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Invited Paper: On the Characterization of
Blockchain Consensus under Incentives

Sara Tucci-Piergiovanni1

CEA LIST, PC 174, Gif-sur-Yvette, 91191, France

Abstract. One of the novel aspects of blockchains is the intertwining
of consensus properties and incentives. An incentive model determines
participant behaviors and then the possibility to reach consensus. In
this paper we propose a methodological approach to characterize an in-
centive model for blockchain consensus. An incentive model is defined
through the characterization of an oracle, along with its failure model,
and blockchain participants behaviors. The oracle assures Safety prop-
erties at the expense of Liveness, since Liveness is in the hands of par-
ticipants that can behave obediently, strategically or in an adversarial
way. We then apply the proposed methodology to define and analyze
incentive models of popular blockchain solutions. The paper concludes
on future research directions that can take advantage of the proposed
characterization.

Keywords: Blockchains · Consensus · Incentives models

1 Introduction

Consensus in blockchains means to get an agreement on a unique version of
a ledger where each block in the blockchain o↵ers an updated version of the
ledger state chained to a previous block. In an ideal blockchain, there is a single
sequence of blocks on which participants agree. In contrast to this situation,
forks might happen leading to multiple versions of the ledger.

The fairly unique aspect of blockchains is that consensus is driven by incen-
tives. In blockchains an incentive model implements specific financial arrange-
ments for participants influencing their behavior.

To make an example, the maintenance of the ledger in Bitcoin proceeds as
follows: participants create blocks including users transactions along with the
pointer to the previous block and the solution of a cryptopuzzle; di↵use each
newly created block in the network; and store blocks arranged in a tree struc-
ture. In Bitcoin, the protocol embeds a rule, which is the longest chain rule,
which allows selecting a chain in the tree. This way, blockchain creators chain
their newly created block to the selected chain. It is important to highlight that
strategic participants does not obey blindly to the longest chain rule but they
act strategically selecting the longest chain only if this maximize their utility.
Recently, it has been shown that the longest chain rule under the Bitcoin in-
centive model is the best choice for strategic agents, i.e., the Bitcoin consensus
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mechanism along with its incentive model is incentive compatible [9]1. The Bit-
coin’s incentive model provides rewards for block creators and takes into account
proof-of-work expenditures. We can then state that incentive models and the pos-
sibility of reaching an agreement on a common chain are intertwined, therefore,
to preserve consensus properties proper incentive models must be defined.

This paper considers the problem of characterization of blockchain consensus
and related incentive models. The objective is to capture incentive models for
consesus in abstract way, without entering in the detail of specific (often com-
plex) protocols. To this end, we propose a specification of blockchain consensus
that extends the abstract formal specification of blockchains proposed by An-
ceaume et al. in [7]. Anceaume et al. [7] model a blockchain as a concurrent
abstract data type that can be concurrently accessed by an unlimited number N
of participants. The data type is a rooted tree, called block tree, in which vertices
represent blocks, its root corresponds to the genesis block, and each root-to-leaf
path is a blockchain. The two supported operations are append, which adds a
new vertex to the tree, and read, which returns a blockchain of the tree selected
according to some fitting function.

The main feature of [7]’s formalisation is the presence of an oracle that helps
to append blocks to the tree. Intuitively, the oracle, called by participants during
the append() operation, controls the maximum branching factor of the block tree.
The oracle allows a vertex in the tree to have up to some parameter k children.
In [7] it has been shown that strong consistency, i.e., no-forks, can be achieved
only assuming an oracle with branching factor k = 1 and that this oracle is at
least as strong as Consensus. The relationship within blockchain consistency and
consensus has been then formally established. The branching factor of an oracle,
moreover, fully characterizes a blockchain, where an oracle with k = 1 charac-
terizes blockchains resorting to consensus and k > 1 characterizes consensus-free
blockchains. In other terms, the essence of any blockchain is captured by the
assumed oracle, which is a simple abstraction.

In this paper we then characterize incentive models by augmenting oracles
(not the block tree) with costs and rewards associated to its execution. In this
respect we will focus on characterization of consensus-based blockchains, i.e.
blockchains using an oracle with branching factor equal to 1. Let us note that
since consensus cannot run among an unbounded number of processes, current
solutions, e.g. [19, 21], attempt to solve the problem through rotating committees
of fixed size n. In this case the production of a single block needs coordination
among the n committee members and rewards are distributed among members
once the block is produced. The oracle then needs to feature a selection phase:
for each height of the chain n committee members out of the total number
of participants N � n are selected, members that need to agree on the next
block. After the selection phase, a voting phase among the n members starts.

