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ABSTRACT

Context. The space-based gravitational wave observatory LISA will provide a wealth of information to analyze massive black hole
binaries with high chirp masses, beyond 105 solar masses. The large number of expected MBHBs (one event a day on average) increases
the risk of overlapping between events. As well, the data will be contaminated with non-stationary artifacts, such as glitches and data
gaps, which are expected to strongly impact the MBHB analysis, which mandates the development of dedicated detection and retrieval
methods on long time intervals.
Aims. Building upon a methodological approach we introduced for galactic binaries, in this article we investigate an original non-
parametric recovery of MBHB signals from measurements with instrumental noise typical of LISA in order to tackle detection and
signal reconstruction tasks on long time intervals.
Methods. We investigated different approaches based on sparse signal modeling and machine learning. In this framework, we focused
on recovering MBHB waveforms on long time intervals, which is a building block to further tackling more general signal recovery
problems, from gap mitigation to unmixing overlapped signals. To that end, we introduced a hybrid method called SCARF (sparse chirp
adaptive representation in Fourier), which combines a deep learning modeling of the merger of the MBHB with a specific adaptive
time–frequency representation of the inspiral.
Results. Numerical experiments have been carried out on simulations of single MBHB events that account for the LISA response and
with realistic realizations of noise. We checked the performances of the proposed hybrid method for the fast detection and recovery of
the MBHB.

Key words. gravitational waves – methods: data analysis – methods: statistical

1. Introduction
Space–time disturbances called gravitational waves (GWs) move
at the speed of light. A wide range of phenomena, including
black hole mergers, supernovae, extreme–mass ratio inspirals
(EMRI), and galactic binaries (GBs), to name a few, can emit
them. They are currently detectable using interferometers such
as those made by the LIGO-Virgo collaboration, and in the
future, owing to the Laser Interferometer Space Antenna (LISA;
Amaro-Seoane et al. 2017) project run by the European Space
Agency, they will be observed directly from space.

LISA is an interferometer composed of three satellites that
will form three 2.5-million-kilometer-long arms. Eighteen major
data streams will be produced by these three arms as time series,
which will then be post-processed with time delay interferometry
(TDI) to remove laser noise. The (X,Y,Z) set is the most frequent
TDI combination. Since the (A, E,T ) collection is designed to be
statistically uncorrelated in noise, the preference in this case will
be for working with a linear combination of (X,Y,Z). (For more
information, check the review’s citation of Tinto & Dhurandhar
2014 and references therein).

Numerous techniques, particularly within the context of the
LIGO-Virgo cooperation, have already been suggested in order
to identify the gravitational signals obtained by these data chan-
nels. They cannot, however, be directly applied to the LISA
mission. From the number of sources the instrument may be
⋆ Corresponding author; jerome.bobin@cea.fr

able to detect to their frequency range, the expected observations
are in fact fundamentally different from those made by LIGO-
Virgo (without even addressing the particular imprint of glitches,
instrumental noise, or gaps).

Massive black hole binaries (MBHBs) are expected to be
among the strongest sources measured by LISA. Detecting and
extracting these signals will help answer questions regarding
the supermassive black hole population models and their forma-
tion conditions (Amaro-Seoane et al. 2023), for which different
hypotheses are currently considered. They are the low-frequency
equivalent of the stellar origin black hole binaries detected by
LIGO-Virgo. The LISA mission expects tens to a hundred detec-
tions of MBHBs each year for the duration of the mission, with
signals lasting from several hours to several days, meaning an
efficient extraction model is necessary to single out each of the
detections and to reduce its impact on the residuals post extrac-
tion for unmixing purposes. While presenting some diversity in
their waveforms, they are characterized by their “chirp”-like fea-
tures, increasing in amplitude and frequency slowly at first and
rapidly near coalescence, where the signal peaks before ceasing
to emit altogether.

A GW signal that reaches the LISA satellite constellation
will induce a signal on each of the three arms of the detec-
tor. This will yield three time series, the so-called three TDI
signals X, Y , Z, sampled at time ti = i∆T (0 ≤ i < NT ). It is
customary to define a novel parameterization linearly A, E, and
T by combining them linearly (see Tinto & Dhurandhar 2014)
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so that

A[n] =
Zi − Xi
√

2
, (1)

E[n] =
Zi − 2Yi + Xi

√
6

, (2)

T [n] =
Zi + Yi + Xi
√

3
. (3)

Contrary to the X, Y , Z decomposition, this results in each
TDI channel including measurements from all three arms. This
decomposition is commonly used, as it allows for the assump-
tion that the noise is statistically uncorrelated. In the relevant
frequency range for LISA (mHz domain), the S/N of channel T
is much smaller than those of the other two channels (see Prince
et al. 2002). We can then neglect T and consider only the signals
from A and E (Robson & Cornish 2019).

For the sake of conciseness, the measurement matrix is
denoted as

U =


A0 , E0
A1 , E1
... ,

...
ANT−1,ENT−1

 ∈ R
NT×2. (4)

We refer to the channels A and E as UA and UE and to the
measurements at time ti as Ui,A and UE i, E.

The noise is assumed to be an additive stationary Gaussian
noise so that it can be described at time ti as

Ui = U0
i + Ni, (5)

where U0 is the sought-for GW signal emitted by some MBHB
sources and received at time ti, and Ni stands for noise. Follow-
ing Blelly et al. (2020), the noise that contaminates the LISA
data is assumed to be an additive zero-mean Gaussian noise. It
is further completely characterized by its power spectral density
P(ν) (PSD) in the Fourier domain. In this article, the noise PSD
is assumed to be known, and the measurements will be whitened
and bandpass filtered as described in Appendix A.

In a context where identification relies on simplified wave-
forms that potentiallyrequire noticeable computing cost, it is
crucial to provide fast and accurate detection and recovery algo-
rithms that do not rely too much on parametric models. Similarly,
quickly extracting all signals coming from a specific source type
without identifying them presents an interest, for instance, in
order to estimate the noise power spectral density or to study
another type of source whose signal could be impacted by the
presence of the first source type.

In the field of signal processing, the sparsity framework is
particularly well adapted to deal with these questions. Sparse
representations are already used in the Ligo-Virgo pipeline
Coherent Waveburst (Bacon et al. 2018) to improve detection.
In this pipeline, the Wilson–Daubechies–Meyer transform is
applied to the measurements. This transform represents the data
in a redundant wavelet dictionary, and sparsity is used to focus
the signal’s power over the fewest coefficients possible in order
to improve its detectability. Then this sparse representation, that
is, a compact representation of the signal, is compared (using
a graph) to the sparse representation of a bank of templates in
order to identify it (Bammey et al. 2018). In Feng et al. (2018),
the authors directly tried to recover the polarization h+, h× of GW
signals. It was shown to be an efficient tool that is well adapted

to the GW context. We now wish to introduce the sparsity frame-
work to the LISA community, as it is flexible enough to deal with
many of the problems that data analysis is facing today. Among
these, we can mention source detection, source separation, and
data gaps.

Contributions: We propose a non-parametric model for the
fast detection and recovery of MBHB events from LISA data.
Following Blelly et al. (2020), such a non-parametric model
does not require identifying the MBHB using physical paramet-
ric models. Such surrogate models can be conveniently plugged
into solvers to tackle a large span of inverse problems, such as
gap mitigation (Blelly et al. 2022) or unmixing (Gertosio et al.
2023), which are relevant to a fast (pre)processing in the context
of the global analysis of the LISA data. This work does not pri-
marily focus on the low-latency alert pipeline of LISA.
In the present paper, we investigate various approaches for
designing non-parametric models for MBHBs, focusing on
sparse signal modeling and machine learning (ML)-based low-
dimensional signal models. In the case of MBHBs, we highlight
that a key challenge for designing an accurate waveform model
on a long time interval is to conceive a unified model for both
the spiraling and merger regime. To that end, we introduce in
Sect. 3 an ML-based low-dimension representation that uses a
specific autoencoder (AE) model for the merger (Sect. 2.2) and a
sparse signal model that builds upon a variation of the short-term
Fourier transform (STFT) for the spiraling regime (Sect. 3.1).
In Sect. 4, we evaluate different non-parametric MBHB models
using simulated MBHB waveforms and LISA noise as provided
by the LISA Data Challenge team1. These experiments focus on
assessing the detection and signal recovery efficiency of these
methods.

