N

N
N

HAL

open science

Hardware accelerator for FIPS 202 hash functions in
post-quantum ready SoCs

Diamante-Simone Crescenzo, Rafael Carrera Rodriguez, Riccardo Alidori,

Florent Bruguier, Emanuele Valea, Pascal Benoit, Alberto Bosio

» To cite this version:

Diamante-Simone Crescenzo, Rafael Carrera Rodriguez, Riccardo Alidori, Florent Bruguier, Emanuele
Valea, et al.. Hardware accelerator for FIPS 202 hash functions in post-quantum ready SoCs. IOLTS
2024 - IEEE 30th International Symposium on On-Line Testing and Robust System Design, Jul 2024,
Rennes, France. 10.1109/IOLTS60994.2024.10616067 . cea-04689662

HAL 1Id: cea-04689662
https://cea.hal.science/cea-04689662v1

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cea.hal.science/cea-04689662v1
https://hal.archives-ouvertes.fr

Hardware Accelerator for FIPS 202 Hash Functions
in Post-Quantum Ready SoCs

Diamante Simone Crescenzo!, Rafael Carrera Rodriguezm, Riccardo Alidori?,
Florent Bruguier?, Emanuele Valea!, Pascal Benoit?, Alberto Bosio®
1Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
2LIRMM, University of Montpellier, CNRS, Montpellier, France
3Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, Lyon, France

Abstract—In today’s digital landscape, cryptography plays a
vital role in ensuring communication security through encryption
and authentication algorithms. While traditional cryptographic
methods rely on hard mathematical problems for security, the
rise of quantum computing threatens their effectiveness. Post-
Quantum Cryptography (PQC) algorithms, like CRYSTALS-
Kyber, aim to withstand quantum attacks. Recently standard-
ized, CRYSTALS-Kyber is a lattice-based algorithm designed
to resist quantum attacks. However, its implementation faces
computational challenges, particularly with Keccak-based func-
tions, which are crucial for security and upon which the FIPS
202 standard is based. Our paper addresses this technological
challenge by designing a FIPS 202 hardware accelerator to
enhance CRYSTALS-Kyber efficiency and security. We chose to
implement the entire FIPS 202 standard in hardware in order
to widen the applicability of the accelerator to all possible algo-
rithms that rely on such hash functions, taking care to provide
realistic assumptions on system-level integration inside a System-
on-Chip (SoC). We provide results in terms of area, frequency,
and clock cycles for both ASIC and FPGA targets. An area
reduction of up to 22.3% is achieved with respecto to state-of-
the-art solutions. In addition, we integrated the accelerator inside
a 32-bit RISC-V based security-oriented SoC, where we show a
strong performance gain on CRYSTALS-Kyber execution. The
design presented in this paper performs better in all Kyber1024
primitives, with an improvement up to 3.21 x in Kyber-KeyGen.

I. INTRODUCTION

Hash functions play a pivotal role in modern cryptography
applications. They serve as an essential tool for ensuring the
security and the authenticity of data. A Hash Function takes
as input a message and produces a fixed-size string of bytes,
which is typically a unique representation of the input data.
This property makes hash functions invaluable for tasks like
digital signatures, password hashing, and data verification.
The Federal Information Processing Standard Publication 202
(FIPS 202) is a standard developed by the National Institute
of Standards and Technology (NIST), that defines standardized
hash functions belonging to the SHA-3 family. In addition, the
FIPS 202 standard also specifies eXtendable Output Functions
(XOFs), called SHAKE functions, that can be used to produce
pseudo-random sequences of arbitrary length [[1]. All SHA-3
and SHAKE functions, defined in the FIPS 202 standard, are
based on the KECCAK permutation function [2].

Given the frequent utilization of FIPS 202 functions in sev-
eral cryptographic primitives, they represent a computational
bottleneck in software implementations [3]]. For this reason,
it is crucial to accelerate their computation by providing
hardware support. This is essential for enhancing performance
and efficiency, especially in applications like smart cards
and IoT devices. Moreover, in applications where robustness
against side-channel attacks is important, hardware imple-
mentations of cryptographic primitives represent an advantage
with respect to their software counterpart [4], leading to
more secure implementations. The importance of providing
efficient implementations of FIPS 202 functions has been exac-
erbated in recent decades with the emergence of Post-Quantum
Cryptography (PQC). In particular, the CRYSTALS-Kyber
algorithm, that has recently become one of the NIST PQC
standards [5]], requires a big amount of pseudo-randomness
that is generated through FIPS 202 functions [6]]. For this
reason, providing hardware acceleration of FIPS 202 functions
also enables efficient PQC implementations.

