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ABSTRACT

Aims. Understanding the expansion of the Universe remains a profound challenge in fundamental physics. The complexity of solving
general relativity equations in the presence of intricate, inhomogeneous flows has compelled cosmological models to rely on pertur-
bation theory in a homogeneous Friedmann–Lemaître–Robertson-Walker background. This approach accounts for a redshift of light
encompassing contributions from both the cosmological background expansion along the photon’s trajectory and Doppler effects at
emission due to peculiar motions. However, this computation of the redshift is not covariant, as it hinges on specific coordinate choices
that may distort physical interpretations of the relativity of motion.
Methods. In this study we show that peculiar motions, when tracing the dynamics along time-like geodesics, must contribute to the
redshift of light through a local volume expansion factor, in addition to the background expansion. By employing a covariant approach
to redshift calculation, we address the central question of whether the cosmological principle alone guarantees that the averaged local
volume expansion factor matches the background expansion.
Results. We establish that this holds true only in scenarios characterised by a reversible evolution of the Universe, where inho-
mogeneous expansion and compression modes compensate for one another. In the presence of irreversible processes, such as the
dissipation of large-scale compression modes through matter virialisation and associated entropy production, the averaged expansion
factor becomes dominated by expansion in voids that can no longer be compensated for by compression in virialised structures. Fur-
thermore, for a universe in which a substantial portion of its mass has undergone virialisation, adhering to the background evolution
on average leads to significant violations of the second law of thermodynamics. Our approach shows that entropy production due to
irreversible processes during the formation of structures plays the same role as an effective, time-dependent cosmological constant (i.e.
dynamical dark energy) without the need to invoke new unknown physics. Our findings underscore the imperative need to re-evaluate
the influence of inhomogeneities and irreversible processes on cosmological models, shedding new light on the intricate dynamics of
our Universe.
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1. Introduction
The comprehension of the recessional velocity of extragalac-
tic objects hinges upon the redshift-distance relation derived
from homogeneous solutions of Einstein’s field equations within
the framework of the Friedmann–Lemaître–Robertson-Walker
(FLRW) metric. Within this coordinate system, the spatial
coordinates are comoving with the matter that fills the Uni-
verse, attributing the cosmological redshift to the expansion of
‘space’ along the path of photons. However, observations in
the nearby Universe have revealed a notable scatter around the
linear redshift-distance relation, primarily driven by the pres-
ence of peculiar velocities of sources inducing a Doppler shift
upon photon emission (Peebles 1993; Peacock 1998). The debate
in the literature regarding whether cosmological and Doppler
shifts are equivalent phenomena is ongoing (Bunn & Hogg
2009; see also Peacock 1998, 2008; Whiting 2004; Chodorowski
2007). As noted in Bunn & Hogg (2009), the interpretation of
space expansion is not entirely satisfactory from a relativistic
standpoint, as it relies on a specific choice of coordinates and
⋆ Corresponding author; pascal.tremblin@cea.fr;
chabrier@ens-lyon.fr

thus lacks covariance. Conversely, Räsänen (2009) introduced
a covariant approach to redshift calculations for an inhomoge-
neous dust universe. While this approach represents a significant
advancement in our understanding of the nature of redshifts
in a manner consistent with the covariant framework of gen-
eral relativity, it has been relatively overlooked. This is largely
because, on average, the results do not seem to deviate from the
background FLRW expansion in a statistically homogeneous and
isotropic universe (Räsänen 2009; Rasanen 2010).

This paper aims to re-evaluate the cosmological redshift by
addressing the influence of inhomogeneities and irreversible pro-
cesses. In Sect. 2, we begin by providing a detailed analysis
of the standard interpretation of the redshift within the FLRW
metric and discuss the limitations of this approach by using
non-comoving coordinates. In the subsequent section (Sect. 3),
building on Räsänen (2009), we introduce a covariant approach
to the redshift calculation, emphasising the role of peculiar
motions and local volume expansion factors. We propose a new
approach to the redshift calculation by introducing a tracer of
time-like geodesics: the cosmological redshift is associated with
the local expansion rate along these time-like geodesics, while
the Doppler shifts are associated with the potential non-geodesic
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motions of the source and observer. Following this, in Sect. 4
we present our findings on the impact of irreversible processes
on the cosmological redshift. We argue that in scenarios char-
acterised by irreversible evolution, such as the dissipation of
large-scale compression modes through matter virialisation and
associated entropy production, the averaged expansion factor is
dominated by expansion in voids. This leads to significant vio-
lations of the second law of thermodynamics if the Universe’s
evolution adheres to the background evolution on average. Lastly,
in Sect. 5 we discuss the broader implications of our find-
ings for cosmological models and observations. We conclude in
Sect. 6 on the necessity of re-evaluating the influence of inho-
mogeneities and irreversible processes to better understand the
complex dynamics of the Universe.

