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Abstract.  

Accurately measuring the actual building performance would be a significant step toward performance 

contracting. Methods under occupancy have operational advantages but come with additional 

constraints due to the variability of weather and occupancy conditions, which cannot be overlooked. 

Especially in recent, well-insulated buildings, since solar gains are a larger contribution to the global 

heat balance. This work aims to enhance the accuracy of the Heat Transfer Coefficient estimation in 

an occupied building by taking better account of solar gains in multilinear regression models. The 

approach adopted here considers solar gains from both the incident solar heat flux through glazing 

and from the opaque elements of a building by calculating an equivalent outdoor temperature. This 

model feeds a multilinear regression model whose parameters are estimated by Bayesian inference. 

Our model for estimating HTC is validated against a set of virtual data from a simulated detached house 

under different weather conditions.  

Keywords: thermal performance, building envelope, HTC, solar gains , Bayesian inference 

1. Introduction  
Towards the European Commission's target of 

achieving carbon neutrality in the building 

stock by 2050, the construction industry needs 

to build dwellings that are highly energy-

efficient and low-carbon, and also carry out 

massive renovation work on the existing stock. 

Today, a clear evaluation of the energy 

performance of buildings is a necessity, but 

there are still difficulties to be overcome in 

bridging the gap between actual consumption 

and that anticipated at the design stage (Gorse 

et al. 2013), (de Wilde 2014). 

1.1 Overview of existing methods 

for determining HTC 
Numerous studies are therefore seeking to 

understand and reduce this discrepancy by 

characterising the HTC coefficient using in-situ 

measurements. There are currently two 

categories of methods for measuring the HTC: 

in unoccupied buildings and in occupied 

buildings. Methods for unoccupied conditions 

allow to overcome large uncertainties 

generated by occupants, direct solar radiation 

and ventilation. The methods without 

occupancy avoid the uncertainty of solar gains 

by closing the shutters. These methods enable 

to set a specific measurement protocol with a 

large number of measuring sensors, and place 

the building under specific conditions, such as 

in the co-heating test (Sonderegger and 

Modera 1979), (Bauwens and Roels 2014), the 

QUB method (Ghiaus and Alzetto 2019) or the 

SEREINE method (Juricic et al. 2023). 

Conversely, the methods currently being 

developed for occupied buildings use non-

intrusive instrumentation and are occupancy-

friendly.They offer therefore a significant 

operational advantage. Senave and al. (Senave 
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et al. 2020) and the International Energy 

Agency Annex 71 (International Energy Agency 

IEA 2021) review the various approaches that 

have been considered for determining the HTC 

of a building under actual conditions of use. For 

each method, whether static (average method, 

linear regression, energy signature) or dynamic 

(RC model and ARX model), the results 

obtained have been compared with each other 

and with the building's reference value 

(estimated by co-heating tests or by a design 

calculation). (Senave et al. 2020) carry out a 

numerical study. To determine the reference 

value for their case study, they return to the 

definition of the heat transfer coefficient, as 

the sum of the infiltration and transmission 

transfer coefficients, and manually calculate 

the HTC. This study shows that, with 26 weeks 

of winter data, the ARX model gives a good 

estimation of the HTC, with a deviation from 

the reference value of no more than 5%. The 

average method gives good results too, but 

fails to provide an uncertainty estimation other 

than that related to the sensor uncertainties. 

The energy signature method is quickly 

discarded because it is not preferred when 

indoor temperature data is available. With a 

long measurement period, the linear 

regression model shows a deviation from the 

reference value below 10%. However, this 

study does not consider real occupancy, since 

the data analysed comes from numerical 

simulations. In the work of the IEA EBC Annex 

71 (International Energy Agency IEA 2021), 

with real residential buildings in England and 

Belgium, and real occupancy, the results with 

linear regression and ARX models often differ 

from the reference value by 20%. Based on 

these results, Senave and al. (Senave et al. 

2020) and IEA EBC Annex 71 (International 

Energy Agency IEA 2021), recommend further 

research into a practical and reliable 

formulation of internal and solar heat gains. In 

the remainder of this article, the focus will be 

on linear regression models which are showing 

consistent results to determine the HTC from 

measurements.  

The advantage of the HTC estimation methods 

during occupancy is that they can be used both 

at the end of the construction work and during 

the building's operating phase, which is useful 

for renovations.However, performance 

assessment under occupancy is more 

uncertain, since the sources of uncertainty and 

bias are more numerous and random. 

Additional constraints due to occupancy need 

to be considered when measuring thermal 

performance. It is necessary to determine the 

various input parameters of the building’s heat 

balance, based on measured data, in order to 

estimate the HTC in use. In particular, solar gain 

has a major influence (Bauwens and Roels 

2014) on the measurement of thermal 

performance during occupancy, especially in 

well-insulated buildings (Li, Allinson, and 

Lomas 2019). In fact, unlike the unoccupied 

methods where direct solar gain can be largely 

avoided by closing the shutters, when the 

occupants are present, not taking solar gain 

into account risks underestimating the HTC 

coefficient, as highlighted in (International 

Energy Agency IEA 2021). These studies clearly 

show that a reliable estimation of HTC can only 

be obtained if the effect of influential 

phenomena on the heat balance is estimated 

as precisely as possible.  

In the remainder of this work, particular 

attention will be paid to the solar heat gains.  

1.2 Background of accounting for 

solar gains 
 

 
  
  
  
  
  
  
  
  
  
  
  
  



  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

Nomenclature 
 
𝐴𝑓 Area of a wall (m²) 
𝐼𝑑𝑖𝑓,ℎ𝑧 Diffuse horizontal irradiance 

(W/m²) 
𝐹𝑑𝑖𝑓,𝑓 Diffuse solar flux (W/m²) 
𝐼𝑑𝑖𝑟,ℎ𝑧 Direct horizontal irradiance 

(W/m²) 
𝐹𝑑𝑖𝑟,𝑓 Direct solar flux (W/m²) 

𝜑𝑒𝑙𝑒𝑐 Electrical appliances heat 
gains (W) 

𝑇𝑒𝑥𝑡𝑒𝑞
 Equivalent outdoor 

temperature (K) 
𝑇𝑓𝑒𝑞

 Equivalent outdoor 
temperature of a wall (K) 

ℎ𝑐𝑒 External convective heat 
exchange coefficient 
(W/m².K) 

𝛼𝑒 External energy absorption 
coefficient of a wall 

ℎ𝑟𝑒 External radiative heat 
exchange coefficient 
(W/m².K) 

𝐻𝑇𝐶 Heat Transfer Coefficient 
(W/K) 

𝜑ℎ𝑒𝑎𝑡𝑖𝑛𝑔 Heating power (W) 
𝐹𝑓 Incident solar flux on a wall 

(W/m²) 
𝑇𝑖 Indoor temperature (K) 
𝜑𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 Mechanical ventilation gains 

and losses (W) 
𝜑𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 Occupants heat gains (W) 

𝑇𝑒 Outdoor temperature (K) 
𝜃 Ratio of typical average 

transmittance to that at 
normal incidence 

𝜃𝑓 Ratio of typical average 
transmittance to that at 
normal incidence per facade 

𝐹𝑟𝑒𝑓,𝑓 Reflected solar flux (W/m²) 
𝑍𝑓  Solar access factor 

𝜑𝑠𝑜𝑙𝑎𝑟 Solar heat gains (W) 
𝐴𝑧𝑠 Sun azimuth (rad) 
𝐻𝑠 Sun height (rad) 
𝑈𝑓  Thermal transmittance 

coefficient of a wall (W/m².K) 
𝐴𝑤,𝑓 Total glazed area of a wall 

(m²) 
𝑔𝑓 Total solar energy 

transmittance factor of the 
glazing 

𝐴𝑧𝑓 Wall azimuth (rad) 
𝛽 Wall tilt (rad) 

 



1.2.1 Current methods for modelling 

solar heat gains in any model 

aiming at HTC estimation can be 

divided into two categories, 

depending on whether the 

models used are static or 

dynamic. The main methods for 

modelling solar gains are based 

on the solar aperture 

coefficient. This coefficient 

describes the equivalent global 

transparent area of the 

envelope, i.e. the ratio from 

global outside horizontal 

radiation to indoor solar gain 

(Bauwens and Roels 2014). 