A lot of effort has been made in the scientific community
in proposing solutions for the hardware acceleration of the
KEcCCAK function, that is at the core of all FIPS 202 primitives
[3]. However, when SHA-3 and SHAKE accelerators must be
implemented, an effort must be made in order to correctly
adapt the KECCAK interface with the data size of the System
on Chip (SoC) architecture in which the accelerator is inte-
grated. This problem has been addressed by some researchers,
that have proposed different solutions targeting either tightly-
coupled solutions for CPU ISA extension [7], either classical
accelerators for 32-bit SoCs [6], [8], [9]. However, in all the
aforementioned solutions, the authors limit their scope to the
set of FIPS 202 functions that are necessary to the acceleration
of the CRYSTALS-Kyber PQC algorithm. As far as we know,
there are no hardware acceleration solutions for the complete
FIPS 202 standard.

In this paper, we propose a lightweight FIPS 202 hard-
ware accelerator optimized for SoC integration. Differently
from existing solutions, the proposed accelerator provides
support for the whole FIPS 202 standard, still presenting a
smaller silicon area footprint and comparable performances.
Furthermore, we present the integration of the accelerator
inside a 32-bit RISC-V based SoC platform and we executed

the CRYSTALS-Kyber PQC algorithm with all SHA-3 and
SHAKE computations offloaded to the accelerator, achieving
an increase in performances of up to 3.21x in terms of clock
cycles per execution on a full key generation procedure.

The rest of the paper is organized as follows: Section
provides an overview about some background concepts and the
state of the art. Section [[lI|contains a detailed description of the
proposed accelerator, whose implementation results are then
reported in Section[[V] where they are discussed and compared
with other related works. Section [V] contains conclusions and
suggests possible directions for future research in the field.

II. BACKGROUND ON FIPS 202 IMPLEMENTATIONS

In this Section, we provide some background concepts on
SHA-3 and SHAKE functions that are defined by the FIPS
202 standard. Then we give some details on the CRYSTALS-
Kyber PQC algorithm, explaining why FIPS 202 functions are
fundamental for its implementation and, finally, we discuss
state-of-the-art hardware implementation solutions for FIPS
202 functions.

A. FIPS 202 and KECCAK

The FIPS 202 standard defines the specifications for the
implementation of SHA-3 and SHAKE functions. SHA-3
functions are Hash Functions, while SHAKE functions are
eXtendable Output Functions (XOFs). A hash function is
a one-way function that maps an input of any size, called
message, to a unique output of a fixed length of bits. The
SHA-3 family of the FIPS 202 standard consists of four
hash functions, called SHA3-224, SHA3-256, SHA3-384, and
SHA3-512. shows the output size for each SHA-3
function. A XOF is a function that takes as input a message
of arbitrary length and outputs a byte-string of any desired
length. The SHAKE family of the FIPS 202 standard consists
of two XOFs, called SHAKE128 and SHAKE256.

TABLE I
PARAMETERS OF FIPS 202 FUNCTIONS

Function r ¢ | Output Size
SHA3-224 1152 448 224
SHA3-256 1088 512 256
SHA3-384 832 768 384
SHA3-512 576 | 1024 512
SHAKEI28 | 1344 256 unlimited
SHAKE256 | 1088 512 unlimited

SHA-3 and SHAKE functions are built on top of the KEC-
CAK permutation function [2]. KECCAK is a cryptographic
primitive designed to absorb input data of arbitrary length
and squeeze output data of arbitrary length. All SHA-3 and
SHAKE functions are built using the KECCAK function with
different parameters. [Figure 1|shows the structure of KECCAK.
The state register is 1600-bit wide and it is divided in two
sections: rate (r) and capacity (c). The r and ¢ parameters
are defined by the FIPS 202 standard and their values are

shown in [Table I The permutation function (f) is made,
internally, of 24 iterations of the same round function. In