2. Redshift in a homogeneous expanding universe
in non-comoving coordinates

We began with a standard flat FLRW metric with a scale factor,
a(t), such that

ds2 = −c2dt2 + a2(dr2 + r2dΩ2). (1)

The proper distance, R, is

R = a(t)r, (2)

and the total velocity is then

dR
dt
= H(t)R + a(t)

dr
dt
, (3)

with H ≡ ȧ/a. Within the total velocity, one can discern a contri-
bution originating from the recession velocity due to the expan-
sion of space, and another contribution arising from peculiar
velocities vp = a(t)dr/dt. In the late evolution of the Universe,
peculiar motions are non-relativistic in the weak field limit. Per-
turbation theory then leads to the following formulation of the
redshift with a cosmological contribution from space expan-
sion and a contribution from the Doppler shift associated with
peculiar motions:

1 + z ≈ exp
(∫ tdst

tsrc

Hdt
) (

1 +
vp

c

)
, (4)

assuming for simplicity that the observer at time tdst has no
peculiar motion, and the source at time tsrc a peculiar motion
vp at emission. With this approach, the inhomogeneities have
no significant impact on the redshift, provided that the peculiar
velocities remain small vp ≪ c.

We next assumed a perfectly homogeneous FLRW universe
with no peculiar motion vp = 0. We wished to apply a local coor-
dinate transformation in a non-comoving frame, characterised by
an expansion factor as(t) different from a(t) such that

rd = rad(t),
td = t + α(r, t), (5)

with as = a/ad and α(r, t) a function that will be specified later,
such that td ≈ t at the leading order in O(ȧdr/c). We used such
a coordinate transformation, locally, such that ȧdr/c is indeed
much smaller than unity. With this transformation, the proper
distance R is

R = a(t)r = as(t)rd, (6)

with as = a/ad. The total velocity is then

dR
dt
= Hs(t)R + as(t)

drd

dtd
, (7)

with Hs ≡ ȧs/as. Within the total velocity, one can discern now
a contribution originating from the recession velocity due to the
expansion of ‘space’, characterised by the scale factor as, and
another contribution arising from non-comoving velocities vp,r =
asHdrd.

We chose the function α(r, t) such that the metric in (rd, td)
coordinates has only perturbative deviations from a homoge-
neous metric with a scale factor as. The coordinate transforma-
tion verifies

drd = addr + rȧddt,
dtd = (1 + α̇)dt + α′dr, (8)

with α̇ the derivative with respect to t and α′ the derivative with
respect to r. This system can be inverted to give

addr = ((1 + α̇)drd − rȧddtd)/(1 + α̇ − rHdα
′),

dt = (dtd − α′/addrd)/(1 + α̇ − rHdα
′), (9)

with Hd = ȧd/ad. By injecting these equations into ds2, the non-
diagonal metric coefficient is

grd td = 2(c2α′/ad − a2
s(1 + α̇)rȧd)/(1 + α̇ − rHdα

′)2. (10)

We imposed

α(r, t) =
1
2

a2Hdr2

c2 , (11)

such that the metric in (rd, td) coordinates is given by

ds2 = −c2Adt2
d + a2

s(Bdr2
d + r2

ddΩ2) − 2cdtdasdrdC, (12)

with

A = (1 − a2
s H2

dr2
d/c

2)/(1 + α̇ − a2
s H2

dr2
d/c

2)2,

B = ((1 + α̇)2 − a2
s H2

dr2
d/c

2)/(1 + α̇ − a2
s H2

dr2
d/c

2)2,

C = α̇asHdrd/c/(1 + α̇ − a2
s H2

dr2
d/c

2)2. (13)

At the leading order in O(asHdrd/c), we get

α = O(a2
s Hdr2

d/c
2)

α̇ = O(a2
s H2

dr2
d/c

2)
α′ = O(a2

s Hdrd/c2)
A = 1 + O(a2

s H2
dr2/c2)

B = 1 + O(a2
s H2

dr2/c2)
C = O(a3

s H3
dr3

d/c
3). (14)

The metric in (rd, td) coordinates has therefore only perturbative
deviations from a homogeneous metric with a scale factor as. In
this coordinate system and using the same computation of the
redshift as usually done for weak perturbations around a homo-
geneous metric, at the leading order in O(asHdrd/c), the redshift
of light emitted by a source at rd = adrsrc, td = tsrc towards an
observer at rd = 0, td = tdst can be expressed as follows:

1 + z ≈ exp
(∫ tdst

tsrc

Hsdt
) (

1 +
Hdasadrsrc

c

)
, (15)

with two contributions: one stemming from the ‘space’ expan-
sion along the photon path of the homogeneous metric with
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scale factor as(t) and another originating from a Doppler term
from non-comoving velocities only at emission. At the leading
order in O(Hsr/c), this is equivalent to z ≈ (Hs+Hd)asadrsrc/c =
Harsrc/c only when HS is independent of time. This method of
calculating redshift is not covariant, as it essentially converts
part of the cosmological redshift along the photon’s path into
a Doppler shift that occurs solely at the point of emission.