Noteworthy is that this 

coefficient is in the same order 

of a magnitude as a window 

surface area, but is not 

identifiable to this area, because 

of partial shading when the 

window is perfectly aligned with 

the outdoor envelope, or 

because non-perpendicular 

solar beam, etc… Solar gains 

static formulation  
The static approach most commonly used to 

estimate solar gains is based on multiplying the 

measurement of horizontal global solar 

irradiation by a constant solar aperture 

coefficient (International Energy Agency IEA 

2021). Horizontal solar irradiation has the 

advantage of being an easily accessible 

measurement at weather stations. However, 

this measurement is likely to be biased because 

it does not explicitly describe the solar gain 

through the glazing (Stamp, Altamirano-

Medina, and Lowe 2017). In the case where the 

windows are uniformly distributed over the 

different facades of the building, the 

assumption of a constant solar aperture may 

be sufficient. However, in the case of unevenly 

distributed windows, poor modelling of solar 

gains can lead to errors in the HTC estimate, as 

shown by (Senave et al. 2020). In this article, 

Senave and al. compare the HTC estimation 

obtained using linear regressions. The solar 

gains are modelled by multiplying the 

horizontal global irradiation by a constant solar 

aperture. The uncertainty induced by the 

integration of solar gains in statistical model is 

propagated to the evaluation of the HTC. The 

error deviation from the reference value of the 

second set can underestimate the HTC by up to 

24.5%, with a 95% confidence interval on 

average 1.8 times greater, while in the first set, 

the maximum deviation is 11.9%.  

These results clearly show that considering a 

constant solar aperture can lead to errors in 

the evaluation of the HTC, since the solar 

aperture is strongly influenced by the position 

of the sun, which varies throughout the day 

and the year.  

1.2.2 Solar gains dynamic formulation  
(Hollick, Gori, and Elwell 2020), (Rasmussen et 

al. 2020) and (Zhang et al. 2022) have carried 

out work on the formulation of solar gains in 

dynamic models, in order to account for this 

time dependence. In its study of the thermal 

performance of buildings using RC models, 

(Hollick, Gori, and Elwell 2020) focuses on the 

methods for taking solar gain into account. 

They also present and compare different 

methods for integrating solar gains in statistical 

model: constant solar aperture, as a function of 

facade orientation, and the impact of diffuse 

radiation. Several RC models are thus defined, 

including solar radiation formulation of varying 

complexity. As a result, the approach that 

considered one solar aperture per facade with 

a separation of diffuse and direct radiation was 

considered to be the most appropriate. 

Nevertheless, the study shows that the choice 

of model, which best explains the observed 

data, depends on both the building and the 

period of the year considered. 

(Rasmussen et al. 2020) describes a technique 

for estimating solar heat gains as a function of 

sun position from measured data. This method 

incorporates the use of splines, combined with 



grey box models. (Zhang et al. 2022) and 

(Zhang, Saelens, and Roels 2022) use this same 

spline approach and develop a statistical 

method, based on in situ measurements, to 

better account for the position of the sun in the 

formulation of solar gain. In the first study, the 

authors use RC models to model the building, 

and in the second study, the estimation of solar 

gains using B-splines is integrated into an ARX 

model. A comparison is also made with the 

solar gains modelling used in building energy 

simulation. This comparison shows that both 

approaches (modelling with B-splines on the 

one hand, and solar gain simulation on the 

other) can estimate the main dynamic 

characteristics of the solar aperture curve. 

However, the suggested method based on B-

splines is considered a promising approach 

since it solves the problem of the constant 

aperture assumption and uses in situ 

measurements (unlike a dynamic simulation). 

The proposed method has been tested on an 

experimental building. The authors therefore 

recommend carrying out studies on buildings 

with more realistic conditions to study the 

robustness of the proposed method.  

1.2.3 The Facade Solar Gains 

Estimation Method 
Other works (Jack 2015) are proposing a new 

approach for estimating solar gains, both 

during mid-season co-heating tests and 

subsequently for estimating the HTC of an 

occupied building using a static model. The 

method, called the Facade Solar Gains 

Estimation Method (FSGEM), is based on the 

direct measurement of incident solar flux on 

each wall of the building. By directly 

quantifying solar gains in a building, this 

approach seeks to avoid the potential risks 

associated with statistical analysis. However, 

using pyranometers to measure solar flux is a 

fairly expensive piece of equipment. A 

"translation" method is also proposed, which 

estimates solar gains from global horizontal 

irradiance, the slope and orientation of the 

wall, the latitude of the facade and local solar 

time. This determination of solar gains is then 

added to the other heat sources in the 

building's heat balance. These two methods 

show good results with a + or - 15% estimated 

uncertainty in calculated HTC, but nevertheless 

have disadvantages, in particular solar gains on 

unglazed elements are not considered. In (Li 

2022), the FSGEM method is reused to model 

solar gains and then estimate the HTC using 

static methods such as linear regression 

models. The HTC thus estimated using the 

FSGEM method is underestimated by 18%, 

compared with 25% using a constant solar 

aperture coefficient. 

1.2.4 State of art summary and 

problem statement 
As the literature review shows, a large number 
of works (Hollick, Gori, and Elwell 2020), 
(Rasmussen et al. 2020), (Zhang et al. 2022), 
(Zhang, Saelens, and Roels 2022) are based on 
the use of dynamic models for the temporal 
estimation of solar gains. For a sufficiently long 
measurement period, the use of linear 
regression relies less on expertise and provides 
HTC results that are consistent with the 
reference value, particularly for poorly 
insulated buildings. However, the formulation 
of solar gains is too simplified and does not 
always allow for an accurate estimate of the 
HTC, in particular for insulated buildings. The 
use of splines is better suited to integrating 
solar gains into dynamic models. The benefit of 
using splines in static model is actually quite 
small because of the daily data. The model is 
more complex with no gain in accuracy at the 
end. It is therefore interesting to develop a 
formulation of solar heat gains adapted to 
linear regression models.  

1.3 Aims of this paper 
The aim of this paper is to enhance the 

accuracy of the Heat Transfer Coefficient 

estimation in occupied building by taking 

better account of solar gains in multilinear 

regression models . The Bayesian approach was 

chosen to improve the regularisation of the 

problem. Four linear regression models, 

considering different formulations for solar 

heat gains, are evaluated and compared on the 

HTC estimation. Two of these linear regression 



models come from the literature (using global 

solar aperture coefficient and FSGEM method), 

and the other two are developed in the context 

of this work.  