2. Low-dimensional models for massive black hole
binary detection and recovery

LISA will acquire signal through three TDI channels over sev-
eral years, with each individual MBHB peaking over noise over
several hours and up to several days, resulting in noisy signals.
The data are further contaminated with further artifacts such as
glitches or unmodeled signals. From a signal modeling perspec-
tive, MBHB waveforms can be generated through a set of a few
parameters corresponding to their physical characteristics (sky
location, initial phase, amplitude, chirp mass, mass ratio, spins,
etc.)(Bayle 2019). A complete identification of a single MBHB
signal requires accurately estimating these physical parameters.
This is a particularly hard task, especially when artifacts such as
gaps and/or glitches are present. Furthermore, an accurate esti-
mation of the spiraling phase of MBHB signals on long time
intervals is difficult since standard parameter estimation meth-
ods hardly capture the signal phase back in time from the merger.
This is even more challenging when signals overlap with other
MBHBs or when gaps or glitches are present.
In the context of fast unmixing for global analysis, it is
paramount to design computationally light surrogate models for
GW waveforms. To that end, in Blelly et al. (2020), we intro-
duced a so-called non-parametric or model-free detection and
recovery method for the galactic binaries. In brief, the pro-
posed method relies on the sparse representation of GBs in the
Fourier domain to distinguish between noise and signal to detect
and reconstruct GB signals from noisy LISA measurements. As
highlighted in Blelly et al. (2022), such models can be deployed
to tackle downstream tasks such as gap mitigation.
1 https://lisa-ldc.lal.in2p3.fr/
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In the spirit of Blelly et al. (2020), we propose to intro-
duce a non-parametric method for MBHB detection and recovery
from noisy LISA data. As highlighted in Sect. 1, the complexity
of MBHB waveforms lies in its high non-stationary structures:
(i) During the spiraling regime, MBHB waveforms are well
approximated by quasi-periodic signals with a slowly increas-
ing instantaneous frequency and amplitude. (ii) At merging time
and during ringdown, the instantaneous frequency and amplitude
evolve rapidly, which is akin to a transient signal. The approach
we advocated in Blelly et al. (2020) strongly builds upon the use
of some sparse signal representation that yields a compressed
encoding of its information content. Since MBHBs have quite
an inhomogeneous or non-stationary content, a single signal rep-
resentation can hardly allow for an efficient sparse encoding of
both the spiraling and merger/ringdown phases.

In the signal processing literature, there exist two ways to
build a compressed or more generally low-dimensional represen-
tation of signals:

– Sparse signal models: Sparse signal models describe signals
as a sparse linear combination of signal templates, referred to
as atoms. As an example, one can think of periodic or quasi-
periodic signals such as GBs being sparsely represented by
a few Fourier coefficients. In this framework, the sparse or
low-dimensional signal representation is obtained by com-
puting a sparse linear expansion or an expansion into the
sparsifying domain. These approaches have long been popu-
lar for tackling signal detection and recovery tasks in a large
variety of application domains (Potter et al. 2010; Duarte &
Eldar 2011; Graff & Sidky 2015). Adpating these methods
for MBHBs is discussed in Sect. 2.1.

– Low-dimensional signal models: Generally speaking, sig-
nals such as MBHBs generally lie in a low-dimensional
subspace or more generally on a low-dimensional mani-
fold. Since MBHB waveforms can be described accurately
from a few physical parameters, they actually belong to a
low-dimensional manifold parameterized by these parame-
ters. Low-dimensional signal models can be built using ML
methods, which learn a low-dimensional encoding of the sig-
nals. A very popular ML approach is principal component
analysis (PCA), which computes a linear low-dimensional
signal representation in an unsupervised manner (Wold
et al. 1987). More modern approaches to build non-linear
low-dimensional signal models rely on models such as
AEs (Hinton & Salakhutdinov 2006). This is discussed
in Sect. 2.2.

2.1. Sparse signal modeling for massive black hole binaries

2.1.1. Sparse massive black hole binary representations

As noticed in the introduction, wavelets have long been used to
detect and retrieve mergers of black hole binaries (Abbott et al.
2016). In this context, these approaches exploit the ability of the
wavelets to sparsely or compressively represent non-stationary
signals or transients, which is well suited for an MHBH merger
but not for the spiraling regime of the waveform. More gener-
ally, the principle of sparse signal analysis is that a well-chosen
representation yields a compressed encoding of the information
contained in the signal (Tropp & Wright 2010).

As an example, we define some signal dictionary, Φ =
{
ϕ j

}
,

that is composed of elementary signal templates, ϕ j, whose mor-
phologies are well adapted to the signals’ structures. Somes
signal U ∈ RN×2 can then be decomposed into the dictionary Φ

as follows:

U = Φα =
N∑

j=1

c jϕ j. (6)

The information content of the signal U is then encoded by c
since U can be exactly reconstructed from it. The resulting rep-
resentation is said to be sparse if few c j have a large amplitude
while most of them have small amplitudes.

In the GW analysis literature, it is customary to resort to a
time–frequency analysis by representing the data in the STFT
(see Chernogor & Lazorenko 2016 for more details). In brief,
a STFT performs a Fourier analysis in fixed-length time inter-
vals. From the sparse modeling perspective, a STFT provides
sparse representations for signals whose frequency varies in time
slowly enough to be approximated by a periodic signal during
the time interval defined in the STFT. A standard STFT with a
fixed time interval yields a reasonably accurate sparse model-
ing of an MBHB waveform in its spiraling phase, but it is not
well adapted to the merger and ringdown, which are akin to tran-
sient signals with a rapidly evolving frequency. To that respect,
wavelets (Flandrin 1999) are better adapted to provide a sparse
representation.

In the signal processing literature, multiscale representations
such as the wavelets are standard sparse signal decompositions.
In the context of GW signal analysis, wavelets constitute a robust
initial decomposition to construct signal models (Bammey et al.
2018). As such, they have been used in the Waveburst detection
pipeline (Klimenko et al. 2004) and as a good signal representa-
tion from which to perform Bayesian estimation of the physical
parameters, as described in the Bayeswave method (Cornish &
Littenberg 2015).

Next, the wavelet decomposition of some signal U is denoted
asW(U). We note that the methodology does not require a spe-
cific wavelet basis to work, or even a wavelet basis at all; it only
requiresW(U) to be a sparse representation for U, the signal of
interest. In the context of LISA, the wavelet transform of data
channels A and E will be denoted as

W(U) =
{
W(A),W(E)

}
. (7)

With the LISA noise being assumed to be additive, the mea-
surements can be described in the wavelet domain as follows

W(U) =W(U0) +W(N). (8)

2.1.2. Sparse signal recovery

Sparse representations have long been used to tackle inverse
problems (Elad & Aharon 2006), including for denoising and
detection purposes. To that end, the signal recovery problem for
a single signal, say A, is customarily addressed by solving an
optimization problem of the form

min
Ā

1
2

∥∥∥A − Ā
∥∥∥2

2 +J
(
W(Ā)

)
, (9)

where the first term stands for the data fidelity term that mea-
sures the discrepancy between the data and the estimated signal
Ā, and the second term is a regularization term that enforces a
sparse solution in the wavelet domain. To that end, it is custom-
ary to defineJ as the 1-norm, which is defined as the sum of the
absolute value of the entries ofW(Ā):

min
Ā

1
2

∥∥∥A − Ā
∥∥∥2

2 + γ
∥∥∥W(Ā)

∥∥∥
1 , (10)
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where γ stands for the regularization parameter that allows for
tuning of the trade-off between the data fidelity and the reg-
ularization terms. The solution to Eq. (10) takes the following
closed-form expression:

Ā = softγ(W(A)) (11)

=W−1(max(0, |W(U)| − τ).sign(W(A)), (12)

whereW−1 stands for the inverse wavelet transform. This solu-
tion highlights that γ acts as a threshold on the amplitude of the
wavelet expansionW(A).