1 Incentive compatibility can be established considering di↵erent solution concepts,
such as dominant strategies and Nash equilibria. Incentive compatibility of Bitcoin
has been shown assuming Nash equilibria as solution concept. Formal definitions of
these notions will be presented later in the paper.
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We abstract the voting phase considering a function f that maps votes on a
set of proposals to a joint decision. Since participants may decide to vote or
not and voting has a cost, we define a quorum ⌫, the minimum number of
votes necessary to trigger a decision. Once the voting phase completes, if a valid
decision is reached, the oracle distributes rewards to participants.

The incentive model characterization is then completed by proceeding to the
following steps: (1) definition of the failure model of the oracle – the oracle
can be either correct or it can lose/corrupt votes, (2) definition of the type of
participants, which can obedient, strategic or adversarial and (3) definition of
the rewarding function, i.e., how rewards are distributed to the committee.

Di↵erent incentive models capturing current popular blockchain solutions
are then analyzed. Incentive models are analyzed exploring their influence on
Liveness (eventually a block is decided) only. Safety properties are indeed always
guaranteed by the oracle at the expense of Liveness, driven by the whole incentive
model. The paper concludes highlighting that the quest for liveness-preserving
incentive models is in its early days.

The paper is organized as follows. Section 2 introduces blockchain oracles pre-
viously presented in [7]. Section 3 characterizes incentive models for consensus-
based blockchains. Section 4 presents analyses of incentive models of current
popular solutions and finally Section 5 discusses research directions.

2 Blockchain core abstractions

Anceaume et al.[7] present an abstract and formal characterization of blockchains
that allows to capture their properties independently from protocol-specific mech-
anisms (Proof-of-Work, Proof-of-Stake, Consensus, etc) and system model as-
sumptions (synchrony, type of faults, number of participants). The main feature
of the characterization is the presence of so-called blockchain oracles that (i)
abstract the validation process of blocks in the chain, (ii) regulate forks and (iii)
abstract the communication medium.

In this section we briefly present this characterization, but for readability we
omit all the formal notations giving only the essential concepts.

2.1 The blocktree and oracle models

Following [7], any blockchain is characterized by a concurrent data strucuture
representing the blockchain and the type of oracle that helps maintaining it,
specified as follows.

The blockchain tree. A blockchain is a direct rooted tree bt that can be accessed
by read() and append(b) operations. Each vertex of the tree is a block and any
edge points backward to the root, called genesis block and denoted as b

0

. The
height of a block refers to its distance to the root.

The read operation read() returns a branch of the tree, from the genesis to one
leaf, selected through a so-called fitting function f(bt), which is protocol specific.
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Each walk, or chain, in the tree as has an associated score that is monotonically
increasing w.r.t. inclusion of blocks.

The append(b) operation takes one parameter, the block to be appended. To
be appended a block must be valid. The validity of a block is protocol-specific.
The append(b) operation returns true if the block is appended to the tree, false
otherwise. If the block has been appended it is valid.

Concurrent specification. Both append and read operation can be invoked con-
currently by blockchain participants. Under concurrency, the data type satisfies
Block Validity: Blocks in the blockchain returned by the read operation are
valid with respect to a validity predicate; Local monotonic read: The score of
the blockchain returned by subsequent reads from the same process is mono-
tonically nondecreasing; and the Ever-growing tree property: The score of the
returned blockchain eventually grows. As for consistency, two alternative con-
sistency criteria are defined, namely: (i) Strong consistency : In addition to the
above properties, for any two blockchains returned by a read operation, one is a
prefix of the other; or alternatively (ii) Eventual consistency : In addition to the
above properties, if a blockchain with score s is returned, then at most a finite
number of read operations return blockchains that do not share the same prefix
up to score s.

Strongly consistent blockchains do not allow forks, while eventually consistent
blockchain admit occurrences of forks that are eventually solved.