First, in this article, different formulations for 

direct solar gains and their integration into the 

linear regression model are described (Section 

2.2). Next, an equivalent outdoor air 

temperature is introduced to take into account 

the impact of solar radiation to the opaque 

walls (Section 2.3). In Section 3, the two 

developed linear regression models are 

calibrated using Bayesian inference to 

incorporate a prior knowledge of the input 

parameters. The advantage of this probabilistic 

approach is that measurement uncertainties 

are automatically considered in the model and 

that it acts as a regularisation feature. A 

numerical case study is defined and used 

(Section 4.1) to assess the ability of the four 

models to estimate a reliable HTC. Finally, the 

results are presented in Section 5 and the 

relevance of the two models developed in this 

paper is illustrated by a comparison with the 

two models from the literature.   

2. Solar gain formulation in 

linear regression model 

and estimation of HTC 

2.1 Linear regression to determine 

HTC 
For an occupied building, the heat balance 

equation can be written as a linear regression 

model, assuming a steady state with a daily 

time step (Bauwens 2015):  

𝜑ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝜑𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 + 𝜑𝑒𝑙𝑒𝑐

+𝜑𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 + 𝜑𝑠𝑜𝑙𝑎𝑟 = 𝐻𝑇𝐶(𝑇𝑖 − 𝑇𝑒) (1)
 

With 𝜑ℎ𝑒𝑎𝑡𝑖𝑛𝑔 the heating power, 𝜑𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 

the mechanical ventilation gains and losses, 
𝜑𝑒𝑙𝑒𝑐 the power dissipated by the electrical 
appliances, 𝜑𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 the heat power 

released by the occupants, 𝜑𝑠𝑜𝑙𝑎𝑟 the solar 
heat gains from direct solar radiation entering 
glazed surfaces, 𝐻𝑇𝐶 the heat transfer 

coefficient and (𝑇𝑖 − 𝑇𝑒) the temperature 
difference between the indoor and outdoor.  
 
In this linear regression model, the different 
heat gains or losses on the left-hand side of the 
equation are considered the dependent 
variable of the model (model output) while the 
temperature difference is the independent 
variable (model input). The regression analysis 
minimises the sum of squared residuals and 
thus allows the estimation of the model 
parameters, 𝐻𝑇𝐶, in Equation 1. 
 
In order to determine the HTC of an occupied 
building, it is necessary to estimate the various 
variables of the model. One of the most 
impacting the HTC in occupancy is the solar 
heat gain. We are therefore looking for a 
formulation of the solar heat gain to include in 
our linear regression model in order to 
estimate a reliable HTC in occupied building.  
 
We will compare different levels of detail for 
the integration of solar gains in linear 
regression models. We start with a common 
approach, which we then make more complex. 
As we analyse our data using linear regression 
models to determine the HTC, the integration 
of dynamic modelling of solar gains is not 
appropriate for the daily time step. Only static 
approaches for solar gains are integrated in 
models. 
 
 

In a first step, we look at direct solar gains and 

how we can optimize their estimation. 

Different formulations for direct solar gains are 

described and then integrated into the linear 

regression model. Two of these linear 

regression models come from the literature 

(using global solar aperture coefficient and 

FSGEM method), and the other two are 

developed in the context of this work. The 

second step is to account for indirect solar 

gains, i.e. on each opaque wall of the building, 

by calculating an equivalent outdoor 

temperature. 



2.2 Taking direct solar gains into 

account 

2.2.1 Global solar aperture 

coefficient 
The most commonly approach of solar gains 

typically found in literature in heat balance 

equation in linear regression models estimates 

solar gains by multiplying the global horizontal 

irradiance 𝐼𝑠𝑜𝑙 by a solar aperture coefficient 

𝐴𝑠𝑜𝑙, assumed to be constant (Bauwens and 

Roels 2014), (International Energy Agency IEA 

2021). 

𝜑𝑠𝑜𝑙𝑎𝑟 = 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙 (2) 

With: 

𝜑𝑠𝑜𝑙𝑎𝑟 : the solar heat gains from direct solar 

radiation entering glazed surfaces (W) 

𝐴𝑠𝑜𝑙  : solar aperture coefficient (m²) 

𝐼𝑠𝑜𝑙 : global horizontal irradiance (W/m²) 

Because we focus on solar heat gains, for 

greater clarity, the other gains or losses in the 

heat balance are grouped together under a 

common total flow 𝜑𝑡𝑜𝑡𝑎𝑙. 

𝜑𝑡𝑜𝑡𝑎𝑙 =  𝜑ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝜑𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 + 𝜑𝑒𝑙𝑒𝑐

+𝜑𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 (3)
 

The linear regression model of Equation 1 is 

then written as: 

𝜑𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑇𝐶(𝑇𝑖 − 𝑇𝑒𝑥𝑡) − 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙  (4) 

The coefficients 𝐻𝑇𝐶 and 𝐴𝑠𝑜𝑙  are parameters 
of the model and are estimated by calibration. 
 

But, as the literature review shows 

(International Energy Agency IEA 2021), 

(Stamp, Altamirano-Medina, and Lowe 2017), 

this global solar aperture coefficient approach 

is insufficient to describe accurately the solar 

gain received by vertical glazing. 

 
 

2.2.2 FSGEM method 
(Jack 2015) developed the Facade Solar Gains 

Estimation Method  to estimate direct solar 

gains. . This method estimates the solar gain of 

a building’s walls using the following 

expression:  

𝜑𝑠𝑜𝑙𝑎𝑟,𝑓 = 𝜃 𝐴𝑤,𝑓𝐹𝑓𝑔𝑓𝑍𝑓 (4) 

With:  

𝐴𝑤,𝑓 : total glazed area of a wall (m²) 

𝐹𝑓 : incident solar flux on a wall (W/m²) 

𝑔𝑓 : total solar energy transmittance factor of 

the glazing 

𝑍𝑓  : solar access factor, defined by (BRE 2014). 

It depends on the degree of shading of the sky. 

In other words, which percentage of the sky is 

blocked by surrounding obstacles. 𝑍𝑓  = 1 

according to (BRE 2014) in case of very little 

overshading.  

𝜃 = 0.9 : the factor representing the ratio 

between the typical mean transmittance and 

the transmittance at normal incidence, defined 

according to (BRE 2011). 

 

The total solar gains is so given by:  

𝜑𝑠𝑜𝑙𝑎𝑟 = 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 (5) 

In this work, (Jack 2015), the solar heat gains 

are directly added to the other heat sources in 

the building heat balance. In that case, 

Equation 1 becomes:  

 

𝜑𝑡𝑜𝑡𝑎𝑙  + 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 = 𝐻𝑇𝐶(𝑇𝑖 − 𝑇𝑒𝑥𝑡)  (6) 

 
 

 
The aim here is to improve the formulation of 
the solar gains 𝜑𝑠𝑜𝑙𝑎𝑟 so that they can be 
integrated as input to the linear regression 
model.  
 

2.2.3 Global facade solar gain 

coefficient 
The estimation of solar heat gains that we 

choose to integrate in our linear regression 

model relies strongly on the FSGEM method 

(Equation 5).  

 

The incident solar flux on the wall is 

determined either by direct measurement, in a 

similar way to (Jack 2015), if the measurement 

sensors in place allow, or by a simplified 

calculation, we proposed, of the direct, diffuse 

and reflected fluxes. This second option, 



Equation 7, will be applied hereafter, for the 

reasons of cost and practicality mentioned 

above.  
𝐹𝑓 =  𝐹𝑑𝑖𝑟,𝑓 + 𝐹𝑑𝑖𝑓,𝑓 + 𝐹𝑟𝑒𝑓,𝑓 (7) 

These different fluxes are calculated using 

trigonometry rules, depending on the position 

of the sun in relation to the wall being studied. 