In the context of LISA, and following Blelly et al. (2020),
the channels A and E cannot be treated independently since both
are strongly correlated. Accounting for their correlation can be
done by adopting a regularization term that favors common spar-
sity patterns between both channels. Joint sparsity can be favored
by substituting the 1-norm with the so-called 21-norm, which is
defined as follows (see Nie et al. (2010) for more details):

J
(
W(Ū)

)
=

∑
s,c

√
W(A)2

s,c +W(E)2
s,c. (13)

The signal recovery can then turn to tackling the following
optimization problem:

min
Ū

1
2

∥∥∥U − Ū
∥∥∥2

2 + γ
∥∥∥W(Ū)

∥∥∥
21 . (14)

The solution to this problem has a closed-form expression, which
can be expressed as the following soft thresholding procedure for
each wavelet scale s and entry c:

W(Ū)s,c =
(
∥W(U)s,c∥2 − γ

) W(U)s,c

∥W(U)s,c∥2
1∥W(U)s,c∥2>γ, (15)

where ∥W(U)s,c∥2 =
√
W(A)2

s,c +W(E)2
s,c and 1∥W(U)s,c∥2>γ are

the characteristic function of the set {∥W(U)s,c∥2 > γ}, which
takes the value of one if W(U)s,c2 > γ, and zero otherwise.
This amounts to a thresholding operation applied to each wavelet
coefficient across the channels A and E. Only the wavelet coef-
ficients whose norm exceed γ are kept, and they are rescaled to
have a 2-norm equal to ∥W(U)s,c∥2 − γ. This allows the common
features between the A and E in the wavelet domain to be kept.

Tuning the regularization parameter. The regularization
parameter γ plays a central role, as it allows for discriminat-
ing between the signal and the noise in the wavelet domain
during the recovery process. Since the aforementioned sparse
signal recovery methods lead to a thresholding procedure, tun-
ing the threshold amounts to fixing a level under which the
wavelet coefficients are considered to be noise dominated and
thus rejected. Since the statistical distribution of the signal is not
known, choosing the threshold is customarily tackled though a
null-hypothesis testing: Under the assumption that the wavelet
coefficients to be tested are distributed according to the noise
distribution, the threshold is fixed with respect to a given false
positive rate (Starck et al. 2010; Blelly et al. 2020).

In the present joint sparse approach for GW signal recovery,
it can be highlighted in Eq. (15) that the threshold is defined
with respect to the 2-norm of the wavelet coefficients across the
channels. Since the data are assumed to be whitened, the noise is
Gaussian, uncorrelated, and with a variance of one. Since the
wavelets are orthogonal, the noise is distributed according to
the same statistics in the wavelet domain. At scale s, the term

W(Ā)2
s,c/σW(nA)s +W(Ē)2

s,c/σW(nE )s should follow a χ2
2 distri-

bution under the null hypothesis (no signal). This entails that
identifying and rejecting a noise-dominated wavelet coefficient
with a certain probability, or p-value p, can be done by fixing the
threshold γ from the critical value of the χ2

2 for probability p.
As highlighted in Starck et al. (2010); Blelly et al. (2020),

such a thresholding procedure can lead to significantly biased
solutions, especially in the high S/N regime. To overcome this
limitation, two refinements have been proposed in Blelly et al.
(2020):

– Block thresholding (Cai 1999): The block thresholding
groups of Nb consecutive coefficients in each wavelet level
before applying the thresholding using critical values of a
χ2

2Nb
distribution. It relies on the fact that an MBHB signal

features high local correlations in time, while noise does not
and will be averaged toward zero the more coefficients are
summed.

– Re-weighted sparse regularization: The thresholding step is
repeated a few times (generally two to five), with thresh-
old values that are made dependent on the recovered signal.
More precisely, the threshold γ is defined for each block Bs,i;
the re-weighting scheme iteratively updates the threshold γs,i
for each block. At iteration n, it is updated as follows (Blelly
et al. 2020):

γ(n)
s,i =

γ(n−1)
s,i

2

κ ∥ softγ(n−1)
s,i

(
Ũ(B)

s,i

)
∥2 + γ

(0)
, (16)

with κ as a parameter that controls the strength of the re-
weighting. In practice, it is set to κ = 3. The threshold is not
altered for coefficients whose l2-norm starts under the initial
value and goes to zero the stronger the coefficients get. It
has been shown in Candes et al. (2008) that this procedure
provides a lower bias than standard sparsity enforcing.

The full wavelet re-weighted block thresholding process is
described in Algorithm 1, where the soft thresholding operates
as described in Eq. (15). The scaling factor σ is obtained by tak-
ing the wavelet transform of a simulation of pure noise Nsim and
computing a median absolute deviation (MAD) estimator on its
coefficients at each wavelet level:

σs = kMAD ∗ |Median (W(Nsim)s −Median (W(Nsim)s)) |, (17)

where kMAD ≈ 1.48 is the scaling factor associated with a Gaus-
sian distribution (see Hampel et al. 2011 for further details on the
MAD estimator).

2.2. Machine learning for low-dimensional signal models

The physical models that describe the MBHB waveforms gen-
erally depend on a few physical parameters (Babak et al.
2020; Khan et al. 2016). From a mathematical viewpoint, the
MBHB waveforms live on a low-dimensional manifold that is
parameterized by the physical parameters. As advocated in the
introduction, analytic non-linear parametric models are difficult
and costly to use to tackle inverse problems that are rele-
vant for LISA, such as gap mitigation. Instead, ML approaches
can be adapted to be trained on approximations or surrogate
models with computationally cheap inference. In contrast to
sparse signal models, ML-based surrogates directly seek a joint
low-dimensional model from some available training set.

In this section, we assume that we have access to some
training set T = U( j)

j=1,··· ,T , composed of T MBHB waveforms.
Each sample is composed of A and E channels with t time
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Algorithm 1: Wavelet re-weighted block thresholding

Data: U ∈ RT×2;
σ ∈ RS×2

+ ;
Nb ∈ N

∗; Nγ ∈ N∗;
γ(0) > 0; κ > 0 ;
Result: Û ∈ RT×2;

Ũs,c ← (W(U))s,c/σs;
Ũ(B)

s,i ←
∑(i+1)Nb−1

c=iNb
∥Ũs,c∥2;

for n = 1, ...,Nγ do

γ(n)
s,i ←

γ(n−1)
s,i

2

κ ∥ soft
γ

(n−1)
s,i

(
Ũ(B)

s,i

)
∥2 + γ

(0)

end
Ũs,c ← σs ∗ 1Ũ(B)

s,Nb//c
>γ(0) ∗ softγ(n)

s,Nb//c

(
Ũs,c

)
;

Û←W−1
(
Ũ
)

samples. Details about the construction of the training set are
given in Sect. 4.

2.2.1. Linear unsupervised learning by principal component
analysis

Principal component analysis (PCA; Wold et al. 1987) is a stan-
dard, and probably the simplest, unsupervised ML method. It
allows for the building of a linear low-dimensional signal model
by computing the best low-dimensional linear approximation
of the training set, with respect to a quadratic approximation
error. The PCA method has been shown to be quite faithful
for MBHB waveform approximation about the merger (Schmidt
et al. 2021), and it is quite advantageous because it can be com-
puted by looking for the eigenvalue-eigenvector decomposition
of the covariance matrix of the training set. Other approaches,
such as reduced order quadrature, allow for the building of low-
dimensional representations (Morrás et al. 2023); as for now,
they have been limited to the acceleration of the likelihood com-
putation for parameter estimation.
More precisely, we defined R ∈ Rt×t as the empirical training set
covariance matrix as follows:

∀i, j ∈ 1, . . . , t; Ri, j =
∑T

l=1(U(l)
A,i

− < UA,i >) ∗ (U(l)
A, j− < UA, j >)

+(U(l)
E,i− < UE,i >).(U(l)

E, j− < UE, j >),

(18)

where < UA, j >=
∑T

l=1 U(l)
A, j is the mean value of the j-th time

sample of channel A across the training set. The eigenvalue-
eigenvector decomposition of R is written as follows:

R = PRS RPT
R, (19)

where PR is a t × t matrix that contains the eigenvectors, and S R
is a diagonal matrix whose diagonal entries are the eigenvalues
that we assumed to be organized in ascending order.

