupled system complex modes are easily 

computed through a standard eigen-formulation by seeking solutions of the form: 
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  ( ) ( ) ( ) ( )

( )

( )
exp ;

( )

m m

n n n n

h h n

t
t i

t
   

   
     

   

x

x




 (22) 

for ( ) 1,2, ,n N , leading to the eigen-problem: 

 
2

( ) ( )

( )

S F F S F F S F F
m mmm mm mh mm mm mh mm mm mh

n nF F F F F F
h hhm hh hm hh hm hh n

 
            

            
         

0M M M C C C K K K

0M M C C K K




 (23) 

or, written compactly as: 

     2

( ) ( ) ( )

S F S F S F

n m h n m h m h m h m hn
   

      M C K 0  (24) 

from which the system stability is inferred as discussed before. Classically, the quadratic eigen-

problem (23)-(24) is converted into an equivalent linear one of twice the size, see for instance 

Ginsberg (2001), for which the numerical eigen-solution is standard: 

 
 

 
( )

( )

( ) ( )

S F S F S F
m h n m hm h m h m h

n S F S F
m hn m hm h m h n




  
   

 
 

        
                  

0C M K 0

0M 0 0 M




 (25) 

 

 

4. Identification of the second-order flow-coupling submatrices from experiments  

 

The frequency-dependent fluidelastic matrix being typically obtained through experiments, 

the frequency-independent flow matrices of formulation (12) must be inferred from the 

dynamical data encapsulated in the measured matrix  ˆ FS

mm D . One may assume that, by 

choosing an adequate number H  of flow hidden DOF, a second-order flow formulation can be 

found such that, using the identified coefficient matrices, the experimental  ˆ FS

mm D  is 

reproduced through condition (17). This section deals with the identification of the matrices in 

(12) that stand for the fluidelastic forces. 

The problem of model coefficients identification from dynamical measurements is not new. 

An extensive literature exists since the fifties in the field of Network Synthesis, initiated for 

designing electronic circuits with given component assembling topologies and response 

specifications, see Guillemin (1951, 1957) and more recent work in books by Anderson and 

Vongpanitlerd (1973), Daryanani (1976) or Bhattacharya and Singh (2015). Transposition of 

these design methods to assemblies of mechanical components with targeted responses 

( )mm H  introduces a non-trivial feature concerning the inertia terms, as elucidated by Goyder 

(2012), see also the books by Morelli and Smith (2019) and Chen et al. (2020). Relevant 

identification results along this line of work were produced by Wolf (1991, 1994) and 

Paronesso and Wolf (1995), in the field of soil-structure interaction. Coefficient identification 

methods may either operate using directly second-order formulations, or else by making use of 

first-order state-space formulations, for which several equivalent canonical realizations exist. 

Although conversion between second-order and state-space models is an immediate exercise, 

the reverse conversion is far from trivial, though techniques have been developed, see Friswell 

(1999), Lus et al. (2003a, 2003b) and Houlston (2006). 

All the previously discussed identification methods share with the one adopted here standard 

mathematical techniques such as rational polynomial functions and partial fraction expansions. 

However, as mentioned before, the second-order model identification technique expanded in 

the following is inspired by previous work in the field of viscoelasticity and subsequent work 

in the field of soil-structure interaction, which deal with formulations close to the present one. 

The first field is mostly concerned about overdamped dynamics, while in the second field only 

underdamped behavior is addressed. In flow-coupled vibrations it is plausible to assume that 

the flow intrinsic dynamics, represented by the hidden variables, will include both types of 

modal behavior. Physically, the flow non-oscillatory may be connected with the fluid lag 

responses, in the sense of the quasi-unsteady fluidelastic model by Granger and Païdoussis 

(1996), while the flow oscillatory behavior is connected with near-periodic vortical 
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phenomena. Due to formulation similarity, the identification procedure devised by Cottereau 

et al. (2007) for extracting the coupling matrices is adopted in the present work. Moreover, 

opposite to the system synthesizing methods previously described, which associate physical 

component networks to emulate the hidden dynamics, in the method by Cottereau et al. (2007) 

the hidden dynamics of the augmented model are expressed in modal terms, this being more 

convenient for highlighting the flow physical phenomena. However, because their technique 

aims the identification of oscillating hidden dynamics, it will be extended here in order to 

accommodate both oscillating and non-oscillating modes of the identified equivalent second-

order model. 

The identification strategy consists of the following steps: 

(1) Express the measured fluidelastic matrix in residue/pole form; 

(2) Express the model dynamical equations in terms of hidden flow modes; 

(3) Identify the unknown flow matrix terms from (1) and (2).  

 

4.1 Expressing the measured fluidelastic matrix in residue/pole form 

 

From experimental results, for a given order H  of the hidden model, the measured 

fluidelastic matrix is written in a classic rational fraction polynomial form, see Richardson and 

Formenti (1982) or Maia and Silva (1997): 

 

2 2

0

2

0

( )
( ; )ˆ ( )
( ; )

( )

H
m

m
FS m
mm H

n

n

n

i
H

d H
i d















 




N
N

D  (26) 

where the coefficient of the term 2( ) Hi  is postulated as 
2 1Hd   and the polynomials in m  

and n  are of even order by construction, as we aim to build a second-order formulation. It will 

become clear in the following that the equivalence between experimental results ˆ ( )FS

mm D  and 

their intended model (17) implies that the numerator expansion of (26) should be two orders 

higher than the denominator expansion. In other words, ( ; ) ( ; )H d H N  in (26) is an 

improper formulation, the numerator order being higher than the denominator order, as it must 

be because (26) emulates a dynamical matrix. Notice that the identification procedures 

described in this section equally apply to models defined in terms of the physical frequency   

or the reduced frequency  . We will use physical frequency for the illustrative mechanical 

examples of section 5, while the fluidelastic force identified in section 7 is defined in terms of 

the reduced frequency. Therefore, the circular frequency in equations (26) to (48) should be 

perceived as being   or   according to the context. 

The coefficients nd  and coefficient matrices 
mN  of the expansions in (26) can be identified 

from the measured matrix ˆ ( )FS

mm D  using numerical methods that are fairly mature today, 

although far from a closed topic, see Ljung (1999), Isermann and Münchhof (2011) or Pintelon 

and Schoukens (2012). We now briefly explain the main features of the identification algorithm 

used, which is based on the work of Ozdemir and Gumussoy (2017). Basically, the unknown 

coefficients of the polynomials ( ; )d H  and ( ; )HN  are searched in order to minimize the 

Frobenius norm of the functional: 

  
( ; )ˆ, ; ( ) ( )
( ; )

FS

n m mm

F

H
J d H w

d H


 



 
  

 

N
N D  (27) 

where ( )w   stands for an eventual frequency-weighting function. This is a nonlinear 

optimization problem, which is solved iteratively, for each iteration k , as: 

  
2

( ) ( ) ( )

2
( 1)

( ) ˆ, ; ( ; ) ( ) ( ; )
( )

k k FS k

n m mm
k F

w
J d H d H H

d


  


 N D N  (28) 
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which is a sequence of linear least-squares problems, a method initiated by Sanathanan and 

Koerner (1963), here with the starting value (0) ( ) 1d   . In order to improve the numerical 

condition of the identification problem, the formulation is first converted from the complex 

plane imaginary axis to the unit disk, through a bilinear mapping. Also, an orthogonal rational 

basis functions set is used on the unit disk, see Ozdemir and Gumussoy (2017) for details. If 

model stability is enforced, the unstable poles are "reflected" inside the stability boundary and 

the resulting solution is refined until minimization of  ( )
, ;k

n m
J d HN , a common but not 

flawless approach. On the other hand, in order to achieve a better compromise between the bias 

and variance errors tradeoff, the formulation (27) may be regularized via a penalty term added 

to the solution quadratic norm, the so-called ridge regression, see Rish and Grabarnik (2015): 

    
2

( ; )ˆ, ; ; ( ) ( ) ,
( ; )

FS

r n m r mm r n m L

F

H
J d H w d

d H


   



 
   

 

N
N D N  (29) 

where r  is the penalty weight. Analysis of the convergence error of the approximation (26), 

as a function of H , enables to assert the optimal order 
optH H  of the approximation. 