Message

Padding
Mo My

output

r{|o —>| >

absorbing phase i squeezing phase

Fig. 1. Keccak Sponge Construction

the absorbing phase, the KECCAK function takes an input
of arbitrary length and compresses it inside the state register.
Initially, the state register is set to zero. The input message is
padded in order to reach a length that is multiple of . This is
done according to some rules that are specified by the standard,
shown in Then, the message is divided in blocks of
r bits. Each message block is XORed with the rafe section
of the state. After that, the whole state register is processed
by the permutation function. This procedure is repeated until
all message blocks are absorbed. In the squeezing phase, the
output value is extracted from the r bits of the state register.
In the case of SHA-3 functions, r bits are always enough to
contain the whole output message. In the case of SHAKE
functions, the output message could be longer than r, obliging
to execute multiple squeeze operations, each time executing
the permutation function and extracting r bits from the state

register, as shown in [Figure

TABLE 11
FIPS 202 MESSAGE PADDING

FIPS 202 Function
SHA-3
SHAKE

Message Padding Format
m || 006 || 0x00* || 0x80
m || Ox1F || 0x00* || 0x80

B. CRYSTALS-Kyber

CRYSTALS-Kyber is a lattice-based, post-quantum secure
Key Encapsulation Mechanism (KEM) [5]], built upon a public-
key encryption system. The public and secret keys are gen-
erated by a key generation function. The negotiation of the
shared key relies on encapsulation and decapsulation func-
tions. All these functions are based on a set of basic operations
which are mapped to the FIPS 202 standard as shown in table
In software implementations of CRYSTALS-Kyber,
FIPS 202 functions represent a computational bottleneck since
they take between 64% and 81% of the execution time [7]]. For
this reason, having hardware-accelerated FIPS 202 primitives
represent a big speed-up for CRYSTALS-Kyber.

TABLE III
FIPS 202 FUNCTIONS USED IN CRYSTALS-KYBER

Kyber Primitive | FIPS 202 Function
H SHA3-256
G SHA3-512
XOF SHAKE-128
PRF, KDF SHAKE-256

C. Hardware Implementations of FIPS 202

In the scientific literature, the vast majority of the works
limit their focus on the acceleration of the KECCAK permu-
tation function [3]. However, little effort has been made in
defining how the 1600-bit state register can be efficiently in-
terfaced with a real computer architecture, usually 32-bit or 64-
bit architectures. Indeed, implementing full hardware support
for FIPS 202 functions necessitates considering both the de-
serialization and padding of input data, plus the serialization
of output data.

As pointed out in PQC algorithms, and in
particular CRYSTALS-Kyber, present an interesting use case
for SHA-3 and SHAKE function usage. For this reason, all
works related to FIPS 202 accelerators design limit their focus
to the functions employed in CRYSTALS-Kyber.

For instance, the authors of [8] make use of the high level-
synthesis approach to design an accelerator for the KECCAK
permutation function other than the SHA-3 and SHAKE func-
tions used for accelerating CRYSTALS-Kyber. In [9], a SHA-3
and SHAKE accelerator for CRYSTALS-Kyber is proposed,
which also provides padding and output management features.
The authors of [6] propose a SHA-3 and SHAKE accelerator
for CRYSTALS-Kyber, integrated inside a 32-bit SoC. The
target platform is the PULPissimo microcontroller by means
of memory mapping and through an AXI connection.

Differently from these solutions, we propose an accelerator
that implements the whole FIPS 202 standard, not limiting
the scope to the CRYSTALS-Kyber application. Moreover,
we also provide the padding and input/output management
functionalities considering, as a target, the integration inside
a 32-bit SoC. Thanks to the design choices described in
we also obtain a smaller area footprint with respect
to state-of-the-art solutions.

III. PROPOSED FIPS 202 HW IMPLEMENTATION

The proposed hardware accelerator has been designed to
be compatible with 32-bit systems, which is the word size
for both input and output modes. In fact, specific control
signals to handle bus transactions have been included in the
design together with the necessary inputs that suit the memory
mapping interface, both for control and data bits.
shows the top-level architecture of the accelerator.