Blockchain Oracles. Oracles are generic modules able to abstract the genera-
tion of valid blocks, the communication medium and to regulate the branching
factor of the block tree. During the append(b) operation, the oracle is called
through a getV alidBlock(b⇤, b) operation that takes two parameters, the pro-
posed block b and a block of the block tree b

⇤, chosen as proposed parent of b.
Let us note that b⇤ is freely chosen by the invoking process and that the block b

is valid only if the getV alidBlock(b⇤, b) operation successfully terminates. It is
assumed that only the oracle is able to make the block valid, i.e. to implement
the getV alidBlock(b⇤, b) operation.

The oracle releases valid blocks depending on the merit parameter ↵
i

2 [0, 1]
of the invoking process i. In [7], for each ↵

i

the oracle endows an infinite tape
tape

↵i of elements in the set {>,?}. Each time the getValidBlock is invoked by
a process with merit ↵

i

, an element is popped by tape

↵i . If the popped element
is >, then the valid block is released, otherwise the operation returns false.
In this deterministic version2 the oracle, if invoked infinitely often by i with
↵

i

> 0 with the same pair of blocks (b⇤, b), will eventually release a valid block
guaranteeing a form of fairness. In this paper, for sake of generality and to ease
the presentation we assume the presence of a higher-level function select(↵

i

) that
accesses the tape and returns true if the popped element is >. The pseudo-code
of the getValidBlock operation is shown in Algorithm 1.

2 Even if oracles defined in [7] are deterministic, probabilistic versions can be easily
derived by associating a probability to pop > proportional to the merit.
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Algorithm 1 getValidBlock operation at b⇤

1: upon hgetV alidBlock(b

⇤
, bi)i from process i with ↵i do

2: if (select(↵i)) then

3: validBlocks = validBlocks [ {bi}
4: return bi

5: else

6: return false

Algorithm 2 setValidBlock operation at b⇤

1: upon hsetV alidBlock(b

⇤
, bi)i from process i do

2: if (b

⇤
.children.size < k) ^ (bi 2 validBlocks) ^ (bi /2 b

⇤
.children) then

3: b

⇤
.children b

⇤
.children [ {bi}

4: return b

⇤
.children

Once a process gets a valid block from the oracle, it can now set it through
a setV alidBlock(b⇤, b). As soon as the setValidBlock operation returns we have
two cases: if b is returned then append(b) returns true, otherwise append(b) re-
turns false. It is possible that more than one participant gets a valid block to
append to b

⇤, in that case the oracle regulates forks depending on its branching
factor k. If the oracle has a bounded branching factor, then the oracle guar-
antees that the returned set of any successfully executed setV alidBlock(b⇤, b),
returns a set of children of bounded size k containing successfully set blocks,
then possibly not containing b. If k is unbounded, then the oracle returns a
set of children containing b. The pseudo-code of the setValidBlock operation is
shown in Algorithm 2. In case of unbounded branching factor, the pseudo-code is
either modified by removing the first term of the if condition or by considering
k = 1.

In [7] it has been shown that (i) the oracle with k = 1 is equivalent to
Consensus and (ii) Consensus is necessary for strongly consistent blockchains.

2.2 Oracles, a closer look

Oracles, as already mentioned, abstract away the consensus mechanism used
in blockchains. Let us to have a closer look at the oracle characteristics. The
getValidBlock operation abstracts away the validation process of blocks. For in-
stance, if we think to the proof-of-work mechanism, we can see the getValidBlock
invocation as a query to an oracle that gives to the process the solution of the
proof-of-work or false otherwise.

The setValidBlock operation, has a subtler role. Let us take our weakest
oracle, with k = 1. The setValidBlock operation only means in this case to
make the block visible in the blockchain. Once the setValidBlock returns, the
block is accepted by the blockchain, i.e., it is appended. We can think to the
set operation as a successful write of a new block in the blockchain state. It is
important to stress out that actual update of a state change is far from being
trivial in a open peer-to-peer network, subject to participant churn. For that
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reason, it is extremely useful to resort to oracles. In this perspective, all the
blocks returned by setValidBlock operations can be viewed as stable vertexes in
the tree: if some processes sets a given block b, than successive setValidBlock
will report b in the returned set3.