Then, through long polynomial division, we put (26) in the form: 

 

2 1

2
0

2
0

0

( )
( )ˆ ( ) ( ) ( )
( )

( )

H
m

m
FS r m
mm r H

nr
n

n

i

i
d

i d




  












   





Q
Q

D P P  (30) 

where ( ) ( )d Q  is now a strictly proper formulation and the improper nature of ˆ ( )FS

mm D  is 

entirely transferred to the quadratic matrix polynomial ( )P . 

Referring to the formal equation (18), the polynomial ( )d   of formulation (30) is connected 

with the submatrix  
1

( )F

hh 


D , with 2H  poles pertaining to H  flow modes, while in broad 

terms ( )P  is connected with submatrix ( )F

mm D  and ( )Q  stems from the product 

( ) ( )F F

mh hm D D . 

Now, through standard partial fraction decomposition, the rational polynomial part of 

formulation (30) can be converted into residue-pole form: 

 
2

2

2 1 0

1

ˆ ( ) ;
H

n n nFS n
mm

n n n nn

i
i

ii

  
  

 

 
     

  


R
D P P P

R S T
 (31) 

and we will assume that, among the 2H  poles, there are 2 RH  real poles and 2 CH  complex 

conjugate poles, with R CH H H  . To obtain the mathematical forms (26) and (31), the 

Matlab functions "tfest" and "residue" were used, respectively, for increasing values of the 

model order 2H . 
Pairing the n  in groups of real poles and complex conjugate poles, we write the modal 

development (31) as: 

 
(1) (2) *

2

2 1 0 (1) (2) *
1 1

ˆ ( )
R

R

H H
FS n n n n
mm

n n Hn n n n

i
i i i i

  
         

   
          

      
 

S S R R
D P P P  (32) 

where the star notation stands for the complex conjugate. Developing each modal pair within 

the sums of (32), one obtains for the non-oscillating modes: 

 
   

 

(2) (1) (1) (2) (1) (2)(1) (2)

(1) (2) 2 (1) (2) (1) (2)

n n n n n nn n

n n n n n n

i

i i i

  

         

   
 

     

S S S SS S
 (33) 

and for the oscillating modes: 

 
   

 *

* 2 2 2
2

2

n n n n nn n n n n n

n n n n n n n n n

ii i

i i i i i i i

  

             

   
   

         

S T SR R S T S T
 (34) 

hence, from (32)-(34), the experimental results are expressed as: 
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    
 

 

2

2 1 0

(2) (1) (1) (2) (1) (2)

2 2 22 (1) (2) (1) (2)
1 1

ˆ ( )

2
2

R

R

FS

mm

H H
n n n n n n n n n n n

n n H n n nn n n n

i

i i

ii

  

     

          

   

      
 

      
 

D P P P

S S S S S T S  (35) 

 

4.2 Expressing the model dynamical equations in terms of hidden flow modes 

 

We now turn to the expression of the theoretical dynamical fluidelastic matrix (17). As 

pointed by Cottereau et al. (2007), identification of the model matrices pertaining to the hidden 

dynamics has many different but equivalent solutions which, for a given number of "hidden" 

flow variables, approach the measured matrix ˆ ( )FS

mm D . Then, among those possible solutions, 

it seems a sensible choice to opt for a formulation that implies a minimum of coefficients to 

identify. Hence the decision to model the flow "hidden" dynamics in terms of flow modes, 

leading to diagonal matrices F

hhM , F

hhC  and F

hhK , a choice that is also suggested by the form of 

(35) and leads to an easier physical interpretation. Therefore we will represent the flow matrices 

in terms of the flow modal parameters (e.g., the flow with rigid structural boundaries) and 

emphasize this by writing the italicized quantities 
2( )F F F F

hh hh hh hhi     D M C K , so that (12) 

reads: 

 
2

( ) ( )

( )

S F F S F F S F F Ext
mmm mm mh mm mm mh mm mm mh m

F F F F F F
hhm hh hm hh hm hh h

i
 

 


            
             

         

xM M M C C C K K K f

xM C K 0M C K
 (36) 

 and therefore (17) as: 

 
 

    

2

1
2 2 2

( )FS F F F

mm mm mm mm

F F F F F F F F F

mh mh mh hh hh hh hm hm hm

i

i i i

  

     


   

         

D M C K

M C K M C KM C K
 (37) 

where the diagonal flow matrices in  F

hh D  are built from the modal coefficients nm , nc  and 

nk , to be identified from the denominator parameters of (35). And, for a given order H , 

expression (37) is written in terms of the modal series: 

  
  2 2

2

2
1

( )
H

n n n n n nFS F F F

mm mm mm mm

n n n n

i i
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    
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m c k m c k
D M C K  (38) 

where 
nm , nc  and nk  are matrix columns 1M   such that:  

    1 2 1 2 1 2; ;mh N mh N mh N
     M m m m C c c c K k k k  (39) 

and 
nm , nc  and nk  are matrix lines 1 M  such that:  

 

1 1 1

2 2 2; ;hm hm hm

N N N

    
    
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    
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m c k

m c k
M C K

m c k

 (40) 

so that we obtain from (38): 
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mm mm mm mm

H
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i

i i

m i c k

  

   

 

   

       


  


D M C K

m m m c c m m k c c k m c k k c k k  (41) 

 

4.3 Identification of the flow matrix terms 

 

Comparison between the rational terms of (35) and (41) shows that one should put modal 

masses 1nm   and, in order to establish an equivalence, the numerator terms in 
4 , 

3i  and 
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2  must disappear, without destroying the i  and constant terms. Using the same principle 

of economy, to nullify the terms in 
4 and 

3i , it is sufficient to postulate that the inertia vector 

cross-terms  are nil, 1n Mm 0  and 1n Mm 0 . With respect to other eventual mathematical 

solutions of the identification problem, this seems the most logical choice, while preserving 

the inertial interaction between the flow and the structure in the formulation, through the fluid 

added mass matrix F

mmM . Therefore, we have: 

 ; ;F F F

hh hh mh mh hm hm  M M 0 M 0I  (42) 

Then, (36), (37) and (41) reduce to: 

 
2

( ) ( )

( )

S F S F F S F F Ext
mmm mm mh mm mm mh mm mm mh m

F F F F
hhm hh hm hh hm hh h

i
 

 


            
             

         

xM M 0 C C C K K K f

q0 C K 0I C K
 (43) 

and: 