Given the limited data bus width (i.e., 32 bits) with respect
to the KECCAK state width (i.e., 1600 bits), the loading of
the message words into the accelerator takes a certain amount
of time. This led us towards the direction of including one
single round of the KECCAK permutation function inside the

eyt 2 32 (R
WORD Padding Input Output 32
Unit Reg File Masking _“_’O%.ng
> Unit
1 32

v Output

Selection
1600 Unit
Keccak Core
S J

Fig. 2. Top-level of the FIPS 202 accelerator

1600

INSTR
CONFIG

BUSY HASH
READY

combinational core of the accelerator (i.e., Keccak Core in
[Figure 2). Its architecture operates across the entirety of the
KECCAK state at once and is able to carry out one complete
round per clock cycle. Hence, 24 clock cycles are necessary
to complete the permutation function. The internal architecture
of the Keccak Core module has been taken from the reference
implementation in [2[], to which a wrapper has been added and
some control signals have been modified to provide FIPS 202
functionalities.

In addition, we exploited the 32-bit width of the input
words sent in input to simplify the padding unit. The Input
Management Module is in charge of managing the incoming
data and it contains the Padding Unit and the Input Register
File. The output generation has been simplified according
to the same principle, i.e., building a fully combinational
Output Management Unit without replicating the 1600-bit state
register of the Keccak Core on the output interface. Moreover,
the Output Management Unit supports the scenario in which
the size of the requested output message is not multiple of a
32-bit word. More details on the Input/Output Management
Units will follow in the next subsections.

The Control Unit receives instructions through the IN-
STR CONFIG signal and provides control features over the
datapath. Sending specific op-codes to the control unit, all
FIPS 202 functions can be executed with the desired length
for both input and output messages. With the purpose of
saving area, internal pipelining has not been applied, thus
the accelerator can alternatively handle receiving data blocks,
permuting them, or outputting the permuted blocks.

A. Input Management Module

To improve the effectiveness of having a dedicated hardware
accelerator, this design also provides functionalities to add
the necessary padding to the input data. In this way, from
a high-level point of view, the user only needs to feed the
input data to be processed without caring about the FIPS
202 standard’s implementation details. Byte-wise padding is
provided to give flexibility in input data widths. [Table II
provides a schematic description of how padding is applied
relatively to the required function (on the left). In short,

DataIn
{ 32
Padding Padding
8 Byte Byte
v ¢ \ 4 ¢

A
Configword %
[s B

32

DatalOut

Fig. 3. Padding Unit Schematic

the message is followed by a padding delimiter, a series of
zero bytes, to conclude with the padding end. As shown in
the Padding Unit is composed of four byte selection
multiplexers whose output bytes, once concatenated, form the
output 32-bit word DataOut. Each multiplexer, based on the
received selection signal, can let through the original DatalIn
byte, the filler byte (0x00), or the padding delimiter for SHA-
3 (0x06) or SHAKE (0x1F). The last multiplexer is dedicated
to the selection of the most significant byte of DataOut and
needs three additional options, namely the normal padding end
(0x80), or the complete one-byte padding for SHA-3 (0x86)
or SHAKE (0x9F). Such options are necessary to properly
configure the last word of the padding, i.e., the last word of
the KECCAK rate. The DataOut word is then assembled
based on the value of the ConfigWord signal, which is
composed of the concatenation of all selection signal of all
multiplexers (from least to most significant byte) and that is
directly generated by the control unit.

An Input Register File is placed right after the Padding
Unit. Since the KECCAK rate for FIPS 202 standard can be
as large as 1344-bit (see [Table 1)), and the target architecture
allows only 32-bit transactions, the registers are needed to
receive the input messages serially (as a sequence of 32-bit
words) and output them on the entire KECCAK state 1600-bit
width. In other words, they are needed as data parallelizers
to satisfy the KECCAK core requirements. Due to the serial
words input to parallel state output behavior, some design
simplifications have been performed. The input register only
needs to be addressed to write on it, no word-wise read is
needed as the KECCAK core takes the output as a whole.
As further optimization, the last eight words of the register
have been hardwired to the all-zero pattern, since they always
belong to the capacity section of the KECCAK state and this
allows to reduce the total number of flip-flops needed in
the design, reducing area occupation as a result. Finally, the
internal register file is hidden to the user, which will only have
access to a general data register that will be connected to the
padding unit, and the control unit performs the addressing for
the correct input data words positioning.