The shared burden between oracles and blockchain participants. Oracles, by def-
inition, are local to one particular vertex of the tree: each participant chooses to
call the getValidBlock on the parent vertex of her choice, and to call setValid-
Block to try to append the block. This suggests that it is up to participants to
guarantee the consistency of the blockchain and not to oracles. For instance, if
there is just one participant in the blockchain that keeps calling the oracle to ap-
pend a block to the genesis one, and the oracle has k = 1, the ever-growing tree
property will never be guaranteed. At some point the process must jump to a leaf
to make the tree growing. This is also true by assuming, for the same scenario,
an oracle with k = 1: the calling participant will always terminate her append
operation by returning false, but the tree will stop growing. In case of weaker
oracles with k > 1, if there are two processes jumping alternatively and concur-
rently on two parallel branches of the tree, it is up to them to eventually select
and read the same chain to guarantee eventual consistency and repair forks. The
separation of duties between oracles and blockchain participants described so far
is particularly meaningful when strategic behavior is assumed. Blockchain par-
ticipants thanks to the oracle have the possibility to update the block tree, but
it is up to them to choose the chain they prefer when reading and appending;
this choice is done strategically. In this respect it is interesting to highlight that
stronger oracles reduce the strategic space with respect to weaker ones, but even
assuming our strongest oracle with branching factor k = 1, strategic choices are
relevant to guarantee progress.

2.3 Enriching oracles with incentives

In all the implementations employing the proof-of-work, a cost must be asso-
ciated to block validation. For those implementations exempted by the proof-
of-work, to avoid spamming – a process maliciously sending too many blocks –
either a mini proof-of-work is employed or a so-called slashing mechanism allows
to burn some coins of the malicious process [19, 14]. In all cases we can abstract
a cost associated with the generation of valid blocks. This cost can be allocated
to the process either at the end of the invocation of the getValidBlock or when
then process invokes the setValidBlock operation – this is to take into account
a cost only when a block is sent in the system.

As for rewarding, current solutions can roughly be divided in two families:
those where only one participant is accountable for the appended block and those
where more than one participant is accountable for it. Rewarding is then given
to accountable participants for the block. We are interested in the second family

3 In [7] the consumeValidBlock, called in [7] consumeToken operation, has been re-
duced to the Generalized Lattice Agreement abstraction [12].
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where the oracle has branching factor k = 1, i.e., an oracle implemented through
Consensus in a deterministic setting. In current solutions based on Consensus [19,
21] a block is created coordinately by committees of n participants selected out of
N blockchain participants and the reward is shared among committee members.
We will define an incentive model for this class of blockchains. We will introduce
all the elements needed to define a so-called Consensus Incentive Model: (i) an
adaptation of the oracle with branching factor k = 1 to model selection and
rewarding, (ii) a failure model for the oracle, (iii) participants characterization
in terms of their type (obedient, adversarial, strategic) and behavior.

3 Consenus Incentive Model definition

Oracle Characterization. The oracle is an oracle with branching factor k = 1
called hereafter Consenus oracle, with a cost associated to the invocation of
setValidBlock. The oracle, as current solutions, e.g. [18, 19, 14, 11], selects com-
mittee members that have most merit and share the reward among committee
members, even though more sophisticated models have been devised4. The or-
acle is specified as follows (Algorithm 3 and 4). The oracle when invoked at a
given block b

⇤ through getToken(b⇤, ⇤) grants valid blocks up to n invokers, by
following a given selection criterion and puts the process i in a validator set.
Once the process i gets a valid block it may decide to try to append the block
in the blockchain, through setV alidBlock(b⇤, b). The operation starts a voting
phase to collect proposals. When the phase ends, only if ⌫  n proposals are
collected a decision is taken through a function f that maps proposals to the
block to be set. Note that the duration of a voting phase depends on the system
model assumed. In synchronous systems the voting phase lasts at least the time
required to gather the ⌫ proposals, but it could last more and gather more than
⌫ proposals. In case ⌫ proposals are gathered, but the decision is not valid the
oracle returns false. The reward function takes as parameter the validator set,
the proposal and the decision. If all the validators are rewarded no matter if
they voted or not, then we have a reward all rewarding scheme; alternatively, if
only voters get the reward, we have a reward only voters scheme.

Failure models of the oracle. The oracle can be:

– correct : The pseudo-code (Algorithm 3 and 4) is correctly executed.
– vote corruption: the proposals set at line 7 can contain up to c non-valid

votes, because of a failure of the valid block test.
– vote omission: in the proposals set at line 7 up to m votes can be lost.