         
1

2 2FS F F F F F F F F F

mm mm mm mm mh mh hh hh hh hm hmi i i i      


         D M C K C K C KI C K  (44) 

hence: 
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1

H
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mm mm mm mm

n n n

i
i

i c k

 
  

 

   
    
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

c c c k k c k k
D M C K  (45) 

However, to nullify the term in 
2 , one cannot postulate that nc  and nc  are nil, as that 

would also nullify the term in i  that must be kept. A clever workaround for this difficulty, 

devised by Cottereau et al. (2007), is to use the identity: 

 
 2

2 2

n n n nn n
n n

n n n n

i c k

i c k i c k



   


 

     

c cc c
c c  (46) 

and we obtain from (45) with (46): 
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       

    
 

k k c c c k k c c c
D M C K c c  (47) 

One may now identify the unknown terms nc , nk , nk , nc , nk  and nc , with 1,2, ,n H , 

as well as F

mmM , F

mmC  and F

mmK , by comparing the experimentally obtained  ˆ FS

mm D  expressed 

in (35) and the corresponding theoretical formulation  FS

mm D  expressed in (47). Starting with 

the rational terms, we obtain directly the denominator coefficients pertaining to the non-

oscillatory and oscillatory modes: 

 
 (1) (2)

2 2(1) (2)

2
, 1, , ; , 1, ,

n n n n n

R R

n n nn n n

c c
n H n H H

kk

  

  

     
   

  

 (48) 

Then, for the matrix columns of the numerators, the following equations are obtained from 

the real and imaginary parts: 

 ; , 1, ,n n n n n n n n n n n n n nk c n H     k k c c A c k k c c c B  (49) 

which can also be written in matrix form: 

 
1 0 0 1

; , 1, ,
0 1

n n

n n n n n n

n nn n

n H
k c

      
                     

k k
k c A k c B

c c
 (50) 

with: 
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(2) (1) (1) (2)

(1) (2)

2
, 1, , ; , 1, ,

2
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   
    

A S S A S T

B SB S S
 (51) 

where nA  and nB  are all real matrices. We obtain straightforwardly the matrices of the 

polynomial term as: 

 2 1 0

1

; ;
H

F F F

mm mm mm n n

n

   M P C P K P c c  (52) 
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the value of F

mm
K  being computed after all the nc  and nc  are identified, for 1,2, ,n H . The 

only remaining difficulty is solving the equation system (49) or (50) with (51), for the columns 

nk  and nc  of matrices (39) and the lines nk  and nc  of matrices (40). In a related problem, 

Cottereau et al. (2007) managed to find the analytical solution of system (49), for the case of 

oscillatory modes of symmetrically coupled systems, using the Takagi (1924) factorization, 

which is applicable to any symmetric matrix. However, their approach does not seem directly 

applicable to the general case of non-oscillating modes, neither to non-symmetric coupling 

matrices. 

The identification problem (49)-(50) presents considerable difficulties in the general case of 

matrices without any specific structure. Here, we will develop a solution for both the non-

oscillating an oscillating modes, in the important specific case of symmetric coupling. It is 

understood that anti-symmetric coupling is also a case of practical significance, however 

research for extending the present identification approach to the general coupling case is still 

ongoing and will be reported in a forthcoming paper. Nonetheless, the specific identification 

method detailed here applies to the two illustrative examples of section 5, as well as to the 

fluidelastic data adressed in section 7, which stems from a single vibrating tube.  

In the specific case of systems with symmetric coupling, one has n nk k , T

n nk k , n nc c  

and T

n nc c , so that (49)-(50) lead to: 

 ; , 1, ,T T T T T

n n n n n n n n n n n n n nk c n H     k k c c A c k k c c c B  (53) 

and: 

    
1 0 0 1

; , 1, ,
0 1

T T

n n

n n n n n nT T
n nn n

n H
k c

      
        

       

k k
k c A k c B

c c
 (54) 

where, obviously, nA  and nB  are symmetric matrices. Details of the proposed solution for 

finding the vectors 
nk  and nc  ( 1, ,n H ) are presented in the Appendix. 

 

 

5. Two illustrative validating examples 

 

Before dealing with the actual flow-structure problem, let us test the described formulation 

and identification procedure on two simple structural systems, shown in Fig. 5. Here, for 

computing the reference dynamical "measurements", the physical parameters of the systems 

are obviously known. However, the identification procedure just presented will be applied as 

if such parameters were unknown, in order to test and validate the proposed modelling 

approach. In these examples, the dynamics of the coupled substructures (shown in blue) stand 

for the "flow" of real-life flow-structure coupled systems. The first system (a) consists of a 

single measured oscillator coupled to a hidden multi-degree of freedom (MDOF) substructure, 

while the second system (b) consists of two measured oscillators coupled through a hidden 

single-degree of freedom (SDOF) substructure. When applying the preceding formulation to 

these structural examples, we use in this section the superscript (C), instead of (F), to designate 

the coupled subsystem that stands for the "flow", therefore the reference "measured" coupling 

matrix is denoted  ˆ CS

mm D  and the corresponding theoretical formulation  CS

mm D . 
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                                                        (a)                                                         (b) 

Fig. 5. Illustrative structural examples for which the coupled subsystems entail additional hidden degrees of 

freedom: (a) SDOF measured structure coupled to MDOF hidden dynamics; (b) MDOF measured structure 

coupled to SDOF hidden dynamics. 

 

5.1 SDOF structure coupled to MDOF hidden dynamics  

 

With respect to the coupled system shown in Fig. 5 (a), we will assume that 1X  is the 

measured variable, associated to the oscillator with parameters 1 1 1( , , )m c k , while 2X  and 3X  

are hidden variables, associated with the coupled substructure. The system dynamics are simply 

formulated in the frequency domain as: 

   
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0
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   
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  (55) 

where the various submatrices of the general equation (12) are easily recognized. Then, the 

coordinate transformation, between the hidden and the measured DOF is obtained: 
1

2 2 2 4 4 2 4 4 2 22

1

3 3 4 3 4 4 3 4 3 3

( ) 0
( )

( ) 0

X m c c c k k k c k
i i X

X m c c c k k k c k


   





                  
                  

                 
  (56) 

and, from the first equation (55) with (56), one obtains: 

  2

1 1 1 1( ) ( ) ( )ext cm i c k X F F           (57) 

with the coupling force: 

 11 1( ) ( ) ( )CS

cF D X      (58) 

as well as the dynamical coupling matrix (here a single function), with the coupled system 

dynamics condensed in the measured DOF 1X : 
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  (59) 

where the various submatrices of the general formulation (17) are recognized. Formulation (59) 

will be used to generate the pseudo-experimental data, hence the "hat" notation  11
ˆ CSD  . 

We thus turn to the identification problem and, following the procedure described in section 

5, we assume that the hidden subsystem to identify has the general structure of equation (43): 
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  (60) 

 and of equation (44), with the optimal order H  still to be established: 
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  (61) 

which, following (47), is equivalent to: 
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 (62) 

For illustration, we assume the following numerical parameters of the coupled subsystem: 

2 3 4

2 3 4

6 6 7

2 3 4

1 kg,  2 kg,  5 kg

50 Ns/m,  100 Ns/m,  10 Ns/m

5 10  N/m,  10  N/m,  10  N/m

m m m

c c c

k k k

   


  


  

 

which are replaced into the reference equation (59) in the range  0 / 2 1000 Hz   , 

sampled at / 2 10 Hz    (the largest value adequate for defining the system modal peaks), 

leading to the "measured" response function  11
ˆ CSD  . Then, the rational polynomial expansion 

(26) is fitted to the reference  11
ˆ CSD  , for increasing order H , while evaluating the quadratic 

error of the approximation. The results presented in Fig. 6, which show the decrease and 

stabilization of the fit error as H  increases, clearly point to the optimal value 2H  , in 

agreement with the actual order of the "hidden" coupled subsystem of Fig. 5 (a). 
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Fig. 6. SDOF structure coupled to MDOF hidden dynamics: Identification error with respect to the "measured" 

values of 
11

ˆ ( )CS
D   as a function of the model order H . 

