
Efficient Binary Segmentation Through Dense
Neural Networks in a Truncated Frequency Domain

Nils Defauw
Univ. Grenoble Alpes, CEA, List

F-38000 Grenoble, France
nils.defauw_pro@posteo.net

Marielle Malfante
Univ. Grenoble Alpes, CEA, List

F-38000 Grenoble, France
marielle.malfante@cea.fr

Olivier Antoni
Univ. Grenoble Alpes, CEA, List

F-38000 Grenoble, France
olivier.antoni@cea.fr

Tiana Rakotovao
Univ. Grenoble Alpes, CEA, List

F-38000 Grenoble, France
tiana.rakotovao@cea.fr

Suzanne Lesecq
Univ. Grenoble Alpes, CEA, Leti

F-38000 Grenoble, France
suzanne.lesecq@cea.fr

Abstract—This article presents a method for binary segmen-
tation of any type of tensor given that a dataset of such tensors
with ground truth segmentations is available. The proposed
method compresses input tensors through the use of the
Discrete Cosine Transform (DCT) followed by a truncation of
the resulting spectrums. After the compression step, a shallow
dense neural network performs the segmentation entirely in
the frequency domain. The method is evaluated on a common
robotics environment model known as an occupancy grid
map. Results exhibit a correct segmentation for an especially
small computational time of 2.16 ms for the largest neural
network. Moreover, the computational requirements are freely
configurable by the choice of the compression factor making
such a method interesting for highly constrained hardware
platforms found in embedded setups.

Index Terms—segmentation, compression, frequency, DCT,
neural networks

I. Introduction
Segmentation is an important perception task for

robotics applications allowing the labelling of data points
into classes corresponding to the objects present in the
scene. Segmentation can be performed on a wide range of
data such as images (where data points are pixels) or point
clouds (where data points are individual points contained
in the point cloud).

Robots feature two major constraints applying to seg-
mentation algorithms: real-time execution and execution
within the limited computational power of embedded
hardware. Hence, perception algorithms used such as
segmentation algorithms must achieve a balance between
the quality of the results produced and the computational
resources needed for their execution. Most current state-
of-the-art segmentation algorithms rely on deep CNNs [1]
(Convolutional Neural Networks) requiring the use of par-
allel computing architectures to be computed in real-time
(e.g. Graphical Processing Units, Artificial Intelligence
accelerators or specialized circuitry mimicking the neural
network architecture).

This article presents an alternative approach for binary
segmentation targeting low-power embedded processing

units without special circuitry except for a DSP (Digital
Signal Processor). The method is composed of two steps:

1) A configurable reduction of the dimension of the
input through the truncation of its spectrum ob-
tained by application of the DCT (Discrete Cosine
Transform). The obtained truncated spectrum is a
lossy compressed form of the original input.

2) A prediction of the truncated spectrum of a segmen-
tation of the input through the use of a dense neural
network composed of two or three layers only. The
predicted spectrum is afterwards decompressed into
the original domain of the input and thresholded
into positive and negative classes interpreted as a
segmentation of the input.

The choice of the dimension of the truncated spectrum
computed from the input heavily influences the size of
the subsequent dense neural network which leads to a fully
configurable computational cost of the method that could
be tailored specifically for individual embedded processing
units.

Although the proposed method could be applied to any
tensor-shaped input, it is evaluated on an environment
model commonly used for robotics applications known as
an occupancy grid map [2]. An occupancy grid map is
a bird’s eye view matrix representing the environment
surrounding a robot. Each cell of an occupancy grid
map represents a portion of the environment that can be
occupied by an obstacle or not. To each cell is affected
a probability ranging from 0 to 1 that estimates its
occupancy state. Occupancy grid maps are commonly used
for their ability to fuse different sensor measurements and
for their low computational cost [3].

Both the quality of the predicted segmentations and
the computational costs are evaluated. Used compression
ratios ranging from 1/1024 to 1/32 in the method provide
results ranging from 0.272 AP (Average Precision score
on each component of the tensor) metric to 0.574 AP



with inference times ranging from 0.76ms to 2.16ms on
CPU (Central Processing Unit) per occupancy grid map
and neural network sizes ranging from 8,320 to 12,589,056
trainable weights. Moreover, these results are to our
knowledge the first to present a segmentation method
based on deep learning in a compressed frequency domain.

II. Background
A. Segmentation Neural Networks

Most recent segmentation algorithms rely on CNNs
using as input a tensor of data and producing as output a
similarly-shaped tensor containing the predicted segmen-
tation. Segmentation networks exist for images (i.e. input
tensor is the image [4], [5]), point clouds (i.e. input tensor
is a voxelized form of the point cloud [6] or a spherical
projection of it [7]).

Previous works propose to segment occupancy grid
maps by using an image segmentation network on an RGB
image which is then fused with an occupancy grid map
with the help of a fusion network [8].