The quantities required for the calculation are:  

- Measurable meteorological data: 

direct 𝐼𝑑𝑖𝑟,ℎ𝑧 and diffuse 𝐼𝑑𝑖𝑓,ℎ𝑧 

horizontal irradiation and the position 

of the sun (height 𝐻𝑠 and azimuth 𝐴𝑧𝑠). 

- The orientation of the wall: the angle 

to the ground 𝛽 and the azimuth 𝐴𝑧𝑓.  

- The albedo of the ground 𝑎𝑙𝑏. 

 

𝐹𝑑𝑖𝑟,𝑓 =
𝐼𝑑𝑖𝑟,ℎ𝑧

sin(𝐻𝑠)
(cos(𝐻𝑠) sin(𝛽) cos(𝐴𝑧𝑠 − 𝐴𝑧𝑓)

+ sin(𝐻𝑠) cos(𝛽)) (8)

 

𝐹𝑑𝑖𝑓,𝑓 = 𝐼𝑑𝑖𝑓,ℎ𝑧

1 + cos (𝛽)

2
(9) 

𝐹𝑟𝑒𝑓,𝑓 = (𝐼𝑑𝑖𝑟,ℎ𝑧 + 𝐼𝑑𝑖𝑓,ℎ𝑧)
1 − cos (𝛽)

2
𝑎𝑙𝑏(10) 

In practical case, the global horizontal 

irradiance is one of the most common solar 

measurement. The position of the sun is known 

at every hour of the year from the latitude and 

longitude of the location of the building. It may 

happen that direct and diffuse horizontal 

irradiation are not available measurements. In 

that case, there are models for breaking down 

global radiation into direct and diffuse 

radiation.   

 

This approach for solar gain estimation is 

therefore virtually identical to FSGEM method, 

but it is the integration into the linear 

regression model that is different. Unlike the 

FSGEM method, in our linear regression model, 

the solar heat gains are not added to the other 

heat sources in the building heat balance, but 

we consider the 𝜃 factor as a parameter to be 

estimated by regression, rather than fixed. This 

approach avoids the need to consider constant 

fixed values, whatever the building, for the 

transmittance ratio factor or the solar access 

factor, both of which are assessed using the 

standard British procedure in FSGEM method 

(Jack 2015). Thus, in our linear regression 

model, the inputs are the difference of 

temperatures and the sum of the solar gains. 

The coefficients 𝐻𝑇𝐶 and 𝜃, corresponding to 

the ratio of transmittances, are therefore the 

two parameters of the model to be estimated.  

 

The heat balance therefore becomes:  

𝜑𝑡𝑜𝑡𝑎𝑙

= 𝐻𝑇𝐶(𝑇𝑖 − 𝑇𝑒𝑥𝑡) −  𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

 (11) 

 

2.2.4 Separated façade solar 

coefficients 
In order to take greater account of the position 

of the sun during the day, the previous 

approach of solar gains estimation, Equation 5, 

is extended by considering a coefficient 𝜃𝑓 per 

façade orientation.  

𝜑𝑠𝑜𝑙𝑎𝑟 = ∑ 𝜃𝑓𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓  (12) 

And finally, in our linear regression model using 

separated façade solar coefficients, each ratio 

of transmittances 𝜃𝑓, for each wall direction, 

are estimated by calibrating the model.  

𝜑𝑡𝑜𝑡𝑎𝑙

= 𝐻𝑇𝐶(𝑇𝑖 − 𝑇𝑒𝑥𝑡) −  ∑ 𝜃𝑓𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

 (13) 

 

 

 

 

2.3 Taking external boundary 

conditions on opaque elements 

into account: outdoor 

equivalent temperature 
As mentioned in the beginning of this section, 

solar radiation also impacts the outdoor wall 

surface temperature and so impacts the heat 

conduction through walls. To take this into 

account, the method used here and developed 

in (Bouchié et al. 2014), consists of grouping all 



the flows from the outside environment into an 

equivalent outdoor temperature. This 

equivalent outdoor temperature allows the 

radiative effects on the opaque walls of the 

building to be considered. The experimental 

protocol is based on measuring the external 

surface temperature of each wall of the 

building, using SENS sensors. The sensor 

operates by measuring the surface 

temperature of a wall with known absorption 

and emissivity characteristics. According to 

(Bouchié et al. 2014), and assuming that 

radiation from the celestial dome is negligible, 

the equivalent outdoor temperature of a 

surface can be determined by the Equation 15.  

𝑇𝑓𝑒𝑞
= 𝑇𝑒 + 

𝛼𝑒 . 𝐹𝑓

ℎ𝑐𝑒 + ℎ𝑟𝑒
 (15) 

With:  

𝑇𝑒 : outdoor temperature (K) 

𝛼𝑒 : external energy absorption coefficient of a 

wall 

𝐹𝑓 : incident solar flux on a wall (W/m²) 

ℎ𝑐𝑒 : external convective heat exchange 

coefficient (W/m².K) 

ℎ𝑟𝑒 : external radiative heat exchange 

coefficient (W/m².K) 

 

The overall equivalent temperature is 

determined by a weighted average of the heat 

transmission coefficients 𝑈𝑓  and the areas 𝐴𝑓 

of the different walls. 

𝑇𝑒𝑥𝑡𝑒𝑞
=

∑ 𝑈𝑓𝐴𝑓𝑓 𝑇𝑓𝑒𝑞

∑ 𝑈𝑓𝐴𝑓𝑓
 (16) 

 
To consider external boundary conditions on 

opaque elements in the regression model 

equation, the outdoor temperature is replaced 

by this equivalent outdoor temperature, 

averaged over all the walls, to characterise all 

the external boundary conditions. This 

equivalent outdoor temperature frees us from 

the questions asked by Matthew Li in his thesis 

(Li 2022) on surface thermal resistances. 

Thanks to a simulated building, Li compared 

the determination of reference HTCs and 

studied discrepancies between simulated HTC 

value and U-values calculated with standard 

methods. These discrepancies are caused by 

the dependence of HTC on environmental 

temperatures. Using the equivalent outdoor 

temperature enable therefore to reduce the 

variability due to radiative transfers and solar 

radiation on opaque elements.  

Table 1 : Summary of different studied linear 

regression modelsTable 1 summaries the 

different linear regression models with the 

different formulations for solar gains.  

Table 1 : Summary of different studied linear regression models and the formulations for solar gains 

 Model 

names 
Equations 

Fomulations for 

𝝋𝒔𝒐𝒍𝒂𝒓 

Estimated 

parameters 

1 

Global solar 

aperture 

coefficient 

𝜑𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙

 
 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙  

𝐻𝑇𝐶 

𝐴𝑠𝑜𝑙  

2 
FSGEM 

method 

𝜑𝑡𝑜𝑡𝑎𝑙 + 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 = 𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
)

 
 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 𝐻𝑇𝐶 

3 

Global 

façade solar 

gain 

coefficient 

𝜑𝑡𝑜𝑡𝑎𝑙 =  𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 
𝐻𝑇𝐶 

𝜃 

4 

Separated 

façade solar 

coefficients 

𝜑𝑡𝑜𝑡𝑎𝑙 =  𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − ∑ 𝜃𝑓𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

 ∑ 𝜃𝑓𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 
𝐻𝑇𝐶 

𝜃1, … 𝜃𝑛 



 

 

3. Construction of a Bayesian 

linear regression model 

3.1 Global overview of methodology 
The methodology developed in this article 

consists of determining a reliable HTC in 

occupied building thanks to an optimize solar 

gains formulation. We therefore turn to the 

framework of Bayesian data analysis to 

compare different approaches for solar gain 

integration into the estimation of HTC. This 

step consists in introducing Bayesian inference 

to use prior knowledge for model calibration. 