 

Fig. 7. SDOF structure coupled to MDOF hidden dynamics: Reference "measurement" 
11

ˆ ( )CS
D   and 

reconstructed 
11

( )CS
D   using (61), from the identified model with order 0H  . 

 

Fig. 8. SDOF structure coupled to MDOF hidden dynamics: Reference "measurement" 
11

ˆ ( )CS
D   and 

reconstructed 
11

( )CS
D   using (61), from the identified model with order 1H  . 
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Fig. 9. SDOF structure coupled to MDOF hidden dynamics: Reference "measurement" 
11

ˆ ( )CS
D   and 

reconstructed 
11

( )CS
D   using (61), from the identified model with order 2H  . 

 

Fig. 10. SDOF structure coupled to MDOF hidden dynamics: Noisy "measurement" 
11

ˆ ( )CS
D   with 10% noise 

amplitude and reconstructed 
11

( )CS
D   using (61), from the identified model with optimal order 2H  . 

 

The approach presented for the matrices identifications is then applied, leading to the 

numerical values of the matrix coefficients in the coupled representation (60), and  11

CSD   is 

reconstructed using (61) with the identified parameters. The identification results for increasing 

order 0,  1 and 2H   are presented in Figs. 7 to 9, showing the real and imaginary parts, the 

magnitude and the phase of  11

CSD  , respectively. The progressive convergence of the fit is 

unmistakable, thus validating the identification approach. Also, Fig. 10 presents the results 

obtained for the optimal order 2H  , when the "measured" response function  11
ˆ CSD   is 

polluted by 10 % additive Gaussian noise, emphasising the robustness of the described 

identification procedure. On the other hand, also from the noisy identification, Fig. 11 presents 

the model identified poles for increasing order 1 6H  , showing that beyond the optimal 

order 2H   the spurious identified poles display an erratic behavior, also leading to unstable 

poles for 4H  . 
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Fig. 11. SDOF structure coupled to MDOF hidden dynamics: Identified poles from the noisy "measurement"

11

ˆ ( )CS
D   with 10% noise, as a function of the model order H . 

 

5.2 MDOF structure coupled to SDOF hidden dynamics  

 

The coupled system shown in Fig. 5 (b) reads in the frequency domain: 
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  (63) 

and, from the third equation (63), the following coordinate transformation, between the hidden 

degree of freedom 3 ( )X   and the measured degrees of freedom 
1 2[ ( ), ( )]X X  , is obtained: 
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  (64) 

hence, from the first two equations of (63) with (64), one obtains: 
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  (65) 

with the coupling forces: 
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where the symmetric coupling matrix (here with 2 2  functions) condenses the coupled system 

dynamics in the measured DOF 1X  and 2X : 



21 
 

 

    

3 3

4 4

13 3 3 32

3 3 4 3 4

4 4 4 4

0 0
ˆ ( )

0 0

CS

mm

T

c k
i

c k

c k c k
i m i c c k k i

c k c k

 

   


    
        

    

          
                 

          

D

  (67) 

or, equivalently: 
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The nature of the various terms in the condensed formulation (67) can be easily recognized. 

Moreover, because this example has a single internal variable, it allows for the simple form 

(68), stressing that the inverted term related to the internal dynamics of the secondary 

subsystem is invariant, meaning that it will identically affect all the coupling forces. This is 

quite natural, from a physical point of view, but might be easily overlooked when identifying 

experimental coupling coefficients affecting complex MDOF structures. Such feature can also 

provide a check criterion for asserting that all identified coupling forces are physically 

consistent. 

Turning now to the identification problem, we assume that the hidden subsystem to identify 

has the general structure of equation (43): 
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  (69) 

and of equation (44): 
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  (70) 

which, following (47), is equivalent to: 
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 (71) 

We will assume the following numerical parameters of the reference coupled subsystem: 

3
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which are replaced into the reference equation (67), with the same frequency range and 

sampling of the preceding example, leading to the four "measured" response functions of the 

coupling matrix ˆ ( )CS

mm D . Noisy "measurements" were simulated also for this example, with 

10% noise amplitude. 

 

Fig. 12. MDOF structure coupled to SDOF hidden dynamics: Identification error with respect to the noisy 

"measured" values of the matrix ˆ ( )CS

mm
D  with 10% noise, as a function of the model order H . 

 

Then, the rational polynomial expansion (26) is fitted to the reference experimental 

functions ˆ ( )CS

mm D , for increasing orders H . In spite of the noisy data, the results shown in Fig. 

12 point to the optimal value 1H  , the chart stabilization value, in agreement with the actual 

order of the "hidden" coupled subsystem of Fig. 5 (b). Accounting for the significant data noise 

level, the coupling functions presented in Figs. 13 to 15, obtained from the identified 

submatrices of (69)-(70), are in reasonable agreement with the reference results. 
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Fig. 13. MDOF structure coupled to SDOF hidden dynamics: Reference noisy "measurement" 
11

ˆ ( )CS
D   with 

10% noise and reconstructed 
11

( )CS
D   of matrix ( )CS

mm
D  using (70), from the identified model with optimal 

order 1H  . 

 
Fig. 14. MDOF structure coupled to SDOF hidden dynamics: Reference noisy "measurement" 

12 21

ˆ ˆ( ) ( )CS CS
D D   with 10% noise and reconstructed 

12
( )CS

D   of matrix ( )CS

mm
D  using (70), from the 

identified model with optimal order 1H  . 

 

Fig. 15. MDOF structure coupled to SDOF hidden dynamics: Reference noisy "measurement" 
22

ˆ ( )CS
D   with 

10% noise and reconstructed 
22

( )CS
D   of matrix ( )CS

mm
D  using (70), from the identified model with optimal 

order 1H  . 



24 
 

 

The identified results show that the identification method displays a reasonably satisfactory 

performance, for two quite different and complementary examples, both sharing some features 

with flow-structure interaction problems. The identification approach appears to be reasonably 

robust to noise effects, suggesting that it can be applied to actual experimental data. 

 

 

6. Fluidelastic coupling in tube bundles  

 

6.1 Relations between physical and dimensionless quantities 

 

The general formulation (43)-(44) applies to a fluidelastically coupled tube bundle with 

multiple flexible tubes. For the sake of simplicity we will tacitly assume here that the 

fluidelastic forces solely depend on the reduced frequency, although such assumption is not 

strictly true, see Piteau et al. (2019) and Lagrange et al. (2019). As discussed earlier, the 

fluidelastic forces are commonly expressed in terms of dimensionless fluidelastic coefficients 

per unit length of the structure, ( )m C , ( )d C  and ( )k C , such that: 
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with the flow pitch velocity 
pV  and density 

f , and the tubes diameter D  and wet length L . 

