
HAL Id: cea-04688217
https://cea.hal.science/cea-04688217v2

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CaBRNet, an open-source library for developing and
evaluating Case-Based Reasoning Models

Romain Xu-Darme, Aymeric Varasse, Alban Grastien, Julien Girard, Zakaria
Chihani

To cite this version:
Romain Xu-Darme, Aymeric Varasse, Alban Grastien, Julien Girard, Zakaria Chihani. CaBRNet,
an open-source library for developing and evaluating Case-Based Reasoning Models. xAI 2024 - The
2nd World Conference on eXplainable Artificial Intelligence, Jul 2024, La valette, Malta. pp.TBD.
�cea-04688217v2�

https://cea.hal.science/cea-04688217v2
https://hal.archives-ouvertes.fr

CaBRNet, An Open-Source Library For
Developing And Evaluating Case-Based

Reasoning Models
Romain Xu-Darme, Aymeric Varasse, Alban Grastien,

Julien Girard-Satabin, Zakaria Chihani

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
romain.xu-darme(at)cea.fr

May 15, 2024

Abstract
In the field of explainable AI, a vibrant effort is dedicated to the de-

sign of self-explainable models, as a more principled alternative to post-
hoc methods that attempt to explain the decisions after a model opaquely
makes them. However, this productive line of research suffers from com-
mon downsides: lack of reproducibility, unfeasible comparison, diverging
standards. In this paper, we propose CaBRNet, an open-source, modular,
backward-compatible framework for Case-Based Reasoning Networks:
https://github.com/aiser-team/cabrnet.

1 Introduction
As a reflection of the social and ethical concerns related to the increasing use of
AI-based systems in modern society, the field of explainable AI (XAI) has gained
tremendous momentum in recent years. XAI mainly consists of two complemen-
tary avenues of research that aim at shedding some light into the inner-workings
of complex ML models. On the one hand, post-hoc explanation methods apply
to existing models that have often been trained with the sole purpose of accom-
plishing a given task as efficiently as possible (e.g., accuracy in a classification
task). On the other hand, self-explainable models are designed and trained to
produce their own explanations along with their decision. The appeal of self-
explainable models resides in the fact that rather than using an approximation
(i.e., a post-hoc explanation method) to understand a complex model, it is bet-
ter to directly enforce a simpler (and more understandable) decision-making
process during the design and training of the ML model, provided that such a
model would exhibit an acceptable level of performance.

1

https://github.com/aiser-team/cabrnet

In the case of image classification, works such as ProtoPNet [2] and sub-
sequent improvements (ProtoTree [8], ProtoPool [9], ProtoPShare [10], Tes-
Net [15], PIP-Net [7]) have shown that self-explainable models can display ac-
curacy results on par with more opaque state-of-the-art architectures. Such
models are based on the principle of case-based reasoning (CBR), in which
new instances of a problem (the classification task) are solved using compar-
isons with an existing body of knowledge that takes the form of a database of
prototypical representations of class instances. In other words, the classifica-
tion of an object is explained by the fact that it looks like [2] another object
from the training set for which the class is known. CBR classifiers undeniably
represent a stepping stone towards more understandable models. Yet, several
recent works [6, 4, 3, 17, 11] have questioned the interpretability of such mod-
els, proposing several evaluation metrics to go beyond the mere accuracy of the
model and to estimate the quality of the explanations generated. In practice
however, a systematic comparison between different proposals for CBR models
using these different metrics can be difficult to carry out in the absence of a
unified framework that could gather the resources provided by their respective
authors (e.g., source codes made available on GitHub).

In this context, we propose CaBRNet (Case-Based Reasoning Networks),
an open-source PyTorch library that proposes a generic approach to CBR mod-
els. CaBRNet focuses on modularity, backward compatibility, and reproducibil-
ity, allowing us to easily implement existing works from the state of the art,
propose new and innovative architectures, and compare them within a unified
framework using multiple dedicated evaluation metrics.