3.2 Bayesian inference description 
The ordinary linear regression formulates the 

distribution of heat sources as a normal with a 

mean that is a linear function of temperature 

difference. This frequentist approach to 

parameter optimisation does not allow any 

prior knowledge about the model parameters 

to be incorporated, independently of the 

observed data. Furthermore, uncertainties 

cannot be fully integrated in this approach. 

In contrast, the Bayesian approach has a lot of 

advantages, as described by (Carstens, Xia, and 

Yadavalli 2018), including the automatic 

quantification of uncertainties and the 

inclusion of prior information. This probabilistic 

approach involves exploiting Bayes' relation, 

Equation 17, and expressing the probability 

distribution of parameters as a function of a 

prior knowledge and knowledge acquired from 

measured data. Bayesian inference thus makes 

it possible to estimate the distribution of 

parameters a posteriori from the measured 

data. If the data is informative, then the 

posterior will be much more refined, otherwise 

it will remain close to the prior distribution. 

A Bayesian model therefore consists of an 

observation 𝑝(𝑦|𝜃), and a function of 𝑝(𝜃). 

The observation 𝑝(𝑦|𝜃), also known as the 

likelihood function, describes the relationship 

between the data 𝑦 and the model parameters 

𝜃. The prior function 𝑝(𝜃) considers any 

assumptions about the model parameters. 

Bayes' equation is used to link these two 

elements and defines the posterior probability 

distribution of the parameters as a function of 

the observed data 𝑝(𝜃|𝑦). 

𝑝(𝜃|𝑦) =  
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) (17) 

The Bayesian approach can thus be applied to 

calibrate thermal building models. (Chong and 

Menberg 2018) gives the main guidelines for 

calibrating thermal building models using 

Bayesian inference. (Artiges et al. 2021) 

obtains results which show the advantages of 

Bayesian inference in the process of 

measurement and verification. All variables, 

including predictions of energy use and 

savings, can be defined as probabilistic 

distribution and training complex models is 

facilitated thanks prior knowledge.  

3.3 Bayesian multilinear regression 

model   
Bayesian inference is applied to linear 

regression models, using respectively the 

“global facade solar gain coefficient” approach and 

the “separated facade solar coefficients” approach.  

The model using the “global façade solar gain 

coefficient” approach can be defined as 

follows:  

𝜑𝑡𝑜𝑡𝑎𝑙

~ 𝑁 (𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

, 𝜎) (18) 

𝐻𝑇𝐶 ~ 𝑁(𝜇1, 𝜎1) (19) 

𝜃 ~ 𝑁(𝜇2, 𝜎2) (20) 

The sum of heat flows 𝜑𝑡𝑜𝑡𝑎𝑙 follows a normal 

distribution with the mean is a linear function 

of the explanatory input variables (𝑇𝑖  −

𝑇𝑒𝑥𝑡𝑒𝑞
) and ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓𝑓  and the two 

parameters 𝐻𝑇𝐶 and 𝜃, with a standard 

deviation 𝜎. Equation 19 and Equation 20 

correspond to the prior distributions of the 

parameters, which follow here a normal 



distribution centred on a mean 𝜇𝑖  and with a 

standard deviation 𝜎𝑖. The advantage of 

Bayesian inference, here, is to introduce the 

priors which compensates for the addition of 

variables and the addition of complexity in 

linear regression model. Bayesian inference is 

more reliable while keeping some margin for 

the estimation. 

Bayesian inference makes it possible to define 

a prior knowledge for the factor 𝜃 representing 

the ratio between the typical mean 

transmittance and the transmittance at normal 

incidence in the form of a probability 

distribution, rather than as a constant. This 

prior distribution is defined using information 

from (Jack 2015). The prior value is supposed 

to reflect what we assume on the building 

before data are considered. This value indeed 

influences the result, which is a compromise 

between the prior and the information brought 

by the data. However, it is expected that with 

sufficient data, the influence of the exact value 

of the prior is marginal, especially if the 

distribution is wide enough. 

In the same way, Bayesian inference is applied 

to our second linear regression model 

considering a coefficient 𝜃𝑓 per façade 

orientation. This model can be expressed as 

follows:  

𝜑𝑡𝑜𝑡𝑎𝑙

~ 𝑁 (𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − ∑ 𝜃𝑓𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

, 𝜎) (21) 

𝐻𝑇𝐶 ~ 𝑁(𝜇1, 𝜎1) (22) 

𝜃𝑓 ~ 𝑁(𝜇𝑓 , 𝜎𝑓) (23) 

Considering a coefficient 𝜃𝑓 per facade 

orientation increases the number of 

parameters in the model, which can lead to 

overfitting and be problematic if the data are 

not sufficiently informative. Consequently, the 

two models described by Equation 18 and 

Equation 21 , using respectively the “global 

facade solar gain coefficient” approach and the 

“separated facade solar coefficients” approach are 

tested in order to assess a posteriori which 

model is more suitable. Table 1 summaries the 

different linear regression models, which will 

be compared.  

 

 

Table 1 : Overview of the analysis linear regression models 

 Model 

names 
Equations Calibration 

Estimated 

parameters 

1 

Global solar 

aperture 

coefficient 

𝜑𝑡𝑜𝑡𝑎𝑙

= 𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙   Frequentist  

𝐻𝑇𝐶 

𝐴𝑠𝑜𝑙  

2 
FSGEM 

method 

𝜑𝑡𝑜𝑡𝑎𝑙

+𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓

𝑓

𝑍𝑓 = 𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
)  Frequentist 𝐻𝑇𝐶 

3 

Global 

façade solar 

gain 

coefficient 

𝜑𝑡𝑜𝑡𝑎𝑙

~ 𝑁 (𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − 𝜃 ∑ 𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

, 𝜎)
 

𝐻𝑇𝐶 ~ 𝑁(𝜇1, 𝜎1)  

𝜃 ~ 𝑁(𝜇2, 𝜎2)  

Bayesian 
𝐻𝑇𝐶 

𝜃 



4 

Separated 

façade solar 

coefficients 

𝜑𝑡𝑜𝑡𝑎𝑙

~ 𝑁 (𝐻𝑇𝐶 (𝑇𝑖 − 𝑇𝑒𝑥𝑡𝑒𝑞
) − ∑ 𝜃𝑓𝑔𝑓𝐴𝑤,𝑓𝐹𝑓𝑍𝑓

𝑓

, 𝜎)
 

𝐻𝑇𝐶 ~ 𝑁(𝜇1, 𝜎1)  

𝜃𝑓 ~ 𝑁(𝜇𝑓 , 𝜎𝑓)  

Bayesian 
𝐻𝑇𝐶 

𝜃1, … 𝜃𝑛 

4. Assessment methodology  

4.1 In order to validate the 

relevance of our two developed 

models, the ability of our models 

to estimate the HTC will be 

assessed using virtual data from 

numerical simulation, and 

compared with HTC estimation 

from the two existing models 

(using global solar aperture 

coefficient and FSGEM method). 