B. Output Management Module

At the end of the KECCAK rounds, the result of the function
required to the accelerator (either SHA-3 or SHAKE) is

directly available in the state, i.e., in the registers placed
inside the KECCAK core. In order to be able to extract
the data of interest as 32-bit words to be sent later on the
bus, the most straightforward solution would be to copy the
KECCAK state into a hypothetical output register file so that
one can exploit its intrinsic addressability property. However,
this solution is redundant because the state would be merely
duplicated without applying any modification to the stored
data. Moreover, it would cause an additional clock cycle delay.
Hence, the Output Selection Unit (shown in[Figure 4) abstracts
the internal KECCAK state registers and makes them accessible
by the control unit as if it was a classical register file. It
is placed right after the KECCAK core (see [Figure 2), and
receives as input the state and proper configuration signals.
To achieve this functionality a multiplexing structure has
been designed which lets through one word at a time, with
the state addressed LSB-first, and the multiplexer’s control
signals are driven by the address provided by the control unit.
The output word is exposed on the DataOut signal only if
Out_Sel_en is asserted.

Keccak State

i1 600

OutSelUnit

RF_Addr

Oout_Sel_en —}\Outsaumt /
32

\4

Fig. 4. Output Selection Unit Schematic

The Output Masking Unit performs the task of properly
constructing the output word by either letting the data word
coming from the Output Selection Unit through, or extracting
a lower number of bytes from it. This allows to request byte-
aligned SHAKE outputs without the restriction of being word-
aligned. When this is the case, MSBs of the last output word
are set to zero. In other words, our accelerator can provide
an output of any number of bytes whenever the configured
cryptographic function allows it (as is the case in SHAKE
functions). By observing its structure in [Figure 5| it can
easily be noticed that it is a stripped-down version of the
Padding Unit. Here the multiplexers are all equal and allow to
select either the DatalIn byte or set it to zero. The output
word DataOut is composed by the concatenation of the
four selected bytes. As for the case of the padding unit,
the multiplexers’ selection signals are concatenated in the
OutConfWord input signal that is driven by the control unit.

DataIn

| 32

8
8 0x00 0x00
v v
outConfword .
8 : 8
32
DataOut

Fig. 5. Output Masking Unit Schematic

IV. RESULTS

In the following, we report the implementation results of the
proposed FIPS 202 accelerator. At first, we provide architec-
tural performance results of the proposed architecture on all
SHA-3 and SHAKE functions. After that, we show the area
footprint and the maximum achievable operating frequency on
both ASIC and FPGA targets. Finally, we provide integration
results of the proposed accelerator inside a RISC-V based 32-
bit SoC, where the proposed module is used for accelerating
the execution the CRYSTALS-Kyber PQC algorithm.

The accelerator has been modeled at RTL level using the
Verilog hardware description language. Logic simulations have
been performed using QuestaSim 2021.4.2. Logic synthesis
for ASIC target has been carried out using Synopsis Design
Compiler 2019.12-SP5-4 exploiting a standard cell library on
a 22nm FDSOI technology from Global Foundries. FPGA
synthesis have been performed with the Vivado v2021.1.1
suite.

A. Architectural Performances

The number of clock cycles needed for all FIPS 202, can be
synthetically described by means of the following
outbits

m m mod r
(1)
32 32 32

L4 [2 (g5 +27) + = — + 29+

In this equation, m represents the total message size in bits, r
denotes the rate of the required function (SHA-3 or SHAKE
in any of their versions), and outbits refers to the length of
the output in bits. The first two terms of account
for the full message blocks of a multi-block message, while
the third term considers the bits of a message smaller than
the rate or the remaining bits of a multi-block message. The
last term accounts for the latency in retrieving the output of
the requested function based on its length. Each bit length
parameter is divided by 32, which corresponds to the word
width of the target architecture. Additionally, the equation
incudes two constant terms, 27 and 29, which account for the
clock cycles necessary to complete the KECCAK permutation
function, along with additional clock cycles necessary to
generate padding and receive successive instructions. Furter-
more, the equation incorporates an additional clock cycle on
the left to provide the IP with instruction and configuration
parameters.