B. Deep Learning In The Frequency Domain
The frequency domain is mainly known for its use for

lossy compression of signals such as images. In particular,
the JPEG [9] (Joint Photographic Experts Group) for-
mat compresses images through the computation of the
spectrum of the image with the DCT transform and the
quantization of the obtained coefficients.

Transformations to frequency domain are also used with
deep learning for some tasks:

• References [10], [11] propose to train CNNs on DFT-
obtained (Discrete Fourier Transform) spectrums of
bridge satellite images to detect cracks in the concrete
;

• Reference [12] propose multimodal neural networks
using above else image spectrums to perform image
translation ;

• Reference [13] propose multimodal neural networks
to detect software image manipulations.

To the best of our knowledge, all neural networks using
some form of frequency domain input do not predict
frequency domain output. At the opposite, the method
presented in this article is entirely performed in the
frequency domain, from the input of the neural network to
its output. We postulate that this distinctive characteristic
is key to the especially low computation times observed.

III. Efficient Binary Segmentation Through Dense
Neural Networks in a Truncated Frequency Domain
In the following, the input on which segmentation

should be performed is a tensor indexed by d indices:
(xi1,··· ,id)1≤i1≤n1,··· ,1≤id≤nd . As a result, the tensor con-
sidered has n1 ∗ · · · ∗ nd elements. The method assumes
that a dataset of input tensors with associated ground
truth segmentations is available. This dataset is further
divided into training, validation and testing splits.

A. Compression In The Frequency Domain Through
Truncation Of Spectrums

To lower the computational costs compared to regular
conventional CNNs, we propose to reduce input dimension
through a compression inspired by compression formats
such as JPEG. The first step is the computation of the
spectrum of the input through the use of the DCT (Dicrete
Cosine Transform). The obtained spectrum has the same
dimension as the input tensor.

To reduce the initial dimension, the second step consists
in selecting a subset of coefficients among all the coeffi-
cients of the spectrum. This action is performed through
a truncation of the spectrum according to a mask.

In order to keep the most informative frequencies, we
propose a method to create a truncation mask tailored
specifically for the type of input tensor at hand. The
truncation mask is created through the following steps:

1) Each input tensor (xi1,··· ,id)i1,··· ,id of the training
split of the dataset is transformed into its spectrum
(yi1,··· ,id)i1,··· ,id through application of the DCT.

2) Each spectrum is then normalized to obtain a new
tensor (ŷi1,··· ,id)i1,··· ,id such that:

ŷk1,··· ,kd =
|yk1,··· ,kd |∑n1

i1=1 · · ·
∑nd

id=1 |yi1,··· ,id |

This operation ensures that each element of the new
tensor is in the range [0, 1] and that the sum of all
its elements is equal to 1.

3) All of these normalized spectrums are then averaged
into a new tensor (ỹi1,··· ,id)i1,··· ,id .

4) Finally, the truncating mask retaining c frequencies
is defined as the tensor M c with c elements equal
to 1 and all other elements equal to 0 for which
the indices of the elements equal to 1 match the
indices of the c largest values in the averaged tensor
(ỹi1,··· ,id)i1,··· ,id .

Finally, compressing an input tensor is done by masking
the spectrum of the input tensor by using the truncating
mask. This method allows keeping only c coefficients which
can then be flattened into a vector of size c.

Decompression with some loss is done by projecting back
the flattened vector into a d dimensional tensor by using
the same mask M c used for compression. The spectrum
tensor is then used to reconstruct an input tensor with
the inverse DCT.

B. Compressed Form Prediction Of Segmentation
In this subsection, we present a procedure allowing to

segment an input tensor using these compression/decom-
pression methods.

We propose to use a dense neural network to segment
the input tensor. The procedure starts from the com-
pression of the input tensor into a vector of spectral
coefficients of a chosen dimension c as explained in the
previous subsection. A dense neural network uses this



Fig. 1. A depiction of the entire binary segmentation process during the training and the inference phases.

compressed vector to predict a new vector of the same
dimension c. This vector is then decompressed into a
tensor of the same shape as the input tensor which can be
later thresholded to obtain positive and negative classes
expected to correspond to a binary segmentation of the
input tensor.

The neural network is feedforward and is composed of
two or three dense layers. The choice of the number of
layers is detailed in the next section. All layers except the
last one have a ReLU (Rectified Linear Unit) activation
function. The last layer has no activation function (also
designed as a linear activation function). All layers have c
inputs and c outputs which leads to c ∗ (c + 1) weights
per layer. As a result, the choice of the dimension of
compression c has a major impact on the size of the neural
network expressed in number of trainable weights.

In order to train the neural network to produce the
expected output, the training split of the dataset is used.
Each example of this dataset is a tuple composed of an
input tensor and the ground truth binary segmentation
associated. Using the compression procedure, each of these
examples is transformed into the compressed form of the
input tensor associated with the compressed form of the
ground truth binary segmentation. These compressed ex-
amples are used as the input and the ground truth output

of the neural network. The loss used to compare predicted
and ground truth vectors is the Mean Squared Error and
the optimizer algorithm used to update the neural network
weights accordingly is Adam [14]. Finally, neural networks
are trained with an early stopping procedure for which the
loss is computed on the validation split after each training
epoch and the training is stopped once the validation loss
starts to raise.