The dimensionless fluidelastic coefficients in (72) are related to the physical coefficients of 

expression (3) through:  
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The added mass coefficient is typically taken under stagnant conditions. From (72), the 

expression for building the physical function ˆ ( )FS

mm D  from the dimensionless fluidelastic 

coefficients is: 
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and notice that, replacing (73) into (74), the resulting expression simplifies to (3): 

    2ˆ ( )FS FS FS FS

mm mm mm mmi       D M C K  (75) 

as it should, for consistent scaling factors.  

We now express formulation (43) in terms of the tubes uncoupled modes r  (those of the 

individual tubes), with 1,2, ,r R , such that  1 2( ) ( ) ( )m R r r   x q Ψq   . 

Replacing the modal expansion into (43) and then pre-multiplying the first equation by T
Ψ one 

obtains: 
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where we define the structural modal parameters through the diagonal matrices 
S T S

rr mmΨ M ΨM , S T S

rr mm Ψ C ΨC  and S T S

rr mmΨ K ΨK , as well as the modal excitations 

( ) ( )Ext T Ext

r m  Ψ ff . 

Now, let us assume that the fluidelastic coupling matrices in formulation (76) were 

identified from the dimensionless experimental functions ˆ ( )FS

mm D  per unit length of the tubes. 

We denote such matrices as  F

mmM , F

mmC , F

mmK , F

hhM , F

hhC , F

hhK , F

mhM , F

mhC  and F

mhK , which 

are all scaled by the factor 
2(1/ 2) f pV L  (where L  is the length of the tubes of interest in the 

predictive analysis) and referred to the dimensionless circular frequency / pD V  . Then, 

proceeding as before for converting from dimensionless to physical quantities, the coupled 

modal formulation (76) becomes: 
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or, in the time-domain: 
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with the conversion coefficients: 
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Therefore, a single identification of the fluidelastic coupling matrices, from the 

dimensionless experimental data ˆ ( )FS

mm D , is needed for all specific cases. Indeed, whatever the 

actual values of the flow velocity 
pV  and density 

f , and of the structural parameters D  and 

L , the scaling coefficients a , b  and c  will readily adapt equations (77) and (78) for any actual 

application. 

In its essence, nothing prevents this approach to be applicable to two-phase flows. However, 

when dealing with the actual fluidelastic reduced data, conversion from dimensionless to 

dimensional fluidelastic forces must account for the specificities of the reduced data. In cases 

when collapsing the experimental data (single-phase or two-phase) implies the use of more 

complex and/or multiple reducing parameters - see papers by Lagrange et al. (2019, 2023) - 

the formulations for converting the identified reduced fluidelastic function(s) to the 

corresponding dimensional forces should be adapted accordingly. 

 

6.2 Relation of the present formulation with results in unsteady aeroelasticity  

 

One will notice that models for unsteady aerodynamics, widely used for predicting the 

stability of airplane wings and bridge decks, are quite close the formulation for fluidelastic 

forces developed here. Actually, following the seminal work of Wagner (1925) and Theodorsen 
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(1935) in unsteady aerofoil theory, see Fung (1969) or Dowell (2022), many researchers 

developed related formulations for generalized aeroelastic systems, see Eversman and Tewari 

(1991) and Tewari (2015). In particular, Sevart (1975), Roger (1977) and Abel (1979) proposed 

the following dimensionless expression to model the unsteady aeroelastic forces ˆ ( )AE

mm sD , the 

so-called "Aerodynamic influence coefficient matrix": 

 
2 2

2 1 0

1

ˆ ( ) ;
N

AE n
mm

n n f

s sB
s s s s

s V




    



A

D A A A  (80) 

where B  is a reference length (typically the wing semi-chord length) and 
fV  the flow velocity, 

while the n  enter the formulation as real positive "lag parameters". In terms of the 

dimensionless circular frequency, (80) reads:  
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and the model identification is through parameters n  and matrices 
0 2~ NA A . In this context, 

Tiffany and Adams (1987) and Eversman and Tewari (1991) refined the identification of the 

lag parameters, whereas the Minimum State Method proposed by Karpel (1982) is the 

following richer variant of (80), which enables more compact approximations: 

  
12

2 1 0

ˆ ( ) ;AE

mm

f

B
i i i

V
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     


      D A A A D EI R  (82) 

where the lag parameters are embedded in the diagonal matrix R , which must be identified 

with matrices 0 2~A A , D  and E . Notice that (81) can be cast in the form (82) by writing: 

  
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 (83) 

where the identity matrices 
1 ~ NI I  are the same size of the square matrices nA . 

The proximity of (81) with (31), which is directly related with the modelling framework 

(43), is unmistakable. This is even more so, as some authors prefer a modified form of (80) 

without s  multiplying the numerators of the expansion, because - as stated by Eversman and 

Tewari (1991) - "The present study has determined that there is no need to include the Laplace 

variable in the numerator of the lag terms". Hence the ensuing alternative to model (81): 
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which is similar to (31), although the poles n  in (31) may be real or complex, whereas the 

poles n  only take real values. Obviously, analogue to the present work, these are augmented 

aeroelastic models, with internal flow variables. However, opposite to the proposed framework, 

they are mostly of empirical nature, certainly resulting from ample insight, but lacking a formal 

justification for their successful structure, which is mathematically demonstrated here as a 

direct consequence of formulation (43). On the other hand, in the field of aeroelasticity 

frequency-domain models are typically converted to the time-domain using first-order state-

space formulations, suitable for control purposes, whereas in the present work second-order 

formulations are preferred for their insight potential. 
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7. Application to experimental data obtained at "CEA-Saclay"  

 

7.1 Tested system and fluidelastic measurements 

 

Experiments are often performed using a rigid bundle subjected to cross-flow, with a single 

flexible tube vibrating along the lift direction. Such was the case of the system tested at CEA-

Saclay, which is shown in Fig. 16, from which fluidelastic forces were identified by Piteau et 

al. (2012, 2018) for water cross-flow. The bundle consists of 15 tubes ( 3 5 ) with 30 mmD 

and / 1.5P D  . A control system enabled to identify the fluidelastic coefficients in the range 

0.7 ~ 2.5 m/spV  , well beyond the fluidelastic instability boundary, corresponding to a 

reduced velocity of ( ) 1.3 ~ 5.3R p VV V f D  , with 1( )V pf f V , and to the Reynolds number 

range Re 21000 ~ 87000 . The tube is clamped through a flat bar, in order to constrain the 

vibrations to be planar, leading to a first modal frequency 1f  along the lift direction of 29 Hz 

in air and 18 Hz in stagnant water. 

The control system used for the estimation of fluidelastic forces is shown in Figs. 16(a,b). 

This control system was used essentially to enable their estimation at higher flow velocities, 

well within the fluidelastic instability region of the test rig. Concerning the flow forces, they 

were not directly measured, neither was the tube motion directly imposed, in this experimental 

set-up. Actually, the fluidelastic forces were indirectly inferred from the changes in the modal 

frequency and modal damping of the vibrating tube, under natural excitation by the flow 

turbulence. All the experimental details and procedures used in the experiments are thoroughly 

described by Caillaud et al. (2003). 
 