3. Covariant computation of the redshift
in an inhomogeneous universe

Following Räsänen (2009), we began by defining a set of
observers that are tracing time-like geodesics, characterised
by their four-velocity (denoted as uα). Consequently, these
observers satisfy the conditions uβ∇βuα = 0 and uαuα = −1. It is
important to note that these observers may not necessarily move
in tandem with the matter filling the Universe, as this matter can
experience acceleration due to non-gravitational forces and may
not strictly adhere to time-like geodesics. However, especially on
large scales and within the context of dark matter, we can con-
sider the dark matter fluid to be a useful tracer of these time-like
geodesics.

To further elucidate on this, we introduced the projection
tensor, denoted as hαβ, which operates within the tangent space
orthogonal to uα. It is defined as hαβ ≡ gαβ + uαuβ. With this
tensor, we decomposed the covariant derivative of uα,

∇βuα =
1
3

hαβθ + σαβ + ωαβ, (16)

with θ = ∇αuα, the volume expansion rate, σαβ = ∇(αuβ) −
hαβθ/3 the shear tensor, and ωαβ = ∇[βuα] the vorticity tensor.
For simplicity, we assume in the rest of this paper that the shear
and vorticity tensors can be neglected.

We next defined kα, the tangent vector of the null geodesics
that satisfies kβ∇βkα = 0 and kαkα = 0. The tangent vectors uα
and kα are parallel propagated with respect to the time-like and
null geodesics, respectively, but not with respect to each other.
Consequently, the photon momentum changes along the time-
like geodesics and the redshift is defined by

1 + z =
Esrc

Edst
, (17)

with Esrc the photon energy at emission by the source and Edst
the photon energy at the location of the observer. The energy can
be computed from E = −uαkα, and following Räsänen (2009)
we decomposed kα into a component parallel and a compo-
nent orthogonal to the time-like geodesics kα = E(uα + eα) with
uαeα = 0 and eαeα = 1 (and consequently hαβeαeβ = 1). The evo-
lution of the energy along the null geodesic can then be followed
with the affine parameter λ,

∂λE ≡ kα∇αE
= −kαkβ∇αuβ
= −E2eαeβ∇αuβ

= −
E2

3
θ. (18)

Without vorticity, the hypersurfaces of constant proper time are
orthogonal to uα, and t(λ) is monotonic. We could then invert the
relation between λ and t to obtain dλ = dt/E; hence,

1 + z = exp
(∫ tdst

tsrc

θ(t, x(t))
3

dt
)
. (19)

A more detailed demonstration including vorticity and shear can
be found in Räsänen (2009). The main difference here is that
we take a set of observers following time-like geodesics that
are not necessarily co-moving with matter filling the universe.
For a homogeneous metric with scale factor ã(t), H̃(t) = ˙̃a/ã,
and for small three-velocity ũg, the volume expansion factor is
given by θ ≈ 3H̃+∇ · ũg. Applying Eq. (19) to the non-comoving
coordinates defined above, we get

1 + z ≈ exp
(∫ tdst

tsrc

3Hs + ∇ · (drd/dtderd )
3

dt
)

≈ exp
(∫ tdst

tsrc

(Hs + Hd)dt
)
. (20)

With this covariant approach, ‘space-time’ geometry charac-
terised by the expansion rate Hs and non-comoving velocities of
observers following time-like geodesics characterised by Hdrd
contribute both as an expansion factor along the trajectory of
the photons. For a homogeneous FLRW solution with a Hubble
expansion rate H, the comoving coordinate system would lead
to H̃ = H and ũg = 0 and the non-comoving coordinate sys-
tem defined in Sect. 2 to H̃ = Hs and ũg = drd/dtderd . In both
coordinate systems, a consistent calculation of the cosmological
redshift is obtained with θ = 3H.

As a simple example, we considered a universe with G = 0
such that H = 0 and a(t) = 1. In such a universe the cosmological
redshift should be exactly zero, since there is no expansion along
the photon path and there should be only a Doppler shift from
the velocity difference between the source and the observer. We
assumed for the sake of simplicity that they are both at rest such
that the total redshift is zero. We also considered an arbitrary
coordinate system with a scale factor as(t) and an expansion rate
Hs(t), we thus have ad(t) = 1/as(t) and Hd(t) = −Hs(t). In such
a coordinate system, the perturbative redshift calculation gives

1 + z ≈ exp
(∫ tdst

tsrc

Hs(t)dt
) (

1 −
Hs(tsrc)rsrc

c

)
,

1 + z ≈
(
1 +

∫ tdst

tsrc

(Hs(t) − Hs(tsrc))dt
)
, (21)

which demonstrates that the Doppler shift at emission cannot
compensate for the expansion of the coordinate system along the
photon path as soon as this expansion is time dependent. How-
ever, with the covariant calculation, the redshift is exactly zero
since θ = 3Hs(t) − ∇(Hs(t)rd) = 0. This further demonstrates
that the perturbative formulation of the redshift with the Hub-
ble expansion rate H instead of the local expansion rate θ along
time-like geodesics is not covariant.