The oracle is not a strategic entity, the failure model assumed abstracts away
possible system failures. The reward function is always executed correctly.

4 Some implementations [14, 11] provide a delegation mechanism in which a participant
can delegate its merit to another one, in this case the reward is shared among
delegators as well.
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Algorithm 3 Consensus Oracle with Incentives: getValidBlock operation at b⇤

1: upon hgetV alidBlock(b

⇤
, bi)i from process i with ↵i do

2: if ((select(↵i) ^ (n  j)) then

3: validBlocks = validBlocks [ {i}
4: validatorSet validatorSet [ {bi}
5: j + +

6: return bi

7: else

8: return false

Algorithm 4 Consensus Oracle with Incentives: setValidBlock operation at b⇤

1: upon hsetV alidBlock(b

⇤
, bi)i from process i do

2: if (b

⇤
.children.size < 1) ^ (bi 2 validBlocks) then

3: if voting phase not started then

4: start voting phase

5: b

⇤
.proposals b

⇤
.proposals [ {bi}

6: upon ((end voting phase) ^ (proposals.size = ⌫)) do

7: decision f(proposals)

8: reward(validatorSet, proposals, decision)

9: if decision 2 validBlocks then

10: return b

⇤
.children

11: else

12: return false

Participants Characterization.

Participants action space. Each participant has a strategy s

i

s

i

2 {0, 1,?}, where 1 maps to the decision of sending a vote, 0 of not sending
a vote, and ? of sending an invalid vote.

Types of Participants. We define then three types of participants:

– strategic: a player that chooses the strategy that maximizes her payo↵
– obedient : a player whose strategy is fixed to 1 under the condition that utility

is greater than a given threshold �. In other terms the obedient participant
has limited resources, needing then some degree of fairness [15, 5].

– adversary : a player whose strategy is either 0 or ?.

Later we will extend our oracle to a multi-ballot oracle, to include in the
action set the action of sending two di↵erent votes in two di↵erent ballots in
the same voting phase. This is to include the classical Byzantine misbehavior of
sending di↵erent messages to di↵erent processes. This extended action set will
be discussed for solutions based on BFT consensus.

Properties to guarantee. Properties to guarantee at each height of the chain
are traditional Consensus properties: Agreement (at most one decision is taken),
Validity (the decision value must be valid) and Termination (eventually a deci-
sion is taken). Agreement and Validity are safety properties while Termination
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is a Liveness property. In our proposed oracle construction participant behav-
iors can only hinder Liveness, leading to never return a valid block (line 10).
This is easy to see if the oracle is assumed correct. In case of votes corruptions
(modeling a vote for an invalid block), the decision function f is able to filter
out corrupted proposals. If no valid proposal can be chosen, the f returns ? and
the block is not returned.

The agreement property is by construction not threatened by the given action
set, but easily guaranteed with a multi-ballot oracle capturing PBFT solutions
as we will see later.

The main principle is to have an oracle assuring Safety at the expense of
Liveness and to study how participants behavior under the assumed incentive
model influences Liveness.

Utility functions. Before being able to establish participant strategies we need
to define utility functions. A utility function depends on the oracle failure model
and the action set. The simplest utility function, defined assuming a correct
oracle, is as follows.

u

i

= ⌃

n

r
i

=0

R



i

�⌃

n

v
i

`=0

C

`

i

(1)

where

– n

r

i

is the number of setValidBlocks operations successfully executed and
such that i belongs to validatorSet (reward all) or i’s proposal belongs to
proposals (reward only voters) at line 8.

– n

v

i

is the number of setValidBlocks operations successfully executed and such
that i voted, i.e., i’s proposal belongs to proposals at line 5.

Weaker oracles can also envisage punishments. For instance an oracle su↵er-
ing from vote corruptions, can contain in the proposal set some invalid blocks.
We consider that the decision function f could in this case select an invalid
block but that the decision is not returned, leading to Liveness violation. The
participants, if an invalid block is decided or even proposed, can be punished.

Participants strategies. Once the utility function is in place participant
strategies can be defined.