2 CaBRNet: One framework to rule them all...
In a field of research as wide as XAI, where the proliferation of tools and meth-
ods is increasing, seeking a common framework is a natural temptation that
often leads to yet another tool that evolves besides the rest. To minimize this
risk, CaBRNet is designed with three main objectives, essential for a lasting ac-
ceptance: supporting past state-of-the-art methods through backward compati-
bility, facilitating present developments by striving for modularity, and ensuring
their reusability in future works through reproducibility.

2.1 Modularity
While each model has its own specific properties (e.g., decision tree in ProtoTree,
scoring sheet in PIP-Net, linear layer in ProtoPNet), CBR image classifiers from
the state of the art [2, 8, 9, 10, 15, 7] share a common architecture, displayed
on Figure 1. In CaBRNet, this common architecture can be parametrized at will
using a set of YAML files that are stored in each training directory for repro-
ducibility (see Sec. 2.3).

More precisely, as shown in Figure 1 and Table 1, the architecture of a CBR
image classifier starts with a backbone – usually the feature extractor of an

2

https://github.com/aiser-team/cabrnet

Table 1: CaBRNet main configuration parameters (for a complete list, please
refer to the documentation).

Parameter Description Supported values
Model configuration

extractor/backbone/arch Backbone of the extractor Any from torchvision.models
extractor/backbone/layer Where to extract features Any layer inside backbone
extractor/add_on Add-on layers of extractor Any from torch.nn
classifier CBR classifier ProtoPNet or ProtoTree

Data configuration
train_set/name Training dataset class Any from torchvision.datasets
train_set/params/transform Data preprocessing Any from torchvision.transforms

Visualization configuration

attribution/type Attribution method Upsampling, SmoothGrad,
Backprop, PRP, RandGrads

view/type How to visualize patches

3

https://github.com/aiser-team/cabrnet/blob/master/docs/README.md
https://pytorch.org/vision/stable/models.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/vision/main/datasets.html
https://pytorch.org/vision/stable/transforms.html

resnet50 (torchvision.models)

class ConvExtractor

create_feature_extractor
(torchvision.models.feature_extraction)

prototypes

similarities

decision

<model_arch.yml>
top_arch:
 name: ProtoTree

extractor:
 backbone:
 arch: resnet50
 layer: layer4
 weights: IMAGENET1K_V1
 add_on:
 conv1:
 type: Conv2d
 params:
 out_channels: 256
 kernel_size: 1
 bias: False
 sigmoid1:
 type: Sigmoid

classifier:
 name: ProtoTreeClassifier
 params:
 num_classes: 200
 depth: 9
 ...

la
y
e
r1

la
y
e
r2

la
y
e
r3

la
y
e
r4

a
v
g
_p

o
o
l

fc
 l
a
y
e
rs

backbone

la
y
e
r2

la
y
e
r3

la
y
e
r1

la
y
e
r4 similarity

layer

add_on
layers

co
n
v
1

si
g
m

o
id

1

class PrototreeClassifier

class Prototree

decision tree

Figure 1: Striving for modularity. From a YAML configuration file (left), CaBR-
Net backend exploits the common architecture of CBR image classifiers to sim-
plify the instantiation of new models (here, a ProtoTree).

existing convolutional neural network (CNN) such as ResNet50 – with optional
additional layers to reduce dimensionality (e.g., the fourth layer of a ResNet50
followed by a convolutional layer with sigmoid activation).

The feature extractor outputs a set of vectors, that form the latent space, and
is followed by a similarity layer whose role is to compute the similarity between
the latent vectors of the input image and a series of reference vectors, called
prototypes, each obtained from an image from the training set. From the simi-
larity scores, the process of locating the prototypes inside images (attribution)
and visualizing the relevant pixels (e.g., bounding box, cropping, heatmaps) is
also parametrized by a configuration file, as described in Table 1. Finally, a
decision layer, parametrized by an architecture-dependent python class (e.g.,
decision tree, linear layer), assigns a score to each class based on the similarity
scores, the highest being the decision (object classification).