Lastly, it is imperative to highlight the precise physical entity
that should be traced by the local volume expansion rate and ũg.
It is crucial to note that the local volume expansion rate should
not mirror the fluid velocity but rather correspond to the veloc-
ity field of a hypothetical set of freefalling observers following
time-like geodesics (Räsänen 2009). The matter filling the uni-
verse can only serve as a tracer of these time-like geodesics if the
acceleration due to non-gravitational forces can be deemed neg-
ligible. Hence, we advocate for the use of expressions that avoid
the term ‘expansion of space’, as it lacks covariance, and instead,
we refer to the expansion along time-like geodesics when dis-
cussing cosmological redshift. Then, the Doppler shifts can be
defined as originating from the potential non-geodesic motion of
the source and observer at emission and reception.
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In an inhomogeneous universe with an arbitrary expanding
coordinate system defined by ã(t), H̃(t), the general expression
of the redshift can therefore be defined as follows:

1 + z = exp
(∫ tdst

tsrc

θ(t, x(t))
3

dt
)

×

(
1 +
vDoppler(tsrc, x(tsrc))

c
−
vDoppler(tdst, x(tdst))

c

)
, (22)

with

θ(t, x) = 3H̃(t) + ∇ · ũg,
vDoppler(t, x) = ã(t)(ũfluid − ũg) · n. (23)

Here, we define the cosmological redshift as the integral along
the line of sight of the local expansion rate along time-like
geodesics, and the Doppler shifts as the Doppler terms from
non-geodesic motions of the source and the observer in the non-
relativistic limit. These definitions are now fully covariant as
θ and the velocity difference in the Doppler shift are invariant
under a change of the coordinate system. Fundamentally, one can
see that the cosmological contribution should not transform into
a Doppler one or vice versa under a change of the coordinate
system. We considered only the expansion rate in Eq. (22) since
vorticity does not contribute to the redshift and shear is negli-
gible on large scales if structures have no preferred orientation
(Räsänen 2009).

At large scales and especially with dark matter, the matter
within the Universe is freefalling and can be taken as a tracer of
the dynamics along time-like geodesics. However, in the cosmo-
logical standard model, the coordinate system is comoving with
the FLRW background and is not comoving with these time-like
geodesics. Consequently, the conventional redshift calculation
overlooks the inhomogeneous dynamics along these geodesics,
attributing a Doppler shift solely to peculiar motions at the
point of emission, mirroring our example using non-comoving
coordinates within a homogeneous FLRW universe. In contrast,
the covariant calculation of the redshift highlights that peculiar
motions responsible for the formation of cosmic structures do
indeed contribute to the redshift along the photon path through
the local expansion rate.

This insight allowed us to reconsider the influence of inho-
mogeneities on the cosmological redshift. A backreaction is not
a question of small peculiar velocities relative to the speed of
light. It requires a deeper inquiry: whether, in a statistically
homogeneous and isotropic universe, the averaged local vol-
ume expansion rate along time-like geodesics provides a close
approximation to the background expansion 3H, which might not
be the case even if the Doppler shifts of the source and observer
relative to time-like geodesics are negligible.

4. Impact of irreversible processes on the
cosmological redshift

The condition ⟨θ⟩ ≈ 3H can be expressed equivalently as
⟨∇ ·ug⟩ ≈ 0. When we start from a homogeneous universe where
ug = 0 and consider a reversible evolution, one might natu-
rally expect, for example based on hydrodynamics equations, that
the condition ⟨∇ · ug⟩ ≈ 0 would hold. Essentially this implies
that inhomogeneous expansion and compression modes evolve
smoothly and compensate for one another on average, result-
ing in ⟨θ⟩ ≈ 3H (see the top panel of Fig. 1). It is a common
belief that the cosmological principle (i.e. homogeneity and

Fig. 1. Averaged expansion rate during the evolution of an inho-
mogeneous universe. Top: reversible evolution with expansion and
compression modes. Down: irreversible evolution when compression
modes are dissipated by virialisation through accretion shocks.

isotropy of the Universe at large scales) is sufficient to ensure
such a condition. In previous investigations addressing the back-
reaction problem (Buchert & Ehlers 1997; Buchert 2008), which
examines the impact of inhomogeneities on the cosmological
redshift, it has been generally assumed that this condition holds
(Buchert & Ehlers 1997; Räsänen 2009). Consequently, it would
appear that back-reaction is negligible in the non-relativistic
limit (Ishibashi & Wald 2006; but see also Buchert et al. 2015).
However, we aimed to re-evaluate this conclusion since struc-
ture formation does not have inhomogeneous expansion and
compression modes that compensate for each other on aver-
age: compression modes are dissipated by virialisation and the
associated entropy production and cannot compensate for the
expansion of the voids. Hence, in the presence of irreversible
processes, ⟨θ⟩ , 3H. The link between expansion and entropy
production can be made explicit by using the second principle
of thermodynamics assuming that a quasi-equilibrium defined
by a temperature T and a stress tensor with pressure σ has been
reached by virialisation,