For some positive integer K ≤ t, a K-dimensional linear
approximation model can be computed by projecting some
MHBH waveform U onto the vector space spanned by the first
K eigenvectors:

ŪA = PR[1 : K]PR[1 : K]T UA
ŪE = PR[1 : K]PR[1 : K]T UE ,

(20)

where PR[1 : K] is the submatrix of PR that is composed of its
K first columns. From these equations, we could define a for-
ward mapping Φ(U) = [PR[1 : K]T UA, PR[1 : K]T UE], which
stands for the orthogonal projector onto the K-dimensional sub-
space spanned by the first K principal components. Similarly,
we defined a backward mapping Φ(V) = [PR[1 : K]VA, PR[1 :
K]VE] that reconstructs the signal from its latent space represen-
tation V ∈ RK×2. The latent space dimension K enables tuning
of the trade-off between noise overfitting when K is large and
over-regularization for small values of K.

The choice of the value of K needs to integrate multiple
parameters such as the noise level, the data dimension, and
information about signal correlation. This can be done either by
setting a threshold in the training correlation matrix eigenval-
ues (Cai et al. 2010) or by setting a compressibility level to keep
a fixed dimension. The PCA method is quick and efficient as a
linear dimension reduction method, but it is limited by its lin-
ear structure. It further ignores most of the physical nature of
the signals modeled, only taking into account the second-order
statistics of the distribution of the coefficients.

2.2.2. Autoencoder-based models

The MBHB waveforms rather leave on a non-linear low-
dimensional manifold since the dependency of the waveform on
the physical parameters is non-linear. This entails that linear ML
approaches such as PCA are not well suited to provide an accu-
rate low-dimensional representation of MBHB signals. In the
ML literature, AEs are unsupervised neural network models, and
they can be considered a non-linear generalization of the PCA
(Kramer 1991). They have long been advocated as a good candi-
date for non-linear signal representation (Bengio et al. 2013).

More formally, an AE is defined by two non-linear mappings:
– An encoder that maps the signal or direct space RT to the

low-dimensional, so-called, latent space: Φ : RT → Rk.
– A decoder that maps from the latent space Rk to RT :Ψ :
Rk → RT .

In plain English, the encoder performs a change of represen-
tation of the signal, while the decoder reconstructs it from its
low-dimensional representation or latent space. Both the encoder
and decoder are described by trainable parameters θ. For the sake
of clarity, we do not make explicit the dependency ofΦ andΨ on
θ. The elements of an AE are generally trained so as to minimize
the reconstruction error in the signal space:

min
θ

∑
Ui∈T

∥Ui − Ψ ◦ Φ(Ui)∥22. (21)

Among the very large variety of AE-based models that have been
proposed so far (Goodfellow et al. 2016, Chapter 14), we chose
to explore the application of the interpolatory autoencoder (IAE;
see Bobin et al. 2023). In contrast to the standard AE, the IAE
imposes the latent space of each training sample to be described
as interpolants of so-called anchorpoints, which are fixed sig-
nal examples. It has been shown that this extra constraint allows
the IAE to perform quite well even when the training sample is
scarce.

More formally, the IAE architecture is characterized by an
extra interpolation step I in latent space. The K + 1 anchor-
points are defined a priori from the training set. They are denoted
by (α1, ..., αK+1). As described in Bobin et al. (2023), the inter-
polation step consists of approximating the encoded training
samples by their projection onto the affine hull of the encoded
anchorpoints, as illustrated in Fig. 1.
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Fig. 1. Interpolatory autoencoder description.

The projection of an encoded training sample onto this affine
hull of dimension K yields a barycenter of the (αi)1≤i≤K+1, which
can be defined by its coordinates (λi)1≤i≤K+1:

I ◦ Φ(U) =
k+1∑
i=1

λiΦ(αi) s.t.
k+1∑
i=1

λi = 1. (22)

We definedΩ as the matrix formed by the encoded anchorpoints:
Ω = [Φ(α1), · · · ,Φ(αK+1)] and λ = [λ1, · · · , λK+1].

The encoder and decoder were then trained by minimizing
the following training cost function:

min
θ

∑
Ui∈T

∥Ui − Ψ ◦ I ◦ Φ(Ui)∥22 + µ∥Φ(Ui) − I ◦ Φ(Ui)∥22, (23)

where the interpolation step is defined as follows:

I ◦ Φ(Ui) = Ω+Φ(Ui) +
1 − 1⊤Ω+Φ(Ui)
1⊤ (Ω⊤Ω)−1 1

(
Ω⊤Ω

)−1
1, (24)

where 1 is a K + 1-dimensional vector made of ones.
Different neural network architectures can be used to define

the encoder and decoder, depending on the properties of the sig-
nals to be modeled. In the present article, convolutional neural
networks (CNN) are used. Details of the architecture and training
procedure are given in Appendix C.

Once the IAE model is trained, there exist two strategies to
reconstruct an MBHB signal U0 from noisy data U:

– Projection onto the latent space: This consists of making use
of the trained encoder to project the noisy signal U onto the
latent space and reconstruct the projected signal using the
decoder:

Ū = (Ψ ◦ I ◦ Φ)(U). (25)

Such an approach is fast, but in practice, it can lead to more
biased solutions.

– Generative model method: This approach boils down to
using the decoder only as a generative or surrogate model
for MBHB signals. This time, the signal is reconstructed by
looking for the best parameters λ in the latent space domain
so that the decoded signal minimizes the quadratic error with
respect to the noisy data:

Ū = Ψ(Ωλ) where λ = argminλ∥U − Ψ(Ωλ)∥. (26)

This requires minimizing a quadratic loss, which is more
costly than the previous approach. However, it generally
yields more accurate signal recovery, as it seeks the latent
parameters that lead to the reconstruction that best fit the
input signal.

3. A hybrid approach for massive black hole binary
modeling

In the previous section, we highlighted that sparse modeling is
not perfectly adapted to the spiraling of MBHB waveforms for
long-term modeling of these waveforms. A good sparse mod-
eling approach would necessitate a sparse representation that
can adapt to the frequency variation in the time of the spiraling
period.

On the other hand, ML-based methods are good candidates
for building a low-dimensional model of the coalescence, but
they can hardly be used realistically on long-lasting signals since
it would require learning very long time correlations. In practice,
this would mean coping with very large training sets.

In order to take the best of the two approaches, we introduced
a hybrid modeling of the MBHB signals:

– Coalescence: At merger time, we propose modeling the
waveform with a non-linear low-dimensional model. To that
end, an instance of the IAE is learned.

– Spiraling regime: In the spiraling regime of an MBHB
signal, the waveform is oscillatory with a monotonically
increasing amplitude and frequency. For that purpose, we
opted for a model based on an adaptive STFT. In this
framework, adaptivity comes from the dependency of the
time interval decomposition on the MBHB characteristics at
merger time, specifically the chirp mass.

In this section, we describe how each component of the model
is built and how they are combined to yield a single model on a
large time interval.

3.1. Modeling the spiraling regime of a massive black hole
binary

This section introduces an adaptive time–frequency decompo-
sition called the sparse chirp adaptive representation in Fourier
(SCARF), which aims at providing an adapted time–frequency
decomposition for the spiraling regime of an MBHB waveform.
This decomposition is a variation of STFT with time filters of
varying length to better capture the local dynamic of the chirp
shape of an MBHB.

In contrast to standard time–frequency decompositions, it
first builds upon a first-step processing of the coalescence, such
as the IAE model described in the previous section. A specific
windowed Fourier transform is then performed with a sequence
of time-varying window sizes, which depend on the estimated
merger. The goal of such a decomposition is to provide a time
segmentation of the MBHB waveforms into time intervals in
which the signal can be approximated by a quasi-periodic signal,
which would consequently allow for a sparse representation in
the harmonic domain. For that purpose, the windowing process
must be adapted to the speed of variation of the instantaneous
frequency of the waveform.