In addition to these architectural choices, CaBRNet also allows specifying
the parameters necessary for the training of the models (e.g., objective func-
tions, number of epochs, optimizer to use, which parts of the neural network
can be updated and when, training dataset, preprocessing). For more informa-
tion regarding the training and data configuration, we refer the reader to the
CaBRNet documentation.

In its current version (v0.2), and as shown in Table 1, CaBRNet implements
two architectures (ProtoPNet and ProtoTree) and five attribution methods:

• Upsampling of the similarity map with cubic interpolation, as in [2, 8, 10,
9, 15, 7];

• SmoothGrads[13]/backpropagation[12], as proposed in [17];

• PRP[3], a variant of LRP[1] with a propagation rule for the similarity
layer;

4

https://github.com/aiser-team/cabrnet/blob/master/docs/README.md

• RandGrads, a dummy attribution method returning random gradients
(used as a baseline when comparing attribution methods in [17]).

In the coming months, we plan to add support for more architectures (see Sec. 4).

2.2 Backward compatibility
Significant work has already been carried out on CBR classifiers. Therefore, en-
suring that any result obtained with previously existing codebases (e.g., model
training) can be reused in the CaBRNet framework is paramount and has been
one of our main and earliest priorities, in an effort to ensure backward compat-
ibility.

First, any previously trained model can be loaded and imported within the
CaBRNet framework, i.e., models trained using the original code proposed by
the authors of ProtoPNet and ProtoTree can be used by our framework for other
purposes (e.g., benchmarks) without having to retrain the model from scratch.

Second, our implementation of existing architectures (currently, ProtoPNet
and ProtoTree) supports two modes: i) default mode, where all operations
have been reimplemented so that they are as up-to-date as possible with the
latest PyTorch versions; ii) compatibility mode, as a sanity check (i.e., to make
sure that our implementation does not deviate from previous implementations),
whose purpose is to be accurate with previous works at the operation level1.

2.3 Reproducibility and transparency
Reproducibility is key for the transparency of research and good software en-
gineering alike. However, replicating machine learning (ML) results can be
particularly tricky2. One reason for this is the inherent randomness at the core
of ML programs (and the lack of documentation of settings related to that
randomness). The rapid update pace of common ML frameworks leads to the
regular deprecation of APIs and features, which may make a code impossible
to run without directly changing its source, or going through the rabbit hole
of dependency hell. As an example, the mixed-precision training setting, avail-
able from PyTorch v1.10, uses different types for CPU and GPU computations,
which may lead to different results. One last part is the under-specification of
the dataset constitution (curation process, classes imbalance, etc.) and prepro-
cessing pipelines (test/train splits, data transformations).

Reproducibility can cover many notions. In [5], it is defined as the following:
“A ML study is reproducible if readers can fully replicate the exact results
reported in the paper.” We strive to provide a similar definition: “the same set
of parameters will always yield the same results”, with the following limitations:

• reproducibility can be ensured only for a given hardware/software config-
uration. The software configuration is specified through the requirements

1Backward compatibility was rigorously tested using unit tests covering all aspects of the
process, from data loading to model training, to pruning and prototype projection.

2See https://reproducible.cs.princeton.edu/

5

https://reproducible.cs.princeton.edu/

.txt. We are aware that stricter software environment specifications do
exist (for instance, stateless build systems like Nix3). Integrating such
solutions into CaBRNet would be an interesting prospect, but also comes
with an additional engineering cost to keep the library’s ease of use. While
not currently supported, we plan to save information regarding the hard-
ware configuration that led to a given result;

• hyperparameters that seem innocuous may influence the results. For in-
stance, the size of the data batches - even during testing - has a small
influence on the results. Consequently, we also save this information inside
configuration files.