TdS = dE + σdV,
Tds = de + ZkbTd(log V), (24)

for a closed system of N particles (dN=0) with an entropy per
particle s = S/N, an internal energy per particle e = E/N, and
a compressibility factor Z = σV/NkbT . Assuming the evolution
of an irreversible system from an initial state and the evolution
of a reversible system that reaches the same internal energy (e),
temperature (T ), and compressibility factor (Z) and has the same
entropy as the initial state,

T∆s = ∆e + ZkbT log(Virrev/Vini),
0 = ∆e + ZkbT log(Vrev/Vini), (25)
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implies that

Virrev

Vini
=

Vrev

Vini
exp

(
∆s
kbZ

)
. (26)

We recall that the expansion rate can be directly linked to the
variation of volume by using the equation of mass conservation
with a Lagrangian time derivative:

d log V
dt

= θ, (27)

which implies the following expression of the redshift for
motions that follow time-like geodesics in an irreversible system
(assuming spatial ergodicity along the photon path),

1 + z =
(

Virrev(tdst)
Vini(tsrc)

)1/3

,

=

(
Vrev

Vini

)1/3

exp
(
∆s

3kbZ

)
,

=
a(tdst)
a(tsrc)

exp
(
∆s

3kbZ

)
, (28)

where a(t) is the scale factor of the reversible background evolu-
tion. Equation (28) demonstrates the direct link between entropy
production and the cosmological redshift in an irreversible sys-
tem. The second principle of thermodynamics states that the
entropy production is always positive with ∆s > 0, the cos-
mological principle is therefore not sufficient to ensure that
the expansion of an irreversible system follows the background
expansion without violation of the second principle.

In an adiabatic system, the occurrence of an irreversible pro-
cess and the subsequent creation of entropy is possible through
the dissipation of large-scale motions into microscopic motions.
This process, driven by virialisation, is referred to as ‘violent
relaxation’ within the context of structure formation in the Uni-
verse, in the presence of non-collisional dark matter (White
1996). When a significant portion of the large-scale compression
modes dissipates due to virialisation, they can no longer com-
pensate for the expansion occurring in cosmic voids, inevitably
leading to the conclusion that ⟨θ⟩ , 3H (see the bottom panel
of Fig. 1). From numerical simulations (Haider et al. 2016),
we estimated that 50% of the dark matter mass is completely
virialised in haloes and 45% virialised in two directions in fila-
ments (Eisenstein et al. 1997). A realistic universe has therefore
virialised most of its mass and almost completely the initial com-
pression modes that appeared during the formation phase of the
large-scale structures. Furthermore, it is crucial to emphasise
that an inhomogeneous system undergoing irreversible processes
cannot, on average, precisely mimic the behaviour of the FLRW
background. The background evolves akin to a reversible sys-
tem (constant entropy), while an inhomogeneous system subject
to entropy generation would essentially need to violate the sec-
ond law of thermodynamics with processes generating negative
local entropy to align its averaged entropy with the background
entropy. Additionally, the process of dark matter virialisation
entails the acquisition of microscopic stress through microscopic
virialised motions. In this context, the dark matter fluid ceases
to be truly pressureless after virialisation, resulting in a non-
zero stress tensor within the Jeans equations. This can be seen
as a phase transition to a bound state similar to the forma-
tion of a liquid but in the context of statistical mechanics for
non-ideal self-gravitating fluids (Tremblin et al. 2022). A cen-
tral point to note is that the equilibrium observed in large-scale

structures is not a balance between gravitational attraction and
stresses induced by non-gravitational interactions. Dark matter,
by definition, is a tracer for dynamics along time-like geodesics.
Therefore, its virialisation marks the dissipation of large-scale
dynamics along these geodesics into microscopic motions that
continue to follow geodesic trajectories in freefall. This funda-
mental aspect underscores why the virialisation of large-scale
structures inevitably influences the cosmological redshift.

The presence of entropy creation, characterised by ⟨∇ · ug⟩ ,
0, necessarily implies the existence of discontinuities in the
three-velocity field. Remarkably, dark matter virialisation occurs
subsequent to shell crossing, resulting in the formation of caus-
tics, which are essentially discontinuities in the three-velocity
field. In the context of entropy creation through violent relax-
ation, these discontinuities can be likened to non-collisional
accretion shocks (see Parks et al. 2012, 2017 for non-collisional
shocks in plasmas) and are associated with a microscopic stress
tensor that is also discontinuous across the shocks (i.e. caus-
tics). The nature of such discontinuities within the framework
of general relativity may initially appear unclear. We propose
characterising these discontinuities by utilising exact solutions of
Einstein’s field equations in spherical symmetry. These solutions
are locally comoving with the time-like geodesics and are known
as generalised Lemaître-Tolman-Bondi solutions, when account-
ing for a microscopic stress tensor and virialisation (Lasky &
Lun 2006).