As illustrated in Fig. 2, SCARF consists of adapting both the
time–frequency tiling and the analysis frequency range based on
the reconstructed waveform at merger time. This yields multi-
ple fast Fourier transforms (FFTs) on time windows of varying
lengths to capture the signal at its different stages, juggling
between time and frequency precision depending on its fre-
quency shift speed. When the signal has low dynamics and is
nearly stationary, long time windows are used to concentrate
its power from long time samples into a few Fourier coeffi-
cients. Conversely, when the signal features higher dynamics,
shorter time windows can capture the quick variations in signal
frequency.
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Short-Time Fourier Transform
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Fig. 2. Different time–frequency tiling strategies and their respective
efficiency at capturing an MBHB signal (represented in red). In a good
sparse representation, the ratio of the number of active blocks over total
blocks should be small. Furthermore, to increase the S/N within blocks
and improve detectability, the ratio of the signal power over the block
area should be high, especially early in the inspiral, where signal power
is easily drowned in noise.

Next, the time segmentation used to build the FFT windows
is a dyadic decomposition. Each segment is twice the length of
the following one, with the length and position of the last seg-
ment being chosen according to the coalescence time and the
system’s chirp mass, which can be estimated from the estimated
signal at coalescence. This segmentation is therefore adapted to
the signal’s shape and characteristic variation in frequency over
time.

To counter the artifacts on the windows’ borders, short
overlapping margins are integrated on both sides of each win-
dow. The decomposition is also made overcomplete by using
(along the dyadic segments) the segments associated to their
middles, which ensures a continuous evolution in MBHB fre-
quencies from one window to the next. The windows are then
apodized to have smooth boundaries and to overlap without loss
of generalization, and they are stored in a L × T matrix:

W =


w1
...
wL

 ∈ RL×NT , (27)

where wi ∈ R
NT are defined as Tukey apodization windows with

the parameter 0 < α < 0.5 on a support determined by the time
segments [t−l , t

+
l ] associated with the segmentation:

wl,t =



sin2
(
π(t−t−l )

2α(t+l −t−l )

)
if t ∈ [t−l , t

−
l + α(t+l − t−l )]

1 if t ∈ [t−l + α(t+l − t−l ), t+l − α(t+l − t−l )]

sin2
(
π(t+l −t)

2α(t+l −t−l )

)
if t ∈ [t+l − α(t+l − t−l ), t+l ]

0 elsewhere
.

(28)

Then, FFTs are performed on each windowed signal cropped
around [t−l , t

+
l ], so each spectrum has a different frequency

precision, depending on the length of the time segment.
The full SCARF decomposition can be described in a com-

pact form as a single linear operator A, which from a signal
x ∈ RT and L time segments ([t−l , t

+
l ])1≤l≤L computes a set of L

spectra, each corresponding to a different time window.

A(U) =
{
F

(
(wl ⊙ U)|[t−l ,t+l ]

)
, l ∈ [1, L]

}
. (29)

One can define the reciprocal operator, which maps a set of
spectrum associated with a given time segmentation onto a
time signal – noted A⊤. This operator is obtained by taking
the inverse Fourier transforms of each spectrum, zero padding
according to the time segmentation, and taking the sum over the
lines normalized by the sum of the windows to get a signal back
in RT .

A⊤(Ũ) =
1∑

i wi,t

∑
l

(
padding|[t−l ,t+l ]

(
F −1(Ũl)

))
, (30)

where the zero-padding operator centers the signals of differ-
ent lengths on each time bin on the right time segment [t−l , t

+
l ]

and creates a L × T matrix from a set of L cropped signals,
see Appendix D for details. We note that the operator A⊤ is a
left inverse of A; indeed, ∀x ∈ RT , A⊤A(x) = x and the exact
inverse if the time segments form a non-overlapping partition of
the complete signal duration.

3.2. Sparse signal recovery within the SCARF domain

The SCARF decomposition is a sparse representation of MBHB
signals. In this paragraph, we extend the thresholding-based
denoising procedure described in Sect. 2.1.

In contrast to wavelet-based thresholding, more specific
constraints can be applied to improve signal extraction using
additional knowledge on the MBHB waveform characteristics:

– Starting from the merger and going back in time, the MBHB
waveform is a single mode signal with an instantaneous fre-
quency that is known to be monotonically evolving. This
knowledge can be enforced in the thresholding process by
constraining to select only active Fourier coefficients in a set
of contiguous frequencies.

– The MBHB waveform further shows a monotonically
decreasing instantaneous frequency. Consequently, within
the SCARF domain, it is meaningful to consider the selec-
tion of the Fourier coefficients that have a frequency lower
than the frequencies in the merger region and to set the others
to zero.

– From the monotonic decrease of the instantaneous fre-
quency, the frequency range to be explored in the first
SCARF time interval should be lower than the frequency
range measured in the coalescence regime. As advocated
earlier, it is then possible to benefit from the reconstructed
merger by constraining the frequency range to be considered
to frequencies that are lower than the one observed at the
vicinity of the merger. This constraint allowed us to benefit
from the MBHB recovery at higher S/N close to the merger,
as it helps track the signal in lower S/N regions in the inspiral
regime. Under the hypothesis that two consecutive windows
wi and wi+1 overlap, this makes it possible to introduce a sec-
ond constraint that iteratively provides an acceptable range
of active frequencies for spectrum i depending on the active
frequencies of spectrum i + 1.
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... ...

l − 1 l l + 1

Fig. 3. Sketch of the SCARF time–frequency decomposition: the red
block is the selected frequency segment on time bin i, the candidates for
time segments l − 1 are the ones with an upper bound among the green
blocks, and the lower bound in the blue ones. The most powerful con-
tiguous block are composed of elements that are each above threshold
is selected as an active block on time segment l − 1 before moving back
one time segment.

These constraints are detailed in Alg. 2 and illustrated in Fig. 3
and rely on creating for each spectrum a set of acceptable
frequencies Fl = [ f −l , f +l ]:

Û = A⊤(Ũ)

s.t. Ũl,c =

thresh(σl,Nb,Nγ ,κ)
γ(0)

(
Ũl,c

)
if c ∈ [t−l , t

+
l ]

0 otherwise,

(31)

where thresh(σl,Nb,Nγ ,κ)
γ(0) represents the re-weighted block soft-

thresholding operation described in Algorithm 1.
The algorithm uses the mapping νi : N → R+, which trans-

lates the frequency indexes in the l-th spectrum to physical
frequencies in hertz. It is necessary as each spectrum has a dif-
ferent frequency step size because of their varying time window
lengths. The inverse operator ν−1

l : R+ → N maps a frequency to
the upper closest index associated with the absolute frequency in
the spectrum l.

4. Experimental results on simulated data

4.1. Data generation

4.1.1. Massive black hole binary signals

In the following numerical experiments, the MBHB signals
were simulated using the lisabeta code (Marsat & Baker 2018)
to create fast and realistic waveforms from a set of physical
parameters. Details about the simulation of MBHBs are given
in Appendix B. In this work, the evaluation of the different
representations is limited to the modeling of the 22 modes of
the MBHB waveforms with three varying parameters: the chirp
mass, mass ratio, and the initial phase. A generalization to more
complex models is left for future work. More precisely, we tuned
the parameters as follows:

– The chirp mass range was taken between 5 · 105M⊙ and 5 ·
106M⊙ by sampling a uniform on the log10 of the range of the
chirp masses. This is the parameter with the strongest impact
on the waveform’s shape, and in the analysis (see example
in Fig. 4), the signals were separated into three bins of Mc
to capture its impact on the analysis: Mc1 = [5 · 105M⊙ −
1.07 · 106M⊙], Mc2 = [1.07 · 106M⊙ − 2.32 · 106M⊙], and
Mc3 = [2.32 · 106M⊙ − 5 · 106M⊙].

– The mass ratio q was sampled from a uniform distribution
on [1, 3], which provides some variety while remaining in
the MBHB regime.