Strategies of obedient participants correspond to the expected behavior from
the designer point of view. The strategy under our oracle models and action
space is then naturally 1 as long as the participant can pay the inflicting costs.
For obedient participants it is assumed that the participant enters the system
with an endowment and that such endowment is modified solely by costs and
rewards defined by her utility function. The threshold � must be set to make
sure that the participant is rewarded often enough to not exhaust her resources.
In the weakest model � is greater than zero.

Strategies for adversarial players can be determined considering strategies
that undermine properties to guarantee, i.e. Termination. It assumed that the
utility function is known by adversarial processes.
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Strategies for strategic participants can be determined in the framework of
game theory. Game theory focuses on predicting individual players’ strategy and
payo↵s. For each combination of players and possible strategies, there is a payo↵.
Game theory analyzes which strategies strategic players will play in the game.

Given a game, it is interesting to look for dominant strategies. A dominant
strategy for a player is a strategy leading to the best payo↵, no matter how other
players may play. However, dominant strategies there not always exist.

Nash Equilibrium is an equilibrium where each player’s strategy is optimal
given the strategies of all other players. A Nash Equilibrium exists when no
player would take a di↵erent action as long as every other player remains the
same. Nash Equilibria are self-enforcing; when players are at a Nash Equilibrium
they have no desire to deviate, otherwise they will be worse o↵. Interestingly,
given any finite game a Nash equilibrium there always exists.

More formally a Nash equilibrium can be defined as follows:

Nash equilibrium. Let (S,U) a game with n players where S
i

is the strategy set
for the agent, S = S

1

⇥ . . . ⇥ S
n

is the set of strategy profiles and U is the
set of utility functions U = u

1

⇥ . . . ⇥ u

n

mapping a strategy s

i

2 S
n

to a
payo↵ u

i

(s
i

).
A strategy s

i

2 S

i

for the agent i is a mapping from each state of the game
to an action in the action space of the agent. A strategy tells a player what
to do for every possible state of the game throughout the game5. When
each agent chooses a strategy from its strategy set we get a strategy profile
s = (s

1

, . . . , s

n

) 2 S.
Let us denote with (s |i, s⇤

i

) the fact that i deviates from s by doing s

⇤
i

2 S

i

.
A strategy profile s is a pure Nash Equilibrium if and only if for each i, and
for all strategies s⇤

i

2 S

i

: u
i

(s |i, s⇤
i

)  u

i

(s).

In the following we will analyze incentive models with strategic players under
the Nash equilibrium solution concept.

Failure models of participants. We assume that obedient and strategic par-
ticipants are able to correctly execute their strategy, i.e. they are correct processes
with respect to their strategy. We also assume that adversarial participants can
execute their strategy in the worst case, but they can be a↵ected by unexpected
failures, i.e. they are Byzantine processes6. Note that our model separates failures
from strategies (that could deviate or not from designer’s one). This separation,
inspired by [13], defines a slightly di↵erent model than the BAR model [2]. Our
obedient participants are neither altruistic (they do not maximize the benefits of

5 A strategy can be viewed as an algorithm. The state in game theory is called the
information set that is evaluated each time it is updated, to select the next action
or move.

6 Even if Byzantine failures are defined as arbitrary deviations from the prescribed
behavior, an adversarial argument is assumed to prove protocols under Byzantine
processes. This way the strategy of the Byzantine participant is determined.
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others in the general case) nor correct since they have limited resources. More-
over, any strategic player is assumed correct with respect to her chosen strategy
(on the contrary the participant must be assumed Byzantine).

E�ciency. Any incentive model can be analyzed under the e�ciency point of
view. Given ⌫ the threshold to produce a block, e�ciency is the ratio between
⌫ and the number of votes determined by chosen strategies.

4 Analysis of current solutions

In this section we illustrate first how to capture current solutions under an
incentive model and then we analyze the incentive model itself. The section has
a pedagogical purpose and let us observe how assumptions on the particular
combination of oracle failure model, participants types and the reward schemes
impact Liveness. We analyze two reward schemes: reward only voters and reward
all.

Strategic incentive models for synchronous leader-based solutions in
a one shot game. In solutions like [11][14], a single leader is elected for each
height of the chain. The leader sends its block and the n � 1 other processes
send a vote for the block. We can abstract these solutions by our oracle without
failures, n participants and a decision function f that selects the proposal of the
leader where all the proposals are votes. We need for the block to be produced at
least ⌫ votes, otherwise liveness will not be guaranteed. Assuming a synchronous
system means to collect at the end of the vote phase all the votes to potentially
reward them (the oracle is assumed correct, no message losses occur). We assume
n strategic participants, utility function (1) for only one height of the tree with
R > C, assuming a one shot game. Strategies of participants are as follows [3].