The metric for such solutions with a fluid characterised by an
energy density ρ and pressure σ is given by

ds2 = −N(r, t)2dt2 +
1

1 + 2E(r, t)
R′2dr2 + R(r, t)2dΩ2, (29)

with R′ the derivative with respect to r and with a unit choice
such that c = 1. N(r, t) is the lapse function and E(r, t) the local
curvature. The following Hamiltonian constraint equation can
be derived from the Arnowitt–Deser–Misner (ADM) formalism
(Lasky & Lun 2006)

1
2

u2 =

(GM
R
+ E

)
, (30)

with u ≡ Ṙ/N, Ṙ the derivative with respect to t and M(r, t) =
4π

∫ R(r,t)
0 ρr̃2dr̃, with the following evolution equations:

Ė
N
= −

1 + 2E
ρ + σ

1
R′
∂σ

∂r
u,

ρ̇

N
= −N(ρ + σ)

1
R2R′

∂(R2u)
∂r
,

u̇
N
= −

GM
R2 − 4πGσR −

1
R′

1 + 2E
ρ + σ

∂σ

∂r
. (31)

The Euler equation provides the following relation between the
lapse N and the pressure N′/N = −σ′/(ρ+σ). It is evident at this
stage that the local curvature E(r, t) undergoes an evolution remi-
niscent of the behaviour of kinetic energy in classical Newtonian
hydrodynamics. This similarity suggests that the curvature can
be linked to microscopic dissipation through the presence of dis-
continuities. To establish this connection, we proceeded under
the assumption that the fluid can be characterised by an inter-
nal microscopic energy, denoted as e, such that the total energy
density ρ can be expressed as ρ = ρm + ρme, with ρm repre-
senting the mass density. It is important to emphasise that our
analysis holds validity for both collisional and non-collisional
systems. The microscopic internal energy can be defined for a
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non-collisional system as the microscopic stress tensor in the
context of the Jeans equations. In the non-collisional limit, we
do not have simple closure relations that establish a connection
between the internal energy and the stress tensor with other vari-
ables. However, it is worth noting that such a relation is not a
requisite element within our analysis. In the non-relativistic limit
E, e ≪ 1, σ ≪ ρ. In this limit, and defining τ = 1/ρm,

Ė = −
τ

R′
∂σ

∂r
u,

τ̇ =
τ

R′
1

R2

∂(R2u)
∂r
,

ė = −
1
ρmR′

1
R2

∂(R2u)
∂r
σ,

u̇ = −
GM
R2 −

τ

R′
∂σ

∂r
. (32)

By employing the transformation dm = ρmR2dr/R′, where m
represents the so-called ‘mass’ variable, one can readily identify
the hydrodynamics equations in Lagrangian coordinates (see p. 8
of Godlewski & Raviart 1996 or p. 16 of Després 2017) with an
additional equation governing the evolution of curvature. From
this system, we derived the following conservative equation that
establishes a coupling between curvature and internal energy:

Ė + ė = −
∂

∂m

(
σuR2

)
. (33)

We assumed here that a discontinuity is located at ri with
Ri(t) = R(ri, t), with the possibility for u and E to jump. By using
standard Rankine-Hugoniot relations,

ṁi (El + el − Er − er) = (σlul − σrur) R2
i , (34)

with ṁi(t), the mass flow through the discontinuity. It is appar-
ent from this relation that the behaviour of curvature bears a
resemblance to that of kinetic energy. The second law of thermo-
dynamics, encompassing the dissipation of large-scale motions
and the concomitant generation of entropy, thus dictates that the
evolution of curvature follows the condition ∆E < 0. By apply-
ing the Hamiltonian constraint and using the continuity of GM/R
across the discontinuity, we derived the following relationship:

1
2

(
Ṙ2

l − Ṙ2
r

)
= El − Er. (35)

Under the assumption that the solution tends to become homo-
geneous on each side of the interface, we arrived at the following
jump condition concerning the local volume expansion rate:

1
18

(
θ2l − θ

2
r

)
=

1
R2

i

(El − Er) . (36)

It is worth highlighting that these co-moving solutions can find
utility in a broader context not necessarily tied to gravitational
dynamics. While we have primarily considered particles fol-
lowing time-like geodesics, one can also investigate co-moving
solutions with non-geodesic motions in the limit as G approaches
zero. In this scenario, the solution becomes a spherical shock dis-
continuity akin to the Sedov solution in classical hydrodynamics.
Within this context, θl = ∇ · ug remains approximately constant
within the volume undergoing expansion, while θr = 0 outside of
it. These shocks dissipate large-scale motions into microscopic
motions, accompanied by entropy creation and a distinctive jump
in the local curvature, the evolution of which conforms to ∆E <

0. Commencing with a homogeneous system characterised by
zero curvature and transitioning to a locally comoving space-
time with time-like geodesics, we find that virialisation leads to
the generation of local negative curvature. Although the con-
nection between virialisation and negative curvature has been
discussed in existing literature (Roukema et al. 2013; Roukema
2018), our contribution lies in linking the curvature produc-
tion by virialisation to the second law of thermodynamics. This
implies that the averaged space-time curvature of a co-moving
solution that traces the motion of time-like geodesics, cannot be
zero in the presence of irreversible processes.