Algorithm 2: Constrained thresholding in SCARF
domain

Data: {Ũl ∈ R
Nl , 1 ≤ l ≤ L};

σ ∈ RL
+;

Nb ∈ N
∗; Nγ ∈ N∗;

γ(0) > 0; κ > 0 ;
Result: {Ûl ∈ R

Nl , 1 ≤ l ≤ L}

f −L+1, f +L+1 ← 0,+∞;
for l = L, ..., 1 do

f + ← ν−1
l ◦ νl+1( f +l+1);

Pl ← 0;
while f + > ν−1

l ◦ νl+1( f −l+1) do
f − ← f +;
while f − > Nb &

∑ f −−1
i= f −−Nb

∥Ũl,i∥2 > Nbγ
(0) do

f − ← f − − Nb;
end
if

∑ f +

i= f − ∥Ũl,i∥2 > Pl then
Pl ←

∑ f +

i= f − ∥Ũl,i∥2;
f −l , f +l ← f −, f +;

end
end

Ûl ← 1[ f +l , f
−
l ] ∗ thresh(σl,Nb,Nγ ,κ)

γ(0)

(
Ũl

)
end

– The initial phase of the signal was sampled uniformly on
[0, 2π].

A training set of 5000 MBHBs cropped on 3000 time samples
around coalescence was generated with this method to train the
IAE and the PCA.

4.1.2. Noise contamination

To generate the noise simulation, the power spectrum density
(PSD), noted as PS D and provided in the LDC (with model
MRDv1), was used as a diagonal correlation matrix to gener-
ate Gaussian-independent colored noise in the Fourier domain.
The S/N was defined using the convention

S/N(x) =

√√
4
∑

j,c

x̃ j,c x̃∗j,c
PS D j,c

δ f , (32)

where j indexes the frequencies of the real FFT and c indexes
the channels A and E. It was computed on the full signal, which
may result in different noise levels depending on the chirp mass
of the signal, which affects the signal power spreading over
time. The coefficient δ f denotes the frequency step in the FFT.
We note that it scales linearly with the signal and that changing
the frequency sampling rate multiplies both δ f and PS D by the
same factor. To generate a noisy MBHB signal with a given S/N,
the MBHB was scaled by the factor S/Ntarget

S/Ninitial
without modifying

the noise generated by the PSD.
To illustrate this point, it is interesting to focus on low S/N,

as it tests the limits of the methods to capture MBHBs near
coalescence. These tests were performed on a range of S/N
from five to 500. However, at such low S/N, the inspiral is very
quickly drowned in noise, and we made the choice to use higher
S/N MBHBs to test the capacity for inspiral recovery on longer
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Fig. 4. Preprocessed (whitened and bandpassed) MBHB coalescences in time domain with noise (grey) and clean (blue) for different chirp masses
and S/N.

Fig. 5. Reconstructed signals for the different methods at multiple chirp masses and S/N. The gray signal corresponds to the noisy input, the blue
one to PCA reconstruction, the green one to wavelet reconstruction, and the orange one to the IAE reconstruction.

timescales. As such, these tests were performed on MBHBs with
S/N ranging from 500 to 2000.

4.1.3. Signal pre-processing

Training and testing data were pre-processed by whitening and
bandpassing them, which amounts to dividing the signal by the
theoretical PSD in the Fourier domain and multiplying the result

by a Butterworth filter with a frequency response:

G( f ) =
1(

1 +
(

fmin
f

)2n
) (

1 +
(

f
fmax

)2n
) . (33)

In practice, the cutting frequencies are set as fmin = 1 · 10−5Hz
and fmax = 2 · 10−2Hz, with the filter order n = 4 to effectively
cut the power out of the gravitational signal bandwidth.
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4.2. Analysis methods

4.2.1. Implementation details

The details of the implementation of the different methods are
listed below:

– Principal component analysis – PCA: The PCA was per-
formed on ten and 100 components to get the respective
efficiency ranges of each and to compare with IAE. When
not specified, the PCA with ten components is the default
comparison investigated in this work; the one with 100 com-
ponents was taken as an example of a different balance
between data fidelity and regularization.

– Interpolatory AutoEncoder – IAE: The IAE was performed
using ten anchor points taken from the training set. The
encoder and decoder were CNN composed of 12 layers. See
Appendix C for details on the implementation.

– Wavelets: The Daubechies wavelets from the pywavelets
Python library were used on nine levels for the full signal of
length 210 000, padded to 262 144 with a thresholding set at
a rejection rate of 0.9 to match the rejection rate of SCARF.

– SCARF: The SCARF decomposition was tested on different
time segmentations built from dyadic decompositions of the
full inspiral time span with different starting window posi-
tions and lengths. These decompositions were furthermore
made redundant by including the segments bounded by the
middle points of each dyadic segment in order to reduce the
loss of quality on the intersection between successive win-
dows. The windows associated with these segments were
apodized by taking the Tuker cos squared smooth borders,
with an apodization length of 10% of the full segment on
each side. See Appendix D for details and illustrations on
the decomposition.

4.2.2. Performance metrics

The normalized mean squared error (NMSE) was used to mea-
sure the quality of the extracted signal compared to the ground
truth signal injected in the first place and was defined as

NMS E(x̂, x∗) = −20 log
(
∥x̂ − x∗∥2
∥x∗∥2

)
. (34)

The NMSE grows logarithmically as the mean square error of
the estimation decreases, with higher NMSEs corresponding to
a better reconstruction.

A sliding NMSE was used to get a local measure of error on
the inspiral signals in order to block higher S/N regions close to
merger from overpowering lower and earlier inspiral segments. It
was computed on sliding windows of length 2000, with a striding
of 100. In the presented results, the median NMSE over all the
MBHB realizations is plotted, and the area between the first and
third quartiles is filled.

4.3. Numerical results

4.3.1. Coalescence reconstruction

The performance on coalescence was measured by computing
the NMSE on the coalescence signal. Examples of reconstruc-
tion results are featured in Fig. 5. The results presented in Fig. 6
show the evolution of the median NMSE over an S/N ranging
from five to 500 for the different methods tested.

For an S/N lower than ten, all the methods had trouble recon-
structing a faithful signal, with NMSE values close to zero. For

Fig. 6. Evolution of the median NMSE over S/N on signal extracted at
merger.

an S/N larger than ten, the PCA with ten components saturates
at a fixed NMSE, which is limited by the ability to accurately
recover the coalescence signal from ten principal components
only. The use of more components, such as 100, provided a much
better NMSE, especially for S/N greater than 20, but at the cost
of noise overfitting at very low S/N. Wavelets gave very simi-
lar results, with a two to three discrepancy with respect to the
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Fig. 7. Scatter plots of the NMSE as a function of the chirp mass and mass ratio for different methods and S/N values.

Fig. 8. Detection histograms for PCA (l2 norm statistic measured on pure noise in orange and on noisy signal in blue).

Fig. 9. Detection histograms for IAE (l2 norm statistic measured on pure noise in orange and on noisy signal in blue).
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Fig. 10. Detection histograms for wavelets (l2 norm statistic measured on pure noise in orange and on noisy signal in blue).

Fig. 11. ROC curves at different S/N and chirp masses for PCA, IAE, and wavelet detection.

PCA with 100 components. The IAE significantly improved the
reconstruction quality, with an NMSE gain that can reach up
to 10dB, but with a tendency to saturation for S/N larger 400.
Indeed as any with AE, the IAE suffers from model bias, which
becomes negligible when the noise is large enough, but it can be
dominant in the high S/N regime. In contrast, wavelets asymptot-
ically provide a vanishing error when the noise vanishes since the
threshold of the wavelet-based recovery process depends linearly
on the noise level. Similar results can be observed in different
bins of chirp mass. A small difference in performance for the
highest chirp masses can be seen for learning-based methods,

which is due to them being on the edge of the training sample
and therefore not being completely captured by the IAE or PCA.
Training the IAE required about three days on a single A100
40GB GPU. The inference took 1500s to handle 3000 waveforms
of 3000 time samples on the same configuration. Meanwhile, the
PCA took a few minutes to train on the same training data set
using 16GB CPU and fits in a few seconds, and the wavelets
took around 5 min to perform decomposition, thresholding, and
recomposition. This trend is illustrated in Fig. 7, where the per-
formance drops on the high chirp mass part of the parameter
space for all the trained methods.
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4.3.2. Detection

The methods introduced in this article can be used to detect
MBHB events. For that purpose, a straightforward approach
consists of taking a detection decision based on some relevant
statistics with respect to a null or noise-only hypothesis.