Reward only voters. For the reward only voters scheme we have two cases:
⌫ > 1 and ⌫ = 1. The case of ⌫ > 1 has two Nash equilibria. In the first
equilibrium all the participants send a vote, i.e., they call the setValidBlock
operation. In the second equilibria nobody send a vote; violating Liveness. In
the case of ⌫ = 1 we have a single Nash equilibrium where all n participants
vote. The e�ciency of the mechanism is ⌫

n

.
Reward all. For the reward all mechanism, we have two cases: ⌫ > 1 and

⌫ = 1. The case of ⌫ > 1 has multiple Nash equilibria, where either ⌫ participants
sends a vote or nobody sends a vote; violating Liveness. In the case of ⌫ = 1 we
have a n Nash equilibra, in each equilibrium, exactly one process sends a vote.
E�ciency is optimal.

Note that a good Nash equilibrium for both schemes is reached when ⌫ = 1,
because the participant is pivotal: in the strategy profile where nobody send the
vote, she will be better o↵ by deviating, i.e. sending the vote. This is true for
all the participants if only voters are rewarded. In the reward all scheme, this is
true for ⌫ participants.
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Comparing the two mechanisms the reward all is more e�cient, in the sense
that less money is distributed to participants in good equilibria. Both of them,
however, if ⌫ > 1 have bad equilibria resulting in a coordination failure and
liveness violation.

Adversarial-strategic incentive model for synchronous leader-based
solutions in a repeated-game. In [3] a more complex model has been con-
sidered, where a combination of adversarial and strategic players is assumed and
more leaders can be elected in a round-robin fashion to produce a block at a
given height of the chain. The oracle used is an oracle accepting invalid blocks
but able to filter invalid decisions out. The reward scheme assumed is a reward
only voters with a cost inflicted to all the committee members if an invalid block
is selected by the decision function f , i.e. if the leader proposed an invalid block
that has been accepted by ⌫ participants. The study assumes as well that par-
ticipants have the possibility to check upfront if the leader’s proposal is valid or
not at some additional cost. Moreover, it is assumed that the reward is greater
than the inflicted cost and the cost of accepting an invalid block is greater than
the reward (see [3] for the utility function formal definition).

It is easy to see that the adversarial strategy to inflict the maximum damage
to other participants is to propose an invalid block and hope to get a su�cient
number of votes to have the block accepted. In this case all of them will be
penalized and Liveness threatened.

As for strategic players, strategies have been found considering multiple vot-
ing rounds (for the same height of the chain) where for each round a leader is
chosen in a round robin fashion. The study finds multiple Nash equilibria (we
encourage the reader to look at the entire paper). Among many bad equilibria
leading to coordination failure and liveness violation, the rewarding mechanism
in the proposed model shows a good equilbrium if ⌫ > a where a is the upper
bound on adversarial participants. In good equilibrium invalid blocks (proposed
by adversarial players) are rejected, while valid blocks (proposed by strategic
players) are accepted. This implies that, if round t = a+ 1 is reached, the play-
ers know that during all the previous a rounds the proposers were Byzantine (to
draw this inference, the strategic players use their anticipation that all partici-
pants play equilibrium strategies). Consequently, at round a + 1, the proposer
must be strategic, and all players anticipate the proposed block is valid. So, no
strategic player needs to check the validity of the block but all send a vote, which
brings them an expected gain equal reward minus the cost to send a vote. This
is larger than their gain from deviating by not sending a message or by checking
the block.