B. Synthesis Results

For what concerns ASIC implementation, the presented
FIPS 202 accelerator can reach an operational frequency of
875 MHz (i.e., a critical path of 1.14 ns) with an area occupa-
tion of 15,963 um?. The details about the area occupation
of each component of the accelerator can be observed in
Here, also the Gates Equivalent (GEs) figure is
reported, considering the ratio between the area of the acceler-
ator and the smallest NAND gate provided by the technology
library (i.e., 0.19968 um?). It is straightforward to appreciate
how the Output Selection Unit is sensibly smaller than the
Input Register File. From this, we deduce that this solution is
roughly 8 times more area-efficient with respect to the most
direct approach involving a dedicated output register file. In
addition, it is worth pointing out the very small occupation of
the Padding Unit and the Output Masking Unit, given their
optimized design focused on serial 32-bit word data, which
occupy respectively only 0.4% and 0.1% of the total area.

TABLE IV
FIPS 202 ACCELERATOR AREA (22 NM TECHNOLOGY)

Unit Name Area Area Area

(um?) | (kGE) | Percentage
Top Level 15,962.69 79.94 100.0
Input Register File 3,640.97 18.23 22.8
Keccak Core 11,502.10 57.60 72.1
Output Masking Unit 16.64 0.08 0.1
Output Selection Unit 451.94 2.26 2.8
Padding Unit 57.11 0.29 04
Control Unit 292.80 1.47 1.8

Due to the lack of ASIC implementations targeting the same
technology in the state-of-the-art, we decided to deploy our
design on the Xilinx Virtex-7 FPGA platform. shows
the result of of the FPGA synthesis of the proposed FIPS 202
accelerator. A comparison with related works is also provided.
The proposed implementation is smaller with respect to [8]] and
[9] both in terms of LUTs and FFs. Globally, the proposed
architectural optimizations lead to a 22.3% reduction in slices
occupation with respect to [9]. We also reported results on
the execution time of a SHA3-256 function with two different
input message lengths. It worth pointing out that the solution
from [9]] is based on a 64-bit interface, capable of transferring
more input/output data in each clock cycle.

Moreover, it is necessary to consider that, as shown in
the proposed accelerator covers a broader spectrum
of functionalities with respect to both [8]], which focuses on
SHA-3 acceleration only, and [9], which limit their scope to
CRYSTALS-Kyber related functions.

C. CRYSTALS-Kyber Acceleration Results

We integrated our accelerator inside a 32-bit SoC platform
that we designed. As it can be seen in this includes
a RISC-V processor, 256kB instruction and data memories, an
OBI bus, configurations registers, and a timer. The proposed
FIPS 202 accelerator represents a 2.0% area overhead with
respect to the overall surface of such a platform.

TABLE V TABLE VII
FIPS 202 ACCELERATOR FPGA RESULTS CRYSTALS-KYBER WITH FIPS 202 ACCELERATOR
181 [9]1 This Work Function Full SW [10] SW + HW Speed-up
FPGA Platform Artix-7 Artix-7 Virtex-7 KeyGen 1,021,378 318,249 3.21
Architecture - 64-bit 32-bit Kyber512 Encaps 1,123,585 444,621 2.53
LUTs 13,281 9,651 7,795 Decaps 1,328,326 639,279 2.08
FFs 14,498 8,697 4,936 KeyGen 1,674,092 551,230 3.04
Area [Slices] 5,134 3,413 2,653 Kyber768 Encaps 1,855,996 705,999 2.63
Frequency [MHz] 207 250 210 Decaps 2,127,134 962,907 2.21
SHA3-256, 256 bit message KeyGen 2,638,658 836,199 3.16
Latency [ps] - 0.16 0.21 Kyber1024 Encaps 2,850,912 102,1317 2.79
Area-Time Product (Slices X ps) - 546 557 Decaps 3,192,647 1,342,597 2.38
SHA3-256, 9472-bit message
Latency [ps] 13.16 1.94 2.53 TABLE VI
Area-Time Product (Sli 67550 6689 6712
rea-Time Product (Stices X ps) CRYSTALS-KYBER SPEED-UP (KEYGEN/ENCAPS/DECAPS)
TABLE VI Kyber512 Kyber768 Kyber1024
COMPARISON OF SUPPORTED FIPS 202 FUNCTIONS |_L6] 2.79/2.60/1.97 2.67/2.66/2.08 2.76/2.71/2.20
This Work 3.21/2.53/2.08 3.04/2.63/2.21 3.16/2.79/2.38
Reference 8] 91 This Work
SHA3-224 yes no yes
SHA3-256 yes Kyber only yes integration inside a 32-bit SoC architecture. This allowed to
SHA3-384 yes 1o yes perform optimizations that lead to a very small area footprint,
SHA3-512 yes Kyber only yes . .
SHAKEIZS no Kyber only ves still maintaining comparable state-of-the-art performances. To
SHAKE256 no Kyber only ves show its compf"ttl.l)llgy with the acceleration of PQC algorithms
we integrated it inside a RISC-V based SoC and we showed a
speed-up factor on the execution of CRYSTALS-Kyber higher
than state-of-the-art-solutions. Our future work will aim to
RI5CY Peripherals — make this accelerator resistant to side-channel attacks, so that