IV. Experimental Results
The previous section has presented the generic proce-

dure for arbitrary shaped tensors. This procedure has been
evaluated on specific input tensors known as occupancy
grid maps. The task evaluated is the segmentation of
vehicles appearing on occupancy grid maps.

The occupancy grid maps dataset used in the present
work has been created from the Waymo Open [15] au-
tomotive dataset containing 20 seconds long sequences of
driving with 10Hz measurements from five LiDARs. These
LiDAR measurements are transformed into occupancy
grid maps composed of 256 × 256 cells where each cell
represents a square of 10 cm × 10 cm within the environ-
ment. Each cell contains an occupancy probability ranging
from 0 to 1. The Waymo Open dataset is transformed into
198,068 occupancy grid maps associated with bounding



boxes for vehicles which will be used to create ground truth
segmentations. 80% of the dataset composes the training
split whereas the validation and testing splits represent
each 10% of the dataset. Such an occupancy grid map
can be seen in the top-left corner of Fig. 1.

Truncation masks are created from the training set.
A visual depiction of these masks is visible in Fig. 2.
Remarkably, these masks keep higher frequencies on the
horizontal scale than on the vertical scale. This behavior is
believed to be caused by particularities in the occupancy
grid maps used in which most edges correspond to vehicles
parallel to the ego-vehicle and are thus vertical.

Fig. 2. Truncation masks obtained for occupancy grid maps.

Compared to fixed masks such as square masks keeping
c elements defined as ai1,i2 = 1 ↔ i1 ∧ i2 ≤

√
c,

the proposed tailored truncation masks exhibit better
reconstruction with the inverse DCT when evaluated with
MSE (Mean Squared Error). Table I shows this advantage
for occupancy grid maps.

TABLE I
Reconstruction loss as the MSE between reconstructed occupancy

grid maps and original ones with proposed masks compared to
square masks.

Masks c=64 c=256 c=1024 c=4096 c=16384
Square 0.0233 0.0182 0.0142 0.0101 0.0054

Proposed 0.0217 0.0175 0.0136 0.0096 0.0051

Regarding the segmentation itself performed in the
frequency domain by the dense neural network, Fig. 3
presents results obtained on an occupancy grid map for
different choices of the dimension of compression c. Notice
how raising the dimension of compression c improves the
result as the information provided to the neural network
about the original occupancy grid map is more complete
(second column of Fig. 3). The number of layers used in
the neural networks is chosen in this figure to be optimal
for each dimension chosen c.

Quantitatively speaking, Table II shows metrics repre-
senting the quality of segmentations with the computa-
tional costs of the entire process expressed as inference
times and number of weights of the neural network.

Metrics show especially efficient methods with an in-
ference time (which includes the compression and decom-
pression steps) less than one millisecond for a dimension
of compression c less than or equal to 1024. In terms of
quality of the predicted segmentations, better results are
achieved with an increase of the dimension c at the expense
of the inference times and number of trainable weights.

TABLE II
Average Precision scores, computational times per occupancy grid

map and number of trainable weights for the different neural
networks trained with different dimensions c.

Parameters Quality Computational costs
c # layers AP Time # weights

64 2 0.272 0.76ms 8,320
64 3 0.280 0.77ms 12,480
128 2 0.337 0.84ms 33,024
128 3 0.405 0.91ms 49,536
256 2 0.456 0.83ms 131,584
256 3 0.484 0.88ms 197,376
512 2 0.531 0.85ms 525,312
512 3 0.530 0.92ms 787,968
1024 2 0.561 0.90ms 2,099,200
1024 3 0.536 1.04ms 3,148,800
2048 2 0.574 1.62ms 8,392,704
2048 3 0.527 2.16ms 12,589,056

The computed Average Precision scores range from 0.272
for a dimension c = 64 and a two-layer network to 0.574
for a dimension c = 2048 and a two-layer network.

V. Prospects and Conclusion

The present article proposes a new method for seg-
mentation which is performed by a shallow dense neural
network operating entirely in a truncated (compressed)
frequency domain. This method has been evaluated on
the task of binary classification of vehicles on occupancy
grid maps. Results exhibit the ability of the method
to segment vehicles with the quality of segmentations
as well as the computational costs increasing with the
dimensionality of the compressed form c. Still, small
dimension of compression such as c = 512 exhibits good
segmentations for an especially small inference time less
than 1ms.

We believe that this method paves the way to the use
of deep learning on compressed data for embedded setups.
This claim is supported by our inability to find other deep
learning methods outputting in a compressed frequency
domain in the scientific literature. Moreover, although
evaluations have only been made with occupancy grid
maps, the proposed method could be used with any tensor
form input and should be evaluated on other types of data.
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