The HTC estimation will be 

compared for different weather 

files. Case study 
Virtual data come from a numerical case study 

of a detached house., These virtual data are 

generated by the EnergyPlus dynamic thermal 

simulation software. This house has already 

been the subject of a case study in (Pacquaut 

et al. 2023). In the case of this work, the house 

was reduced to just two thermal zones. 

4.1.1 Envelope description 
Geometric modelling was carried out in 

Sketchup 8. Figure 1 shows the 3D modelling of 

the house. 

 

Figure 1 : 3D modelling of the house: south view 

 

The house has two levels: a ground floor with a 

surface area of 85 m² and a first floor with a 

surface area of 78 m². Table 2 summarises the 

composition of the different walls of the 

building's thermal envelope, and the values of 

the transmission coefficient U.  

The ground floor is supposed adiabatic. This 

assumption of an adiabatic ground avoids 

dealing with the problem of losses toward the 

ground and allows to focus on the solar gains.  

Table 2 : Compositions and thermal characteristics of the 
elements of the envelope 

 
Walls compositions  U (W/m²/K) 

Exterior walls 

Outdoor 
MI 335: 25cm 

PSE: 12cm 
Gypsum: 1cm 

Indoor 

0.183 

Floor over 
ground 

Adiabatic 

Roof 
Outdoor 

Stone wool: 40cm 
Indoor 

0.112 

Windows 
Solar factor: 0.45 

Visible transmittance: 
0.56 

1.1 

 

The glazed surfaces are distributed throughout 

the walls of the house as detailed in Table 3.  

Table 3 : Glazing surfaces and orientations 

Orientation Total area (m²) 

North-West 1.52 

North-East 5.13 

South-East 5.39 

South-West 15.6 

 



4.1.2 Simulation hypothesis 
The shutters are considered to be closed at 

night between 7pm and 7am. This scenario is 

applied to all windows at 100% with an 

additional thermal resistance of 0.15 m².K/W. 

For the rest of the time, the shutters are fully 

open.  

Four occupants are simulated in the house. The 

presence rates and power ratings of electrical 

appliances are stochastically generated and 

integrated into the EnergyPlus software. The 

metabolic release is set at 80 W and 80% of the 

electrical power consumed is dissipated in the 

two thermal zones. Mechanical ventilation is 

activated during occupancy.  

The heating system is modelled in the ideal way 

to achieve the required heating setpoints: 

between 18.5°C and 20°C during the day and a 

constant reduced temperature of 15°C at night. 

No shading is considered in the simulation. 

Consequently, the solar access factor is 

assumed to be equal to 1 according to (BRE 

2014). 

4.1.3 Weather files 
The EnergyPlus simulations are carried out for 

eight French IWEC weather files, which 

correspond to different towns scattered across 

France, and will enable climates comparison. 

Table 4, also presented in (Pacquaut et al. 

2023) compares the meteorological climates in 

terms of outdoor temperature and solar 

energy over the period studied from 15/11 to 

01/03. 

 

 

 

 

Table 4 : Daily outdoor temperature and average sunshine 

Weather 

Outdoor temperature (°C) Global horizontal 

solar energy 

(kWh/m²) Maximum Minimum Mean 

Bordeaux 19.2 -8.1 7.3 291.3 

Brest 16.4 -4.0 7.7 193.7 

Clermont-Ferrand 19.5 -12.0 4.7 293.1 

Lyon 17.9 -8.3 4.4 198.5 

Marseille 19.6 -4.0 8.0 389.0 

Nice 19.0 2.0 9.6 411.6 

Paris 14.5 -5.5 4.7 181.4 

Strasbourg 17.8 -9.7 3.7 221.2 

4.2 Reference value calculation  
As the co-heating test is considered as the main 

method for estimating a building’s HTC 

reference value, a numerical co-heating test is 

realised to determine the reference value of 

the building. The conditions for carrying out 

the co-heating test protocol are applied during 

the EnergyPlus simulation: indoor temperature 

equal to 25°C, closed shutters, no ventilation or 

infiltrations and no occupation.  

Figure 2 shows the evaluation of the HTC 

reference value by numerical co-heating test 

for the eight weather files studied. The HTC 

estimation shows a small variability depending 

on the different weather files studied. These 

small discrepancies are caused by weather-

dependent heat loss phenomena that the HTC 

includes by definition: heat loss towards the 

ground, infiltration heat loss, solar heat gain on 

the facades (Li 2022). Losses towards the 

ground are eliminated with the assumption of 



an adiabatic ground in order to focus on the 

problem of solar gain. The variability of HTC 

caused by the latter term should however be 

mitigated by the use of the equivalent outdoor 

temperature rather than the ambient 

temperature (Juricic et al. 2023).  

 

Figure 2 : HTC reference value estimation by numerical 
co-heating test with the equivalent outdoor temperature 

Given the low dispersion of the reference 

value, and to be able to compare the different 

methods, an average reference value is 

calculated for all climates.  

So, the HTC reference value is equal to 84 +/- 

1.3 W/K.  

4.3 Equivalent outdoor temperature 

and incident solar fluxes 

calculation 
In our study, the EnergyPlus software 

corresponds to a data generator. The incident 

solar fluxes and the equivalent outdoor 

temperature are therefore calculated using the 

output variables and simulation parameters. 

Meteorological data comes from the weather 

files. The angle to the ground 𝛽, the azimuth 

𝐴𝑧𝑓, the albedo and the external energy 

absorption coefficient 𝛼𝑒 are simulation 

parameters. Indoor and outdoor temperature 

and the external convective heat exchange 

coefficient ℎ𝑐𝑒 and the external radiative heat 

exchange coefficient ℎ𝑟𝑒 are output variables.  

4.4 Data analysis 
In order to take advantage of the greatest 

possible indoor/outdoor temperature 

difference and therefore obtain more accurate 

results for estimating the HTC, the data are 

simulated and analysed during the winter 

period from 15/11 to 01/03.  

The data is also averaging over daily time steps.  

In order to focus on solar heat gains, other heat 

gains or losses due to occupancy are 

considered to be known in the model.  

In the model using the “global façade solar gain 

coefficient” approach, the prior distribution of 

𝜃 is centred on 0.9,  the value defined 

according to BRE table (BRE 2011).  

For themodel using the “separated façade solar 

coefficient” approach , each 𝜃𝑓 also follows a 

normal distribution centred on 0.9 and with a 

standard deviation of 0.05. 

The prior distribution of 𝐻𝑇𝐶 is centred on 50 

W/K, chosen arbitrarily, with the only 

knowledge we have of the house is that it is 

fairly well insulated. Indeed, we want the 

model to calculate 𝐻𝑇𝐶 even if we make a 

mistake in the prior definition. The standard 

deviation is equal to 15, so more or less 30 W/K 

of uncertainty, because we are taking a very 

wide range and we do not want it to be too 

informative. If we take a lower standard 

deviation, we run the risk of giving too much 

importance to the prior.  

5. Results 

5.1 Comparison of direct solar gains 

estimation 
Direct solar gains are estimated over the entire 

analysis period, for each meteorological file 

and after calibration of each linear regression 

model summarised in Table 1. They are 

compared to the solar gains computed by 

EnergyPlus, corresponding to the solar gain 

entering the house. Here, for the 

determination of the solar gains with the 

FSGEM method, the incident solar fluxes of 



EnergyPlus are directly included in the 

calculation of the solar gains.  