5. Link with observations and quantitative
estimates

DESI Collaboration (2024c,a) present the release of the first
science data from the Dark Energy Spectroscopic Instrument
(DESI) project, which includes data from commissioning and
Survey Validation phases conducted between December 2020
and June 2021. The authors highlight that the DESI collabora-
tion has successfully validated its survey design and observing
strategy, ensuring the data’s quality and completeness and that
future releases will facilitate detailed studies of the Universe’s
large-scale structure, providing critical insights into dark energy
and the fundamental physics governing the Universe’s evolution.
Following the initial data release, the DESI collaboration has
unveiled its first-year analysis results of baryon acoustic oscil-
lations based on extensive observations of galaxies, quasars,
and the Lyman-α forest (DESI Collaboration 2024b). While the
DESI data alone align with the Λ cold dark matter (CDM)
model, the results deviate when generalised to the ω0ωaCDM
model. The DESI data combined with cosmic microwave back-
ground (CMB) and supernova data suggest a rejection of the
ΛCDM model in favour of the ω0ωaCDM model with signifi-
cant confidence levels between 2 and 4σ (DESI Collaboration
2024b). The combined data indicate a preference for ω0 >
−1 and ωa < 0, where ω(a) = ω0 + ωa(1 − a) represents the
equation-of-state parameter of dark energy with a(t) the scale
factor of the FLRW cosmology. If confirmed, these findings
could have profound implications for our understanding of the
Universe’s dynamics. In that context, Tada & Terada (2024) sug-
gest that the nature of dark energy might be explained by a
quintessential scalar field, although this field could potentially
become a phantom in the past. They conclude that the DESI data
challenge theΛCDM model and supports a dynamic dark energy
scenario, thereby contributing to our understanding of cosmic
acceleration and the potential need for new physics beyond the
standard cosmological model.

However, due to the covariance of general relativity, the
current approach in the standard cosmological model can be
reformulated as follows: the choice of an expanding background
coordinate system should be arbitrary and introducing a cosmo-
logical constant to drive the dynamics of the coordinate system
has no physical meaning other than selecting an expanding coor-
dinate system with aeff(t), Heff(t), and three velocities ueff,g for
time-like geodesics such that ⟨θ⟩ ≈ 3Heff and ⟨∇ · ueff,g⟩ ≈ 0.
This choice compensates for the averaged expansion rate along
time-like geodesics in the coordinate system. If one prefers to
use the FLRW solution of a fictive homogeneous universe with-
out a cosmological constant, where the Hubble expansion rate is
H(t) (with H2 = 8πGρ̄/3), and the three velocities for time-like
geodesics are ug, then ⟨θ⟩ = 3H + ⟨∇ · ug⟩ and ⟨∇ · ug⟩ , 0 as
soon as virialisation and entropy production occur. We highlight
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that virialisation during structure formation is likely to replace
dark energy because it precisely mimics the counter-intuitive
anti-gravity effect needed for dark energy. The dissipation of
large-scale compression modes by virialisation stabilises large-
scale gravitational collapse (anti-gravity) while remaining a
purely gravitational effect, as virialised dark matter continues to
be in freefall.

In this effective coordinate system, we can use the sec-
ond principle of thermodynamics to infer an effective evolution
equation that takes into account entropy production,

d(log Veff)
dt

=
d(log Vrev)

dt
+

1
Zkb

ds
dt
,

Heff(t) = H(t) +
1

3Zkb

ds
dt
, (37)

which can be rewritten as

Heff(t)2 =
8πGρ̄

3
+
Λeff(t)c2

3
,

Λeff(t) =
2H

c2Zkb

ds
dt
+

1
3c2Z2k2

b

(
ds
dt

)2

. (38)