R

| : OBI intefconnect |
s] 8]
Instruction Data

Memory Memory

FIPS 202

Accelerator

Fig. 6. FIPS 202 IP System Integration

We ran a SW implementation of CRYSTALS-KYBER on
the platform, specifically the PQClean version [[10]. After that,
we offloaded all the FIPS 202 primitives in CRYSTALS-
Kyber to the proposed FIPS 202 accelerator. [Iable VII| shows
the obtained results. The speed-up factor represents the ratio
between the number of clock cycles required to execute the
reference CRYSTALS-Kyber software implementation and the
equivalent algorithm executed with the proposed FIPS 202
accelerator. We compare our work to [6] that implements the
same kind of accelerator (similar to [9]]) and integrates it inside
the PULPissimo 32-bit SoC platform. shows the
speed-up factors of the two solutions, showing an advantage
in the solution proposed by this paper.

V. CONCLUSION

In this paper, we present a FIPS 202 compliant hardware
accelerator. Its purpose is to accelerate SHA-3 and SHAKE
functions, providing a hardware solution optimized for the

its application can extend to security-oriented systems.

ACKNOWLEDGMENT

This work was supported by the French National Research
Agency (ANR) via the CARNOT LIST AxPQC funding.

REFERENCES

[1] M. J. Dworkin, “Sha-3 standard: Permutation-based hash and
extendable-output functions,” July 2015.

[2] G. B.J. D. M. P. G. V. Assche, “The keccak reference,” 1 2011.

[3] A. Dolmeta, M. Martina, and G. Masera, “Comparative study of keccak
sha-3 implementations,” Cryptogr., vol. 7, p. 60, 2023.

[4] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing
the secrets of smart cards. Springer, 2007.

[5] NIST, “Module-lattice-based key-encapsulation mechanism standard,”
Aug. 2023.

[6] A. Dolmeta, M. Mirigaldi, M. Martina, and G. Masera, “Implementation
and integration of keccak accelerator on risc-v for crystals-kyber,”
Proceedings of the 20th ACM International Conference on Computing
Frontiers, 2023.

[7]1 T. Fritzmann, G. Sigl, and J. Sepiilveda, “Risq-v: Tightly coupled risc-
v accelerators for post-quantum cryptography,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, p. 239-280, Aug.
2020.

[8] D. Soni and R. Karri, “Efficient hardware implementation of pqc
primitives and pqc algorithms using high-level synthesis,” 2021 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp. 296-301,
2021.

[9] A. Dolmeta, M. Martina, and G. Masera, “Hardware architecture for
crystals-kyber post-quantum cryptographic sha-3 primitives,” 2023 18th
Conference on Ph.D Research in Microelectronics and Electronics
(PRIME), pp. 209-212, 2023.

[10] M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers, “Im-
proving software quality in cryptography standardization projects,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2022 -
Workshops, Genoa, Italy, June 6-10, 2022, (Los Alamitos, CA, USA),
pp- 19-30, IEEE Computer Society, 2022.

	Introduction
	Background on FIPS 202 Implementations
	FIPS 202 and Keccak
	CRYSTALS-Kyber
	Hardware Implementations of FIPS 202

	Proposed FIPS 202 HW Implementation
	Input Management Module
	Output Management Module

	Results
	Architectural Performances
	Synthesis Results
	CRYSTALS-Kyber Acceleration Results

	Conclusion
	References