The solar gain estimation for the model with 

global façade solar gain coefficient (model 3) 

and the model using separated façade solar 

coefficient (model 4) is made after Bayesian 

calibration: solar gains are determined from 

the median value of the solar factor 

distribution and the quantiles 0.03 and 0.97. 

These quantiles make up a band of uncertainty 

for the estimation.  

Figure 3 and Figure 4 compare the four solar 

gains estimation for two climates: Nice for a 

Mediterranean climate and Paris for a 

degraded oceanic climate.   

For the climate of Paris, the difference 

between the solar gains estimated using a 

global solar aperture and the reference is on 

average 60%. For a warm and sunny climate, 

such as Nice, where the global horizontal solar 

energy is twice as high as Paris, the difference 

is even larger. The solar gains estimated using 

a global solar aperture are significantly 

underestimated compared with the reference 

value. The difference is more than 80%. 

For solar gains estimated using the developed 

model using global façade solar gain 

coefficient, the difference between the 

estimation and the reference value is smaller 

than of 20% for Paris, and about 40% for Nice.  

For solar gains estimated using the developed 

model with separated facades solar coefficient, 

the difference between the estimation and the 

reference value is smaller than of 10% for Paris, 

and about 20% for Nice. 

The difference between the estimated gains 

and the reference is four times smaller for Nice 

with the developed model using separated 

facades solar coefficient than with common 

linear regression model using a global solar 

aperture coefficient.  

 

Figure 3 : Comparison of estimated solar gains in Paris 

 

Figure 4 : Comparison of estimated solar gains in Nice 

In order to compare the solar gain estimations 

for each model and each weather file, the 

relative error percentage is calculated between 

each estimation and the solar gain reference. 

These results are illustrated using a violin plot, 

Figure 5, that compares the relative error 

percentage distributions between each model 

and for each weather file.

 



 

Figure 5 : Relative error percentage between the solar gain reference and the solar gain estimations of the different 
formulations: global solar aperture coefficient, FSGEM method, global façade solar gain coefficient and separated façade 

solar coefficient

The violin plot shows that the relative error 

percentage of the estimated solar gains with 

the “global solar aperture coefficient” 

approach is always higher than 30%. For the 

sunniest climates, Bordeaux, Nice and 

Marseille, the gap exceeds 80%. With 

the“global façade solar gain coefficient” 

approach , the error is lower than the 

commonapproach using a global solar aperture 

coefficient, but the percentage for Marseille 

and Nice is higher than 20%. Finally, with the 

“separated facades solar coefficient” 

approach, the relative error is reduced for all 

the climates and smaller than 20% in average. 

With more accurate solar gain estimations, 

both developed models can be expected to 

yield more accurate HTC results. 

5.2 Assessment of HTC and 

comparison of different 

methods 
As previously mentioned, solar gains have a 

strong impact on the heat balance of a building 

(Pacquaut et al. 2023) and therefore on the 

estimation of the HTC, so an underestimation 

of solar gains can lead to an underestimation of 

the HTC. In the following paragraph, the HTC is 

assessed using the different methods discussed 

above, and the error percentages with the 

reference value are compared. 

Figure 6 compares the HTC assessment by the 

common linear regression model using a global 

solar aperture coefficient and the model 

developed witha global façade solar gain 

coefficient, with the HTC reference value 

obtained by co-heating test, for each of the 

eight weather files. 

The confidence intervals of the errors are 

displayed as well as an error band of 10% and 

20%. The error percentage for the common 

linear model using a global solar aperture 

coefficient is not less than 10%. The difference 

between the HTC estimate and the reference 

value is on average 20% only for the least sunny 

climates. For the sunniest climates of 

Bordeaux, Marseille and Nice, the difference 

from the reference value exceeds 40%. Despite 

taking indirect radiative stresses into account, 

the values estimated with this common 

approach are still a long way from the 

reference value.  

Given Marseille and Nice have poor results, we 

can assume that direct solar gains play a role 

on the HTC estimate, and which therefore 

require more accurate estimation. 

The estimation of HTC for the developed model 

using a global façade solar coefficient is 

calculated from the HTC mean values of the 



resulting distributions. For this model, the 

error rates are below 20%, except for Nice. 

 

Figure 6 : Comparison between the HTC estimation and 
the reference value by co-heating - comparison between 
model using  a global solar aperture coefficient model 
(orange) and model using global façade solar gain 
coefficient (violet) 

The developed model using a better estimation 

of solar gains and the use of Bayesian inference 

make it possible to reduce the gap between the 

HTC estimate and the reference value, 

particularly for warm, sunny climates.  

Figure 7 compares the two Bayesian 

approaches considered: the first developed 

model with a unique ratio 𝜃 between the 

typical mean transmittance and the 

transmittance at normal incidence for all the 

facades of the building, and the second 

developed model with separated facades, in 

other words with a coefficient 𝜃𝑓 per façade 

orientation. 

 

Figure 7 : Comparison between the HTC estimation and 
the reference value by co-heating - comparison between 
two developed models: with global façade solar gain 
coefficient (violet) and with separated facades solar 
coefficient (pink) 

By modelling solar gains by facade orientation 

in the second developed model, using 

separated façade solar coefficient, the relative 

percentage differences between the HTC 

estimation and the reference value by co-

heating are less than 10% for all weather. The 

results show less variability in the estimation of 

HTC with the developed model with separated 

facades. The estimation uncertainty for Nice 

and Marseille is larger than for the other 

climates. 

Finally, the results obtained with the 

developed model with separated facades are 

compared with those obtained using the 

FSGEM method (Jack 2015), which according to 

the literature can be considered a detailed 

method suitable for linear regression.  

In order to be able to compare our model and 

the FSGEM method on the same reference 

frame, we applied the FSGEM method with the 

equivalent outdoor temperature.  

Figure 8 shows that the difference between the 

HTC estimation and the reference value is 

slightly smaller for the new model with 

separated facades than the FSGEM method. 

For the sunniest climates of Marseille and Nice, 

the difference between the HTC estimation by 



FSGEM method and the reference value is 

slightly larger than 20%.     

 

Figure 8 : Comparison between the HTC estimation and 
the reference value by co-heating – comparison between 
developed model with separated facades solar coefficient 
(pink) and FSGEM method (green) 

6. Discussion 

6.1 Advantages of Bayesian 

approach in linear regression 

model 
This paper proposes a new approach to 

improve the estimation of solar heat gain on 

opaque walls and through glazed surfaces in 

multilinear regression models in order to 

improve the assessment of the HTC of a 

building envelope under occupancy. The 

Bayesian approach is used for the model 

calibration to reliable HTC estimation.    

A comparison is made between four models: 

the common formulation of solar gains in the 

linear regression model with a global solar 

aperture coefficient, the FSGEM method (Jack 

2015), a new model developed with a global 

solar factor 𝜃 and a new model developed with 

a solar factor per facade orientation 𝜃𝑓. . The 

difference between the resulting HTC 

estimates and the reference value determined 

by co-heating are compared. 

The model developed with separated facade 

solar coefficients presents results with less 

variability depending on the meteorological 

climate than all other studied models. 

Particularly for sunny climates, the deviation 

from the reference value is less than 10% while 

it is larger than 40% in the common linear 

regression using a global solar aperture 

coefficient. 