For that purpose, the detection process is performed as
follows:
1. Reconstruct the signal by applying one of the models

described in the previous section and compute some rele-
vant statistics. In the present paper, the l2 norm was chosen,
as it computes the overall power of the detected signal.

2. Generate noise-only signals, apply the reconstruction step,
and measure the same statistics. This enables the building of
a histogram of the detection statistics in the noise-only case.

3. For a given probability, the detection threshold is derived
from the noise-only distribution and detection is claimed
based on this threshold. The detection threshold is deter-
mined by taking the inverse of the empirical cumulative
density function and applying it to the detection level chosen.

In the next section, the number of noise realizations has been
fixed to 1000. The threshold is set with respect to a p-value of
0.99, which amounts to a percent-level false positive rate.

To illustrate how the different methods behave, the his-
tograms of the noise-only (orange) and signal plus noise (blue)
Monte Carlo simulations for various chirp mass bins and S/N
values are presented in Fig. 9 (respectively Figs. 8 and 10) for
the IAE (respectively PCA and wavelets). It is important to note
that the detection efficiency of a given method is related to its
ability to distinguish between the noise-only distribution and
the noisy signal one. Generally speaking, the more separated
the two distributions are, the more efficient the methods are for
detection.

The detection efficiency may further depend on the detec-
tion threshold, which could lead to different false or true positive
trade-offs. To that end, it is customary to assess a detection
method based on its receiver operating characteristic (ROC)
curve, which features the evolution of the false positive and true
positive rates when the detection thresholds evolve. The ROC
curves provide a complete picture of the detection efficiency of
a given method. The ROC curves of the different methods are
featured in Fig. 11.

Interestingly, while it provides very poor reconstruction qual-
ity, the PCA is a robust detection method. It has been observed
previously that the PCA mainly provides reasonable reconstruc-
tions at the vicinity of the coalescence time. Since coalescence
time is the MBHB waveform feature that has by far the largest
amplitude, it is expected that detection methods will be more
sensitive to the merger. Moreover, PCA performs well at reject-
ing noise but at the cost of a large reconstruction bias, which
further explains the good performances of the PCA at detecting
MBHBs from their coalescence. The IAE yields detection results
that are close to those of the PCA. In all cases, the wavelet-based
methods perform poorly for detection due to their high sensitiv-
ity to noise. It is caused by the wavelet decomposition’s inability
to efficiently decorrelate a noise signal from an MBHB signal,
highlighting the limits of the sparse hypothesis for the MBHB
signal in the wavelet domain. The relative drop in performance
at high chirp masses for IAE and PCA can again be attributed to
a lack of precision on the edge of the training domain.

4.3.3. Inspiral reconstruction

Time segmentation strategy in the SCARF domain. In
the spiraling regime of the MBHB waveform, we evaluated

Fig. 12. Median NMSE on full hybrid signal for SCARF using different
time segmentation strategies. The length of the last time segment t+L − t−L
and its position are given by the distance of its upper bound to the end of
the simulation NT − t+L . Signals have S/N = 500 and used IAE estimation
of the coalescence.

both the wavelet-based and SCARF-based approaches. SCARF
is defined by two parameters: i) the starting time at which the
hybrid model switches from an IAE-based estimator at the level
of the coalescence and a SCARF-based thresholding procedure
in the spiraling phase, and ii) the length of the starting win-
dow. Once these parameters are fixed, the time segmentation
is a dyadic decomposition of the time span in segments start-
ing before merger at the starting time and with doubling lengths
from one window to the previous.

In this section, the reconstruction quality of the inspirals
of MBHB waveforms is assessed for various S/N and chirp
mass bins when the starting time and first window length of the
SCARF evolve. We note that these parameters should be chosen
to optimize the trade-off between i) S/N, which would favor an
early starting time to include the signal with a larger S/N and
large windows to integrate more signal over time, and ii) spar-
sity in this STFT that would rather favor a late starting time and
small windows to be closer to a quasi-stationary signal.

In order to assess the impact of the starting time and
the window length, the NMSE of the reconstructed MBHB
waveform was measured on five-day long signals. The results
for the IAE, the standard wavelet-based thresholding, and the
block-thresholding wavelet methods are depicted in Fig. 12, for
three different chirp mass bins between 5 · 105, 1.07 · M⊙, and
5 · 106M⊙ at an S/N value of 500.
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Fig. 13. Sliding NMSE for SCARF model and wavelet thresholding with threshold set as the chi2 critical value for p = 0.9 (SCARF in blue,
wavelet re-weighted block thresholding in orange, wavelet thresholding in green).

One can first observe that the optimal strategy depends on
the MBHB chirp mass. For the lowest chirp mass (i.e. lower than
106), the best results are obtained for a window size of about
1500 time samples and a starting time of 1500 samples prior to
the merger. When the chirp mass increases, the optimal choice
tends to favor a later starting time and larger windows. Indeed, at
first order approximation, the evolution of the MBHB waveform
with respect to the chirp mass is a time dilation. It is therefore
expected that the optimal choice for the starting time and win-
dow length should depend monotonically on the chirp mass. In
this analysis, each chirp mass bin is assigned a starting window
length and position based on the best result in Fig. 12.

Inspiral regime reconstruction. In this section, we compare
the hybrid reconstruction method with both the standard wavelet
thresholding and wavelet block-thresholding methods. For that
purpose, the NMSE of the reconstructed MBHB waveform was
measured on sliding windows of length 2000 with a step size of
100 for five-day long signals. The comparisons have been carried
for three different chirp mass bins and for S/N values of 500,
1000, and 2000. Comparison results are showed in Fig. 13.

While both wavelet approaches tend to quickly overfit the
noise instead of the signal, when the signal drops below the noise
level in the inspiral, the SCARF is still able to extract a signal
from a few days of the strongest S/N values. The difference in
performance from one chirp mass to another is due to the com-
putation of S/N on MBHB, which tends to overestimate S/N
for higher chirp mass signals. In practice, the proposed method
shows the ability to extract a signal over hours to days prior to
merger, depending on the local S/N of the MBHB.

5. Conclusion and prospects

In this article, we have investigated different non-parametric
approaches to detect and reconstruct MBHB signals from
gravitational interferometric measurements, including wavelets
and ML. To that end, we first investigated different models
to represent MBHB waveforms on days-long time intervals,
including sparse models based on wavelet representations and
learning-based methods such as the PCA and the IAE. We
assessed the limitations of these methods and proposed a hybrid
method that combines the IAE to accurately represent the coa-
lescence part of MBHB waveforms and an innovative adaptive
STFT that adapts to the MBHB inspiral regime. We demon-
strated how these approaches can be used to both detect MBHB
waveforms, even at low S/N, and recover the MBHB signals.

One advantage of the hybrid method is that it is fast and
can be extended to tackle more general signal processing tasks
such as gap mitigation (i.e., inpainting) and signal unmixing.
Furthermore, once the IAE model is trained and the SCARF
parameters, no extra parameters are need to tackle detection and
signal recovery. However, the current limitation of the proposed
hybrid method is twofold. A first limitation could be the model’s
sensitivity to the parameters of the SCARF transform. Nonethe-
less, we showed that the sensitivity depends on the MBHB chirp
mass, which can be accurately derived from the coalescence. A
second limitation, which is standard in ML-based signal repre-
sentations, is model bias. This bias can be neglected when the
noise level is large, but it can become large at high S/N. To over-
come this issue, one standard approach could be to improve the
IAE model by increasing the explicability or complexity of the
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model (e.g., more layers, more filters per layers, or using more
generic architectures such as transformers), but this is at the cost
of a more cumbersome training and the need for a larger training
set. A second approach could be to hybridize both the IAE model
of the coalescence with a wavelet-based representation, which is
known to provide a vanishing bias when the noise decreases. In
contrast to the non-parametric approach we investigated for GB,
the proposed method builds upon a learning-based method that
necessitates simulated MBHB waveforms at the training stage.