                           
                                               (a)                                                                             (b) 

 

      
                                              (c)                                                                                (d) 

Fig. 16. Experiments performed at CEA-Saclay by Piteau et al. (2012): (a,b) Flexible tube in a rigid square 

bundle, subjected to cross-flow and vibrating along the lift direction; (c) Electromagnetic shaker for stabilization 

of the tube through feedback control (Caillaud et al., 2003); (d) Scheme of the control loop (Piteau et al., 2019). 
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From these experiments were obtained the dimensionless fluidelastic coefficients ( )k RC V  

and ( )d RC V  shown in Fig. 2, while a constant value of the dimensionless added-mass per unit 

length was assumed, estimated at 2.01mC   in stagnant water. Notice that, in accordance with 

the sign convention for the dimensionless fluidelastic coefficients per unit length adopted here, 

the plots in Fig. 2 are such that positive values of ( )d RC V  are stabilizing, while positive values 

of ( )k RC V  increase the modal frequency of the flow-structure coupled system. As a general 

trend, ( )d RC V  decreases as RV  increases, becoming negative and leading to fluidelastic 

instability beyond about 3.8RV  . The sudden decrease of ( )d RC V  near 2.2RV   was 

tentatively attributed to vortex shedding phenomena. For the full range of flow velocity 

explored in the tests, except a couple of measurements, ( )k RC V  decreases as RV  increases. 

From the coupling coefficients, the dimensionless fluidelastic function ˆ ( )FS

mmD   was 

obtained from expression (72). The real and imaginary parts of ˆ ( )FS

mmD   are shown in Fig. 17 

as a function of the reduced frequency 
Rf  and of the reduced velocity RV , as well as the 

corresponding Argand plot. 

 

 
Fig. 17. Experiments performed at CEA-Saclay by Piteau et al. (2018): Dimensionless fluidelastic function 

ˆ
( )

FS

mm
D   obtained from the experimental dimensionless coefficients. Real part, imaginary part and Argand plot. 
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7.2 Fluidelastic coupling in a square bundle with a single lift-vibrating tube  

 

For the measurements performed with the tested bundle, the dimensionless flow-structure 

coupled equation becomes: 

 
1

1 1
2

1

1 1

0 0

0 1 0 0

0 0 1 0

0

0

S F HS F
mm mm mh mhmm mm

mh hh

H H

mh hh

S F H

mm mm mh mh

mh hh

H

mh hh

c c c cm m

c c
i

c c

k k k k

k k

k k

 

       
                    
         
                  

   

 
  

 
 
 

1

( ) ( )

( ) 0

( ) 0

m ext

h

H

h

H

X F

Q

Q

 





 
 
 
 

    
    
       

                                          
   

  (85) 

with the hidden variables given, as a function of the measured variable, by: 
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 so that the dimensionless fluidelastic function is written: 
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  (87) 

with the optimal order H  of the flow hidden degrees of freedom to be established, in order to 

reproduce the essential features of the measured  ˆ FS

mmD  . 

 

7.3 Formulation of the fluidelastic forces using the proposed approach 

 

For the polynomial identification of the fluidelastic data through expression (26), opposite 

to the simpler identifications performed in section 5, a constraint imposing stable poles 

(negative real parts) was here activated in the identification algorithm. This is necessary to 

insure that the flow-coupling forces lag the structure motions, as dictated by the system physics. 

Satisfactory identifications from the experimental fluidelastic data were achieved, although the 

procedure proved somewhat delicate. Actually, when stability of the model is imposed, the 

zeros/poles identified in (26) depend somewhat on the identification method parameters. Here, 

after many trials, we used the value 54 10r
   for the algorithm regularization parameter, as 

it led to consistent data fitting as the model order H  was increased. On the other hand, for 

some values of the poles/residuals, the scalar solutions k n  and cn  computed from (101) are 

only complex. Therefore, there is room for improvement of the present identification approach. 

The decrease of the identification error as H  increases is shown in Fig. 18, for order 

0 ~ 3H  . The results obtained suggest that low model orders are enough to capture the system 

dynamics embedded in the experimental data, as shown in Figs. 19 to 22, which present the 
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measured dimensionless data  ˆ FS

mmD   and the corresponding identified models  FS

mmD  , 

equation (87), for increasing order 0 ~ 3H  . The experimental data and identified curves are 

shown as a function of the reduced frequency 
Rf  and of the reduced velocity RV , as well as the 

corresponding Argand plots. 

 

Fig. 18. Experiments performed at CEA-Saclay by Piteau et al. (2018): Identification error with respect to the 

measured values of  
11

ˆ FS
D   as a function of the model order H . 

 

Fig. 19. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measurement  
11

ˆ FS
D   and 

reconstructed  
11

FS
D   from the identified model with order 0H  . 
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The identified results with 0H   of Fig. 19 are obviously reduced to the flow force terms 

directly applied to the structural measurement DOF, with no hidden flow dynamics. In terms 

of equation (85), the identified dimensionless flow-structure model is: 

       2 ( ) ( )S F S F S F

mm mm mm mm mm mm m extm m i c c k k X F            (88) 

with the numerical values: 

 1.72 ; 0.259 ; 1.78F F F

mm mm mmm c k      (89) 

and the curves in the first plot of Fig. 19 clearly show the corresponding inertial and damping 

behavior, as well as the residual negative stiffness at 0  . Notice that the identified 

dimensionless added mass 1.72F

mmm   is reasonably close to the measured value under stagnant 

conditions 2.01mC  . 

 

Fig. 20. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measurement  
11

ˆ FS
D   and 

reconstructed  
11

FS
D   from the identified model with order 1H  . 

 

For the case 1H   presented in Fig. 20, there is a single hidden flow variable, leading to 

the dimensionless model: 
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and the scalar flow coefficients were identified as: 
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The improved fitting of the damping stemming from the flow DOF is obvious. 

 

Fig. 21. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measurement  
11

ˆ FS
D   and 

reconstructed  
11

FS
D   from the identified model with order 2H  . 

 

The case 2H   presented in Fig. 21 leads to the dimensionless model (90) with the 

following identified scalar and matrix coefficients: 
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This model order already seems to capture the essential features of the identified 

experimental data, and might therefore be usable for predictive purposes. 
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Fig. 22. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measurement  
11

ˆ FS
D   and 

reconstructed  
11

FS
D   from the identified model with order 3H  . 

 

Finally, Fig. 22 presents the results obtained for the case 3H  , corresponding the 

following identified model: 
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This model order is possibly the best to capture the experimental data, beyond which 

overfitting may occur, leading to degrading performance on extrapolating the experimental 

range of reduced frequency. 
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7.4 Application of the proposed fluidelastic formulation in predictive analysis  

 

As a final application of the proposed framework, we apply the experimentally identified 

flow-structure models to the actual experimental rig used by Piteau et al. (2012, 2018), with 

the main physical parameters detailed in section 7.1. Moreover, the structural modal 

coefficients (in air) for the first mode of the flexible tube ( 1r  ), are: 
1 0.0665 KgS S

rrm m  , 

1 1 12 0.080 Ns/mS S S S

rrc m     and  
2

1 1 2208 N/mS S S

rrk m   , with the modal parameters 

1 2 29 182.2 rad/sS     and 
1 0.0033S  , the excited tube modeshape being 

( / ) ( ) (for  0 1)S S

rr rrx L x d ex x      , with 0.154d   and 0.846e  . 