In this context, the effective cosmological constant appears to
vary with time, as suggested by the early DESI data release. It
is important to note, however, that this does not imply the exis-
tence of new physics; rather, the effective cosmological constant
serves as a proxy to account for the impact of entropy produc-
tion on the averaged expansion rate along time-like geodesics.
Entropy production is expected to begin during structure for-
mation at the first shell crossing, peak during the virialisation
of structures, and gradually decline to the present day. This
behaviour could simulate the need for ω(a) < −1 in the past and
ω(a) > −1 in the present. As noted in Tada & Terada (2024),
The increase in ω(a) is correlated with the decrease in the Hub-
ble constant, which is the opposite direction to solve the Hubble
tension. The Hubble Tension refers to the significant discrep-
ancy between two different methods of measuring the Hubble
constant. The first method involves local measurements, such
as observing the distances and redshifts of nearby galaxies. The
second method involves the CMB and large-scale structure data,
which rely on ΛCDM model and measurements from the early
Universe (Kamionkowski & Riess 2023). The local measure-
ments consistently yield a higher value for the Hubble constant
(around 73 km/s/Mpc) compared to the CMB-based measure-
ments (around 67 km/s/Mpc). Although the decline phase of
entropy production after the virialisation of structures cannot
explain the Hubble tension, the initial increase phase after the
first shell crossing could play an important role in resolving
the current tension. However, precise estimates of the evolution
of Λeff(t) require dedicated numerical simulations to accurately
constrain the evolution of entropy production during structure
formation and subsequent evolution.

We can, however, use existing numerical simulations to
provide a more quantitative order-of-magnitude estimate. We
considered the illustrative example depicted in the top panel
of Fig. 2. In this scenario, we assumed that within the bound
and virialised large-scale structures with a characteristic size of
dlss, the local volume expansion rate, denoted as θ, is approxi-
mately negligible (θ ≈ 0). Conversely, in the expanding cosmic
voids with a typical size of dvoid, θ is substantially higher, with
θ ≈ 6upre−shock/dvoid ≫ 3H. The bottom panel of Fig. 2 shows

Fig. 2. Impact of discontinuities on a velocity profile. Top: illustration
of a discontinuous velocity profile that impacts the redshift-distance
relation. Bottom: equivalent apparent velocity profile derived via the
integration of the gradients along the line of sight.

an equivalent apparent velocity profile by integrating the gradi-
ents along the line of sight. Both profiles in Fig. 2 provide the
same integrated redshift using Eq. (19) and illustrate how pecu-
liar velocities resulting from structure formation can mimic a
Hubble flow. Without discontinuities in Fig. 2, the velocity field
divergence in the structures and in the voids would exactly com-
pensates for one another such that ⟨∇ · ug⟩ = 0. However, this is
not the case with discontinuities: in the extreme case for which
∇ ·ug is strictly positive everywhere (i.e. with expanding motions
in the lss regions in Fig. 2), ⟨∇ · ug⟩ is clearly strictly positive on
average. In a realistic configuration for the large-scale structures
with θ ≈ 0, the dominant contributor to the redshift arises from
the expansion occurring within the voids, accounting for a frac-
tion of dvoid/(dlss + dvoid). This expansion in the voids cannot be
counterbalanced by compression within the structures, as it has
dissipated due to violent relaxation and virialisation processes.
Assuming typical structure sizes of approximately dlss ≈ 3 Mpc
and void sizes around dvoid ≈ 30 Mpc, the average expansion rate,
represented by ⟨θ⟩/3, attains values of the order of 70 km/s/Mpc
with pre-shock velocities of roughly upre−shock ≈ 1200 km/s.
This estimation falls within the same order of magnitude as the
infall velocities observed in N-body numerical simulations (Zu
& Weinberg 2013).

The forthcoming generation of high-resolution cosmologi-
cal simulations on exascale supercomputers will be essential
in advancing our understanding of entropy production through
caustics (i.e. velocity discontinuities or non-collisional shocks).
These simulations will enable more precise estimates of the
averaged local expansion rate along time-like geodesics. Such
estimates are crucial for interpreting dynamic dark energy sce-
narios, where dark energy could be replaced by entropy produc-
tion during structure formation. These insights will be essential
for analysing future data releases from the DESI collabora-
tion and for interpreting observations from the Euclid satellite
(Amendola et al. 2018). By combining Euclid’s weak lensing
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data, redshift surveys (including baryon acoustic oscillations,
redshift distortions, and the full power spectrum shape), and
CMB data from Planck, we can constrain dynamic dark energy
scenarios more effectively.

6. Conclusions

This paper highlights the intricate relationship between the
cosmological redshift and entropy production due to structure
formation. We emphasise the need for the covariant calcula-
tion of the cosmological redshift, which accounts for peculiar
motions with a local expansion rate along time-like geodesics.

Our analysis suggests that virialisation and the subsequent
entropy production during structure formation play a crucial role
in this dynamic. The time-varying nature of the effective cos-
mological constant, as indicated by recent DESI data, may be a
manifestation of these processes rather than new physics. This
perspective necessitates a reassessment of dark energy models,
and we propose that what is currently attributed to dark energy
might instead be the result of entropy production during structure
formation.

Future high-resolution cosmological simulations on exascale
supercomputers will be vital for refining our understanding of
these phenomena. These simulations will help produce more
accurate estimates of the averaged local expansion rate along
time-like geodesics, providing essential insights for interpreting
dynamic dark energy scenarios and forthcoming observational
data from DESI and the Euclid satellite. This research opens new
avenues for understanding the fundamental forces shaping our
Universe, emphasising the need for continuous advancements in
computational and observational cosmology.
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