The recent studies mentioned in the literature 

review (Senave et al. 2020), (International 

Energy Agency IEA 2021) and (Jack 2015) 

worked on Belgian and English climates and the 

difference between the HTC estimates and the 

reference value was less than 20% or 10% with 

linear regression using a global solar aperture 

coefficient. But as we have seen, in very sunny 

climates, this common regression model 

cannot reliably estimate the HTC. The 

improvement of the solar gains estimation in 

the new model, considering a solar coefficient 

per façade orientation, and the integration of 

the Bayesian inference reduce the variability of 

HTC depending on the climate, and make the 

results more reliable. 

Another advantage of using Bayesian inference 

is the addition of a prior knowledge for the 

different parameters of the model. In this 

work, the prior knowledge is especially useful 

for the coefficient 𝜃, the ratio of mean 

transmittance to normal incidence. This prior 

definition means that we are not dependent on 

"empirical" values that might depend on the 

type of building and the characteristics of the 

glazing, like 𝜃 = 0.9 defined in (BRE 2011). 

Furthermore, the integration of a prior 

knowledge also makes it possible to integrate 

the measurement uncertainty associated with 

the parameter. One of the major advantages of 

the new linear regression model using Bayesian 

inference is that it can fully embed 

measurement uncertainties and therefore the 

uncertainties of the different parameters and 

variables will be propagated to the resulting 

HTC distribution.  

In a future work, the various phenomena linked 

to occupancy will be considered and their 

uncertainties quantified. Then the 



measurement uncertainties of these different 

heat balance variables, such as indoor 

temperature or internal gains, will be 

propagated to the resulting HTC distribution. In 

this case, linear regression models have a good 

advantage: unlike modelling solar gains with 

dynamic models, the calibration of linear 

regression models allows long measurement 

periods. Analysis of data taken over long 

periods to estimated HTC during occupancy is 

also beneficial because it means that all 

uncertainties can be considered.   

Another point of discussion concerns the 

calculation of the reference value. The HTC 

reference value determined does not 

correspond exactly to the definition given in 

the ISO 13789:2017 standard (ISO 13789:2017 

2017). However, because of the HTC 

dependence on environmental temperatures, 

(Li 2022) showed that it is necessary to 

consider outdoor boundary conditions for the 

reference calculation. (Juricic et al. 2023) 

proposes therefore to use the equivalent 

temperature for the reference value 

calculation instead of the outdoor temperature 

and shows that measuring this equivalent 

temperature reduces HTC variability.  

6.2 Study limits  

6.2.1 No considering of masks and 

shadowing 
To simplify this initial study, no masks or 

distant shadows were considered in the 3D 

modelling of the house. The new model 

developed in this way does not consider 

potential distant shading from other buildings 

or the external environment. But, in reality, the 

effect of shading affects the measurement and 

calculation of the incident solar flux reaching 

each window.   

In the same way, in the FSGEM method, direct 

measurement of incident solar fluxes on 

windows, or calculation of these fluxes, do not 

provide accurate information on the solar 

radiation reaching each window, taking 

shading into account. To overcome this 

problem, (Jack 2015) suggests installing several 

sensors, one on each window, which are less 

accurate and expensive than pyranometers, to 

determine whether the window is shaded or 

not. These measurements could be combined 

with global solar irradiation measurement 

taken at a weather station to obtain precise 

information on the level of solar radiation 

reaching each window. In the FSGEM equation, 

a fixed solar coefficient is also included for 

shading. In the same way as for the coefficient 

𝜃, our new model could estimate a shading 

parameter that would vary according to the 

level of shading.  

6.2.2 Typology of building 
Finally, the relevance of our two models was 

confirmed using a numerical case study. In 

order to fully validate the methodology 

developed, the study needs to be extended to 

include more houses. (Senave et al. 2020) 

compared the different analysis methods on 

four different building typologies. No clear 

dependency was found between the type of 

building and the accuracy of the HTC 

assessment. However, broadening the scope of 

our case study by examining a larger number of 

buildings, such as the effects of the thermal 

inertia. According to (Jay et al. 2023), solar gain 

will not be exploited in the same way in a high-

inertia building with a concrete core as in a low-

inertia building with a wooden frame. In a 

building with low inertia, the solar energy 

passing through the glazing will be released 

more quickly through ventilation. Conversely, if 

the sunspot strikes the concrete slab of a high-

inertia building directly, the energy will be 

captured by the slab during the day and 

released later. It would also be interesting to 

analyse the sensitivity of the HTC estimation to 

other phenomena.  

6.2.3 Shutters management   
Similarly, the inclusion of fixed solar caps or 

shading devices has not yet been considered. 

Note that in some countries, such as Belgium 

or England, shutters are not very common.  

Our numerical case study enabled us to 

develop and test our new model. However, the 



simulated occupancy, in particular the 

management of shutters, remains very 

theoretical. The random and unpredictable 

behaviour of occupants may therefore have a 

greater impact on the shutters and obviously 

on the solar gains in the building in reality. It is 

therefore necessary to explore how solar gains 

can be modelled in real use. In future work, the 

model will be used on real data from 

instrumented and occupied houses.  

6.3 Method operationality  
In this paper, as a first step to assess the ability 

of the two developed models to estimate a 

reliable HTC, a numerical study is used and a 

focus on solar gains is made. Although the data 

comes from a numerical study, only data that is 

available in reality is used (the global horizontal 

irradiance and the position of the sun). Thanks 

to the ease with which measurements can be 

obtained, the method is straightforward to use 

and could be operational.  

In order to have a reliable method for 

determining the HTC of an occupied building, it 

is necessary to estimate the different gains and 

losses linked to occupancy. It will be necessary 

to focus on the other variables in the building’s 

heat balance (internal loads, mechanical 

ventilation…).  

7. The work in this article is a 

first step before testing 

the models on real data. 

Conclusion 
Methods under occupancy have operational 

advantages for Heat Transfer Coefficient 

measurement and characterisation. But they 

come with additional constraints due to the 

variability of weather and occupancy 

conditions. In particular, solar gains are highly 

influential on performance assessment under 

occupancy. 

Actual multilinear regression models would 

tend to underestimate the HTC of an occupied 

building, depending on the climate and the 

building typology, because of a poor modelling 

of solar gains. This present work considers a 

better estimation of solar gains in linear 

regression model and uses Bayesian approach 

to contribute to more accurate the estimate of 

HTC, and therefore make this estimate more 

reliable. 

The method proposed here therefore allows an 

analysis of the data, without the need for 

additional measurements on the building. The 

addition of an equivalent external temperature 

accounts for solar gains on opaque elements. 

Direct solar gains are estimated and 

incorporated into the linear regression model.  

With this novel Bayesian inference integration 

in linear regression models, the new model 

produces better results than the common 

formulation, reducing the deviation from the 

reference value and the variability between 

different climates. The advantage of this 

probabilistic approach is that measurement 

uncertainties are automatically considered in 

the model and that it acts as a regularisation 

feature. 

The use of Bayesian inference will enable to 

consider unpredictable phenomena linked to 

occupancy in linear regression model, and to 

quantify their uncertainty and thus estimate 

the HTC. Because more uncertainty will be 

incorporated in future work, using linear 

regression models and long measurement 

periods represent a great advantage. Thanks to 

their improved reliability, linear regression 

models would enable to assess an occupied 

building’s performance.  
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