We will use here the dimensionless flow models identified with orders 0 ~ 3H  , and the 

physical flow-structure model (77) reads: 
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with the modal projection coefficients: 
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0 0
( ) / 3 0.393S

r rrI x dx d ex dx d de e          (95) 

and: 

  
1 1

0 0
( ) / 2 0.577S

r rrJ x dx d ex dx d e         (96) 

where the velocity-dependent scaling coefficients a , b  and c  are given by (79) , with 
31000 Kg/mf  , 0.03 mD   and 0.3 mL  . Then: 

 
2 2 21 1 1

0.135 ; 4.5 ; 150
2 2 2

f f p p f p pa D L b V DL V c V L V         (97) 

From the previous numerical values, we now compute the eigenvalues of the non-forced 

equation (94), as a function of the flow velocity, in the range 0 4 m/spV  . From the 

computed eigenvalues, the modal frequencies and damping values of the flow-structure system 

are extracted and compared to the experimental results, as a function of pV . These are presented 

in Figs. 23 to 26 and the results clearly show the progressive convergence of the eigenvalue 

predictions from the identified fluidelastic model, as the model order H  increases. Also, one 

can notice the enrichment of the eigenvalues chart, as the order H  of the "flow" hidden 

variables increases. Interestingly, such a behavior is also reported in the work by Langthjem et 

al. (2006), where linearly increasing eigenvalue branches are described as "predominantly 

related to fluid motion". In their work, these eigenvalue branches arise from the finite element 

eigen-formulation of a flexible rod in annular leakage flow, their model including the axial 

flow rate in the formulation. 

One may wonder if these eigenvalue branches pertain to physical modes of the system, or 

if they are only spurious (although organized) numerical results. It is well known that spurious 
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eigenvalues often arise from models of coupled systems and depend on subtle modelling 

details, see Gottlieb and Orzag (1977) or Dawkins et al. (1998). Some methods exist for the 

identification and/or removal of spurious eigenvalues, see Zebib (1987) and Chen et al. (2000), 

which were not tested yet on this problem. Under such conditions, one should address with 

caution this topic. Nonetheless, our current view is that the "extra" eigenvalues appearing in 

Figures 24 to 26 are not spurious but correspond to actual flow modes, for the following 

reasons: (i) Their number is equal to the order of the hidden flow model, e.g. the number of 

assumed flow modes; (ii) Far from mode-crossings, the physical modal frequency of each 

branch increases linearly with the flow velocity, a behavior that is consistent with their constant 

reduced modal frequencies,  /n p nV D  , the branches slopes being given by 

/ /n p nV D    ; (iii) The linear increase of these "flow" eigenvalues is disrupted near mode-

crossings, showing that these branches effectively couple with the "main" eigenvalue branch 

of the fluidelastically coupled tube; and (iv) Most often, the subtle local changes of eigenvalues 

resulting from modal interactions follow the experimental data. 

 
Fig. 23. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measured modal frequencies  

and damping values of the flexible tube, as a function of the flow pitch velocity 
pV , and the corresponding 

modes computed from the identified coupled model with order 0H  . 

 
Fig. 24. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measured modal frequencies  

and damping values of the flexible tube, as a function of the flow pitch velocity 
pV , and the corresponding 

modes computed from the identified coupled model with order 1H  . 
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Fig. 25. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measured modal frequencies  

and damping values of the flexible tube, as a function of the flow pitch velocity 
pV , and the corresponding 

modes computed from the identified coupled model with order 2H  . 

 
Fig. 26. Experiments performed at CEA-Saclay by Piteau et al. (2018): Reference measured modal frequencies  

and damping values of the flexible tube, as a function of the flow pitch velocity 
pV , and the corresponding 

modes computed from the identified coupled model with order 3H  . 

 

It thus appears that, for the three orders with hidden variables 1~ 3H  , the identified flow 

models leads to complex modes, which encapsulate the flow response lags, but also intrinsic 

flow dynamics at frequencies which essentially increase linearly with the flow velocity. 

 

 

8. Conclusions 

 

In this paper we developed a new approach for dealing with experimental fluidelastic forces, 

by explicitly accounting for a set of "hidden" variables connected with the flow internal 

dynamics. This assumption enables extracting frequency-independent inertia, damping and 

stiffness matrices from the measured frequency-dependent coefficients. A general framework 

was developed to convert the experimental frequency-dependent fluidelastic data into a 

standard second-order matrix formulation of the flow-structure coupled system, which was 

detailed here for the specific case of symmetric coupling. The relation between the proposed 
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formulation and similar empirically-based work in aeroelasticity was discussed. Then, the 

developed formulation and procedures were applied to actual experimental data obtained at 

CEA-Saclay, for a flexible tube vibrating in the lift direction within a square rigid bundle 

subjected to cross-flow, with interesting results. 

The proposed modelling approach is based on data stemming from fluidelastic force 

measurements and, therefore, the results obtained will be as good as the quality of the 

experimental data and the effectiveness of the data-reduction scaling factors. Though this can 

be stated about any method based on experimental data. The proposed flow modelling and 

identification approach show significant potential in practical applications, with many definite 

advantages: (1) Flow-coupling phenomena are described in terms of classical frequency-

independent flow mass, damping and stiffness matrices; (2) Explicit modelling of the flow 

hidden dynamics may allow for increased physical insight, in particular when several moving 

tubes are coupled; (3) Physical compatibility between the various flow-coupling measurements 

can be asserted; (4) Stability analysis of the system can be performed through a standard eigen-

formulation; (5) Model conversion from the frequency-domain to the time-domain does not 

entail a frequency interpolation/extrapolation of the measured data; (6) Nevertheless, the 

frequency interpolation/extrapolation of flow-coupling measurements is immediate and 

naturally causal; (7) The asymptotic expansion of the measured fluidelastic functions at 0  

and   stem directly from the modelling approach; (8) Flow-coupling forces are computed 

from standard ODE instead of costly integral convolutions; (9) The flow-structure coupled 

dynamics may be analyzed using standard structural dynamics software, and (10) Flow-

coupling force dynamics are computed simultaneously with the structural dynamics, not with 

one time-step delay, even using explicit time-integration algorithms.  

The present work should be extended to achieve the conversion of experimental frequency-

dependent fluidelastic data to second-order formulation in the general case involving both 

symmetric and anti-symmetric fluidelastic coupling. This important development will be 

addressed in subsequent work. Although applied here in the context of heat-exchanger tube-

bundle vibrations, the proposed modelling and identification approach obviously embraces a 

much wider range of coupled flow-structure applications. 

 

 

Appendix 

 

In this appendix a new method for solving equations (50) : 

    
1 0 0 1

; , 1, ,
0 1

T T

n n

n n n n n nT T
n nn n

n H
k c

      
        

       

k k
k c A k c B

c c
 (98) 

is presented, applicable when nA  and nB  are generic symmetric matrices. We start with the 

scalar case, when there is only a measured DOF, so that equations (98) become: 

    
1 0 k 0 1 k

k c A ; k c B , 1, ,
0 c 1 c

n n

n n n n n n

n n n n

n H
k c

       
         

        
 (99) 

which cannot be addressed by the general method developed in the following, devised for two 

or more measurement DOF. The scalar form of equations (99) is then more convenient: 

 2 2 2k c A ; 2k c c B , 1, ,n n n n n n n n nk c n H      (100) 

from which the following solutions are obtained: 
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  2 2 2 2

2

B 2A 2 A B A B A A B A B
c ; k c

4 B

n n n n n n n n n n n n n n n n

n n n

n n n

c k c k c

k c

      
 


 (101) 

Actually, from equations (100) one obtains four different solutions for k n  and cn . The 

complex solutions are safely disregarded, as both k n  and cn  are real quantities, while the real 

solutions are equivalent. 