To address the randomness variation, we initialize the various random num-
ber generators (RNGs) using a fixed seed that is stored along the training param-
eters. Thus, while loading a model’s parameters, the seed used for its training
will be loaded as well, guaranteeing that given the same hardware and hyper-
parameter configuration, the variability induced by the pseudo-randomness is
identical. We also support the possibility to save checkpoints at various steps of
the process, and we include the current state of all RNGs to restore the training
process exactly as it was.

As we believe that reproducibility is improved by a good documentation,
we also provide detailed installation instructions, a tutorial, the API reference
and the CaBRNet backend reference. The major part of this documentation
is automatically generated from the source code, ensuring consistency between
the code and the documentation at all times.

3 ... and in the light evaluate them
In this section, we describe our design choices for the CaBRNet benchmark,
with the purpose of proposing a framework for the systematic evaluation of
CBR models.

3.1 Going beyond accuracy
Current CBR models rely on two assumptions: i) proximity in the latent space
(w.r.t. a given distance metric) is equivalent to similarity in the visual space;
ii) there exists a simple mapping between a latent vector and a localized region
in the original image, due to the architecture of the feature extractor (CNN).
These assumptions have recently been put to the test by various metrics4, that
are already implemented or that we aim to implement in CaBRNet to streamline
the evaluation of CBR models. In particular, CaBRNet currently integrates:

3https://nixos.org/
4Regarding the relevance and/or effectiveness of these metrics, we refer the reader to the

original papers.

6

https://nixos.org/

Figure 2: Improvement over the perturbation metric used in [6]. Rather than
studying the drop in similarity score following a global perturbation of the
image (e.g., shift in the hue of the image), we apply a local perturbation using
the heatmap produced by the chosen attribution technique. Hence, we not
only measure the sensitivity of the similarity score to a given perturbation, but
also the ability of the attribution method to locate the most relevant pixels.
Additionally, we measure the drop in similarity when applying the perturbation
to anything but the most important pixels (dual perturbation).

• the perturbation-based explanation of [6], with improvements: perturba-
tions are no longer applied to the entire image, but to the identified patch
of image corresponding to the prototypical part, as shown in Figure 2;

• the pointing game (relevance metric) of [17], with improvements: the met-
ric now also supports the energy-based pointing game introduced in [14].

In the coming months, we plan to add support for more evaluation metrics (see
Sec. 4).

3.2 Stop wasting time retraining state-of-the-art models
In our opinion, reproducing results from the state of the art (i.e., re-training
models) – to serve as points of comparison with a new approach – can waste
valuable time and computing resources from AI researchers, when that time
could be dedicated to improving that new approach. This issue mostly arises

7

when proposing new evaluation metrics5 that must be applied to a wide range
of state-of-the-art models. Thus, one of the objectives for CaBRNet is to publish
pre-trained state-of-the-art CBR models, so that they can be used readily by the
XAI research community. For the sake of transparency, and as stated in Sec. 2.3,
each published model is also associated with information ensuring a level of
reproducibility, should a researcher wish to re-train these models. Moreover, in
an effort to improve the statistical significance of all related experiments, we
plan to publish at least three models per model configuration and dataset. As an
example, we have already published 6 models6 trained on the Caltech-UCSD
Birds 200 (CUB200 [16]) using our implementation of ProtoTree with trees with
depth 9 and 10.

4 Conclusion and future works
CaBRNet is open-source and welcomes any external contribution. We also
strongly encourage the research community to publish trained models that can
be reused within our evaluation framework. On our side, future developments in-
clude: i) support for ProtoPool[9], ProtoPShare[10], PIP-Net[7] and TesNet[15];
ii) support for the metric measuring the stability to JPEG compression [4] and
the stability to adversarial attacks[11]; iii) hands-on tutorials for gently intro-
ducing users to the various aspects of the framework.