In this work, the method comparisons have been carried out
based on detection and signal recovery performance, not MBHB
parameter estimation. As stressed in Blelly et al. (2022), the pro-
posed hybrid approach is quite general, and it will be used as
a building block for more complex signal recovery tasks from
gravitational interferometric measurements. It can be extended
to tasks that are relevant for LISA, such as gap mitigation and,
more generally, artifact mitigation (e.g., glitches) and the unmix-
ing of gravitational events of similar or different nature. In
addition, the proposed low-dimensional representations, such the
IAE-based one, bears information about the parameters of the
recovered MBHBs, which could be exploited as a first guess
estimation in a Bayesian analysis framework.
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Table B.1. MBHB waveform parameters.

Parameter Value
Chirp Mass Mc ∈ [5 · 105, 5 · 106] M⊙
Mass ratio q ∈ [1, 3]
Initial phase Φ0 ∈ [0, 2π] Rad
Ecliptic Latitude −0.56 Rad
Ecliptic Longitude 0.61 Rad
Polar Angle Of Spin 1 0.91 Rad
Polar Angle Of Spin 2 1.18 Rad
Spin 1 0.97
Spin 2 0.97
Initial Polar Angle 2.58 Rad
Initial Azimuthal Angle 4.09 Rad
Redshift 2.18
Distance 17758.3

Appendix A: Whitening and filtering

Data pre-processing is operated by whitening and bandpass-
ing the signal using the theoretical Power Spectrum Density
of the noise defined in (Babak et al. 2021) as the noise vari-
ance at each frequency of the spectrum. For now, this noise is
assumed gaussian and stationary but may evolve to address non-
stationarity induced by fluctuations in LISA arm lengths and
non-Gaussianity in the stochastic backgrounds.

The signal is also convolved with a Butterworth bandpass
filter to mitigate the high LISA noise observed at low and high
frequencies while gravitational signals remain around the milli-
hertz frequency band. This results in multiplying the signal by
the following gain in the frequency domain:

G( f ) =
1√

PS D( f )
∗

1(
1 +

(
fmin
f

)2n
) (

1 +
(

f
fmax

)2n
) , (A.1)

with fmin set to 2.10−5Hz, fmax set to 5.10−2Hz and the order of
the filter set to n = 4.

The result of this pre-processing is that noise can be consid-
ered white in the frequency range of interest and close to zero
out of it.

Appendix B: Simulated massive black hole binary
generation

The fast generation of MBHB waveforms was performed using
codes from lisabeta with parameters coherent with the LDC2a-
Sangria data challenge.

The varying parameters in simulations were the chirp mass
which was sampled logarithmically over the segment [5 ·
105M⊙, 5 · 106M⊙], the mass ratio which was sampled linearly
over [1, 3] and the initial phase sampled linearly over [0, 2π].

The rest of the parameters were set to the value of the
first MBHB in the LDC Sangria dataset and can be found in
Table B.1. Since the waveforms are then multiplied by a scalar
factor to get some chosen S/N values, the distance and angle
do not give by themselves an accurate estimation of signal
power, which is the controlled variable in the experiments. The
sampling rate of the measurements is fixed to 5s.

Table C.1. IAE CNN filters. The decoder layers match the transposed of
the encoder layers for input,output shape. The full architecture overview
is summarized in Fig C.1

Layer Shape (input, output) Kernel size Stride
encoder 1 2, 4 8 1
encoder 2 4, 6 8 2
encoder lat 1 4, 6 8 2
encoder 3 6, 6 8 1
encoder lat 2 6, 6 8 1
encoder 4 6, 8 8 2
encoder lat 3 6, 8 8 2
encoder 5 8, 8 10 1
encoder lat 4 8, 8 10 1
encoder 6 8, 10 10 2
encoder lat 5 8, 10 10 2
encoder 7 10, 10 10 1
encoder lat 6 10, 10 10 1
encoder 8 10, 12 10 2
encoder lat 7 10, 12 10 2
encoder 9 12, 12 16 1
encoder lat 8 12, 12 16 1
encoder 10 12, 14 16 2
encoder lat 9 12, 14 16 2
encoder 11 14, 14 16 1
encoder lat 10 14, 14 16 1
encoder 12 14, 16 16 2
encoder lat 11 14, 16 16 2

Appendix C: Interpolatory autoencoder
architecture

The IAE model used in this article relies on ten anchor points
picked from the training set to get a log-uniform sample of the
chirp mass. Both encoder and decoder are 12 layer Convolutional
Neural Networks. The filters used in the encoder and decoder
CNN, as well as for the lateral connections between encoder and
decoder are 1D convolution filters presented in Table C.1. This
version of the IAE uses lateral connections to improve perfor-
mance broadly based on an idea developed in (Rasmus et al.
2015). These lateral connections, described in Fig C.1, are com-
posed of a layer in the encoder, an interpolation step and another
layer in the decoder. To keep a coherent low-dimension repre-
sentation, the interpolations in every lateral connection are set
to share the same barycentric weights. When computing the
barycentric weights associated to a waveform, the same weights
are used in every lateral connection. The training loss of Eq 23 is
then modified, summing the distance in each lateral connection
with increasing weights moving away from the direct space.

The training loss used is a MSELoss and the activation func-
tion in the network is the ELU function (alpha=1). The training
was performed on 10000 epochs, with batch size of 32 and
learning rate of 0.001.

Appendix D: SCARF

The SCARF time segmentation is based on a dyadic decom-
position moving backward from coalescence with overlapping
margins of 200 time samples on each sides. The associated win-
dows are apodized using a squared sine to mitigate artefacts on
the boundaries of the decomposition elements. Additionally, the
decomposition is made overcomplete redundant segments cover-
ing the span between the middles of two consecutive windows as
illustrated in Fig. D.1.
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Fig. C.1. Description of the IAE architecture with focus on one lateral connection. The encoder (in red) is above the interpolation operators and
the decoder under (in blue). Each layer is composed of the convolution filters described in Table C.1 and uses an Exponential Linear Unit (ELU) as
the activation function.

Fig. D.1. Windowing strategy with segmentation, overlapping windows and apodization for the windows closest to merger
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Fig. D.2. Example of SCARF decomposition of an MBHB and constrained thresholding associated, as windows get further from merger the peak
drowns into noise but the propagation of information from higher S/N regions to lower ones help detect it in the latter

A107, page 18 of 18


	Low-dimensional signal representations for massive black hole binary signals analysis from LISA data
	1 Introduction
	2 Low-dimensional models for massive black hole binary detection and recovery
	2.1 Sparse signal modeling for massive black hole binaries
	2.1.1 Sparse massive black hole binary representations
	2.1.2 Sparse signal recovery

	2.2 Machine learning for low-dimensional signal models
	2.2.1 Linear unsupervised learning by principal component analysis
	2.2.2 Autoencoder-based models


	3 A hybrid approach for massive black hole binary modeling
	3.1 Modeling the spiraling regime of a massive black hole binary
	3.2 Sparse signal recovery within the SCARF domain

	4 Experimental results on simulated data
	4.1 Data generation
	4.1.1 Massive black hole binary signals
	4.1.2 Noise contamination
	4.1.3 Signal pre-processing

	4.2 Analysis methods
	4.2.1 Implementation details
	4.2.2 Performance metrics

	4.3 Numerical results
	4.3.1 Coalescence reconstruction
	4.3.2 Detection-2pt
	4.3.3 Inspiral reconstruction-2pt


	5 Conclusion and prospects
	References
	Appendix A: Whitening and filtering
	Appendix B: Simulated massive black hole binary generation
	Appendix C: Interpolatory autoencoder architecture
	Appendix D: SCARF