The general case of several measurement DOF is considerably harder to solve, and the full 

vector-matrix equations (98) must be addressed. Then, matrices nA  and nB  are of rank 2, 

whatever the number of the system measurement DOF (greater than 2), so their eigen-

decomposition leads to: 

    1 1

1 2

2 2

0 1 0

0 0

T T
a a n

n a a n nT T
a na n

k





      
       

      

k
A k c

c


 


 (102) 

    1 1

1 2

2 2

0 0 1

0 1

T T
b b n

n b b n nT T
b nb n

c





      
       

      

k
B k c

c


 


 (103) 

Let us now consider the transformations aT  and bT  such that: 

 
1 1

2 2

0 1 0 0 0 1
;

0 0 0 1

a bT T

a a b b

a n b nk c

 

 

       
        

        
T T T T  (104) 

and one obtains, from (102)-(104): 

 

   

   

1 111 1

1 2 1 2

2 22 2

1 1

1 2

2

0 0

0 0

1 0 1 0

0 0

T T
a a T Ta a

n a a a a a a a aT T
a aa a

T T

T a n

a a a a n nT T
n na n

k k

 

 
 

 

      
       

      

      
       

       

A T T T T

k
T T k c

c

 
   

 


 



 (105) 

and: 

    1 1

1 2

2

0 1 0 1

1 1

T T

T b n

n b b b b n nT T
n nb n

c c

 
      

       
       

k
B T T k c

c


 


 (106) 

hence the expressions: 

        1 1

1 2 1 2;n n a a a n n b b b

  k c T k c T     (107) 

which imply: 

    1 1

1 2 1 2a a a b b b

 T T     (108) 

We must therefore obtain the transformations aT  and bT  that solve the identification 

problem through (107). Let us write (104) in compact form: 

 ;T T

a a a a b b b b T T M T T ML L  (109) 

so that: 

 1/2 1/2 1/2 1/2;T T

a a a a a b b b b b

    M T T M M T T ML I L I  (110) 

and, as noted by Poloni (2020), matrices 
aL , aM , 

bL  and 
bM  being symmetric, we have: 

 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2;T T T T

a a a a a a a a b b b b b b b b

      M T T M Q Q M T T M Q QL L I L L I  (111) 

meaning that: 

 1/2 1/2 1/2 1/2;a a a a b b b b

  Q M T Q M TL L  (112) 

where aQ  and bQ  are any orthogonal matrices. Then, the matrix transformations read: 
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 1/2 1/2 1/2 1/2;a a a a b b b b

  T M Q T M QL L  (113) 

and, accounting for the results (108) and (113): 

    1/2 1 1/2 1/2 1 1/2

1 2 1 2a a a a a b b b b b

   Q M Q M   L L  (114) 

with the orthogonality conditions T

a a Q Q I  and T

b b Q Q I , which imply 1 T

a a

 Q Q  and 

1 T

b b

 Q Q , therefore (114) becomes: 

    1/2 1/2 1/2 1/2

1 2 1 2

T T

a a a a a b b b b b

 Q M Q M   L L  (115) 

and, pre-multiplying (115) by  1 2

T

a a  , one obtains: 

 
1/2 1/2 1/2 1/2T T

aa a a a ab b b b

 Q M Q M L L  (116) 

with the square matrices    1 2 1 2

T

aa a a a aΦ      and    1 2 1 2

T

ab a a b bΦ     , hence: 

 
1/2 1/2 1/2 1/2T T

b b a a a aa ab b

  Q M M Q L L   (117) 

Then, from the orthogonality of aQ  and bQ : 

   1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2T T T T

b b b a a a aa ab b b ab aa a a a b

      Q Q M M Q Q M MI L L L L     (118) 

and, from (118): 

 
1/2 1/2 1/2 1 1 1/2 1/2 1/2T T T

b a a a aa ab b ab aa a a a b

     M M Q Q M ML L L I     (119) 

or: 

 
1/2 1/2 1/2 1 1/2T T T

a b a a a a aa ab b ab aa a

      M M M Q Q L L L     (120) 

with T

a a

 Q Q , hence: 

 
1/2 1/2 1/2 1 1/2T T

a b a a a a aa ab b ab aa a

     M M M Q Q L L L     (121) 

Notice that (121) is a homogeneous Sylvester equation of the form: 

 
1/2 1/2

1

1 2 1/2 1 1/2

2

with a b a

a a T T

a aa ab b ab aa a

 

   

 
 



M M M M
M Q Q M

M L L L   
 (122) 

and it can be shown that (122) has at least a nonzero solution if 
1M  and 

2M  share at least one 

eigenvalue in common, see Horn and Johnson (1991), which is the case here. Equation (122) 

is of size 2 2  and may be easily recast in the homogeneous form: 

 0 a M q 0  (123) 

with the vector [ (1,1) , (1, 2) , (2,1) , (2, 2)]T

a a a a aQ Q Q Qq  and matrix: 

        

        

        

        

1 2 2 1

2 1 2 1

1 1 2 2

1 2 2
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1

1,1 1,1 2,1 1,2

1,2 1,1 2,2 1,2

2,1 2,2 1,1 2,1

2,1

0

1 2

0

0 ,

0

2 ,2 2,2

M M M M

M M M M

M M M M

M M M M

 
 
 

  
 
 
 

 

 

 

 

M  (124) 

The rank of matrix 
0M  is 2 and the general solution of equation (123) is given by the 

nullspace basis of matrix 
0M , spanned by the complex vectors 1v  and 2v , which are the two 

last columns in matrix V  of the Singular Value Decomposition 0

TM U VS , those pertaining 

to the two near-zero singular values. Then, the range of possible solutions is given by: 

 
1 2a   q v v  (125) 

where   and   are arbitrary complex parameters. Then, we reshape (125) as: 
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 1 1 2 2

1 2

1 1 2 2

v (1) v (2) v (1) v (2)

v (3) v (4) v (3) v (4)
a    

   
      

   
Q V V  (126) 

with parameters   and   determined such that aQ  is orthogonal, T

a a Q Q I , which is the 

only suitable solution. These are computed numerically by minimizing the error: 

     1 2 1 22 2

,
TT

a a L L

           Q Q V V V VI I  (127) 

using 
R Ii     and 

R Ii     when a real-parameter minimizing function is used. Here, 

the Matlab function "fmincon" was used, with an imposed constraint 
2

1 1a L
  Q  (with 

1 ), stemming from the orthogonality of aQ , which also avoids computing trivial near-zero 

solutions. A satisfactory convergence of the identified orthogonal matrix 
ide

aQ  was thus 

achieved. Then, from 
ide

aQ  and the result (117), the other orthogonal matrix 
ide

bQ  may be 

obtained: 

 
ide 1/2 1/2 ide 1/2 1/2T T

b b a a a aa ab b

  Q M M Q L L   (128) 

and, finally, the problem solution is given by (115): 

          1/2 ide 1/2 1/2 ide 1/2

1 2 1 2

T T

n n a a a a a b b b b b

  k c Q M Q M   L L  (129) 

using the identified orthogonal matrices 
ide

aQ  and 
ide

bQ . The two solutions (129) are identical. 
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