Obedient-adversarial incentive models for BFT blockchains Blockchains
as [21, 19] use BFT Consensus protocols, e.g. [22, 4, 6], inside committees with n

processes where at most f = bn�1
3

c participants are Byzantine faulty. The other
n� f processes are assumed correct.
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For this class of applications, the model assumed is abstracted by our Con-
sensus oracle with f adversarial participants, n � f obedient participants and
⌫ = n� f . These solutions are leader-based, then multiple voting phases can be
activated with leaders selected in a round-robin fashion. The eventual synchrony
assumption is dealt with an adaptive timeout meant to catch the unknown mes-
sage delay eventually on some voting phase. We abstract this behavior assuming
that at the end of a single voting phase all sent votes are collected, but the oracle
can lose at most one third of sent votes. After an finite but unknown number
of voting phases, the oracle ceases to lose messages. To capture these solutions
we need as well to extend our action set, to let an adversarial participant to be-
have like a Byzantine process sending two di↵erent votes to di↵erent processes,
instead of one single vote. To this aim the oracle can be extended to a n ballot
voting phase where each participant votes in n di↵erent ballots, one for each
participant i. Each ballot has n entries indexed by the participant identifier and
ballots are filled up to at least ⌫ votes. This way an adversary j can vote di↵er-
ent blocks in di↵erent ballots. The decision function f takes the first entry that
have two third of common valid values. Let us to make an example. Process p1
is Byzantine, while p2, p3, p4 are correct. Values proposed on the n ballots are
as follows p1 = {1, 1, 0, 1}, p2 = {2, 2, 2, 2}, p3 = {3, 3, 3, 3}, p4 = {4, 4, 4, 4}.
The oracle can lose at most one vote per ballot. Values lost by the oracle are the
values proposed by pi for the (i+1)th ballot. The ballots state, where {}

i

is the
i

th ballot, at the end of the vote phase is as follows: {1, 2, 3,?}
1

, {?, 2, 3, 4}
2

,
{0,?, 3, 4}

3

, {1, 2, 3,?}
4

. The oracle takes a decision that must be the same
for obedient participants, without knowing who the Byzantines are. The ora-
cle takes the common value contained in the first entry of two-thirds of ballots
(if any), then 2 in the scenario above, and notifies all about the decision. We
say that p

1

, p
2

and p

4

voted for the decided value because their corresponding
ballot contained the decided value. Note that “more than two-thirds correct”
processes assumption neutralizes the e↵ect of the byzantine misbehavior, i.e. in
these conditions the decision value there always exists. Under these conditions,
the adversarial behavior of a Byzantine will then try to hinder the participation
of obedient participants to violate Liveness (to lower the threshold of correct
processes). This behavior depends on the rewarding scheme. Let us recall that
unlike a correct process an obedient one has limited resources, dictated by her
endowment. An obedient process must be rewarded often enough to maintain
a balance greater than zero. If not, the process with no endowment will not be
able to cover the cost of sending her votes. Let us consider rewarding as follows.
Rewarding the processes that voted the decided value. In the above mentioned
scenario if the oracle does not lose the vote of the Byzantine, then the Byzantine
gets a reward and p3 does not. p3 can be excluded from the reward also in the
case the Byzantine sends the same valid value, but the oracle loses the first entry
of p3. If these scenarios repeat too long, p3 can exhaust her resources and will
not be able to vote anymore. The best strategy for the adversarial participant
to hinder Liveness is then to participate with valid values hoping p3 reaches
endowment 0 and then to stay silent forever.
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Rewarding all. This scheme gives a reward to all the processes, even those
that do not send her vote. Note that this is the safer method here, even if less
e�cient, because a Byzantine has no power to make the obedient worse o↵.

5 Discussion and Research Directions

The proposed characterization highlighted the interlacement of participants’
strategy and rewarding schemes in various incentive models based on oracles
with branching factor equal to 1. Recent research [20] is now focusing on BFT
consenus to see how to increase the threshold f of corruption faults. In this direc-
tion, some e↵ort is spent in detecting corrupted processes [10] because this capa-
bility could allow to exclude them from the reward, or to punish them, hoping to
tolerate the presence of more than one third of adversarial processes. As a recom-
mendation it is important not to sacrify liveness for e�ciency here and to clearly
state the incentive model under study. In our characterization, for instance, an
adversary is punishment-insensitive. An interesting research question would be
to characterize adversarial participants sensitive to rewarding/punishment by
assuming limited resources for them. Another interesting line of research is to
consider preferences about transactions contained in blocks. Approaches that ex-
plored leader election [1] and consensus [16, 8] under these assumptions could be
analyzed under our incentive models. Finally, obedient models could be refined
to consider more sophisticated fairness-related concepts and the interlacement
between merit and participant endowment [15, 5, 17]. We hope that the provided
characterization can help in exploring these research directions.
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