Ideally, the modularity of CaBRNet design will appeal to both AI researchers
wanting to experiment with CBR approaches, and industrial actors interested
in deploying those approaches in a principled and traceable way. Our goal is for
CaBRNet to become the development framework for new and innovative CBR
approaches by the community.

References
[1] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-

R., and Samek, W. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PLoS ONE 10 (2015).

[2] Chen, C., Li, O., Tao, C., Barnett, A. J., Su, J., and Rudin, C.
This looks like That: Deep learning for interpretable image recognition.
NeurIPS (2019), 8930–8941.

[3] Gautam, S., Höhne, M. M.-C., Hansen, S., Jenssen, R., and
Kampffmeyer, M. This looks more like that: Enhancing self-explaining
models by prototypical relevance propagation. Pattern Recognition (2022),
109172.

5When using common metrics (e.g., model accuracy), it is possible to avoid retraining
models by simply referring to the results provided by the original authors.

6Available at https://zenodo.org/records/10894996.

8

https://zenodo.org/records/10894996

[4] Hoffmann, A., Fanconi, C., Rade, R., and Kohler, J. This looks
like that... does it? shortcomings of latent space prototype interpretability
in deep networks. ICML Workshop on Theoretic Foundation, Criticism,
and Application Trend of XAI (2021).

[5] McDermott, M. B. A., Wang, S., Marinsek, N., Ranganath, R.,
Foschini, L., and Ghassemi, M. Reproducibility in Machine Learning
for health research: Still a ways to go. Science Translational Medicine 13
(2021).

[6] Nauta, M., Jutte, A., Provoost, J. C., and Seifert, C. This looks
like that, because ... explaining prototypes for interpretable image recogni-
tion. In PKDD/ECML Workshops (2020).

[7] Nauta, M., Schlötterer, J., van Keulen, M., and Seifert, C. PIP-
Net: Patch-based intuitive prototypes for interpretable image classification.
In CVPR (June 2023), pp. 2744–2753.

[8] Nauta, M., van Bree, R., and Seifert, C. Neural prototype trees for
interpretable fine-grained image recognition. CVPR (2021), 14928–14938.

[9] Rymarczyk, D., Struski, L., Górszczak, M., Lewandowska, K.,
Tabor, J., and Zieliński, B. Interpretable image classification with
differentiable prototypes assignment. In ECCV (2021).

[10] Rymarczyk, D., Struski, L., Tabor, J., and Zieliński, B. ProtoP-
Share: Prototypical parts sharing for similarity discovery in interpretable
image classification. SIGKDD (2021).

[11] Sacha, M., Jura, B., Rymarczyk, D., Struski, L., Tabor, J., and
Zieliński, B. Interpretability benchmark for evaluating spatial misalign-
ment of prototypical parts explanations. ArXiv abs/2308.08162 (2023).

[12] Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside convolu-
tional networks: Visualising image classification models and saliency maps.
Workshop at ICLR (2014).

[13] Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., and Wattenberg,
M. Smoothgrad: removing noise by adding noise. ICML Workshop on
Visualization for Deep Learning (2017).

[14] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S.,
Mardziel, P. P., and Hu, X. Score-CAM: Score-weighted visual ex-
planations for convolutional neural networks. CVPRW (2019), 111–119.

[15] Wang, J., Liu, H., Wang, X., and Jing, L. Interpretable image recogni-
tion by constructing transparent embedding space. ICCV (2021), 875–884.

[16] Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Be-
longie, S., and Perona, P. Caltech-UCSD Birds 200. Tech. Rep. CNS-
TR-2010-001, CalTech, 2010.

9

[17] Xu-Darme, R., Quénot, G., Chihani, Z., and Rousset, M.-C. San-
ity checks for patch visualisation in prototype-based image classification.
XAI4CV at CVPR (2023).

10

	Introduction
	CaBRNet: One framework to rule them all...
	Modularity
	Backward compatibility
	Reproducibility and transparency

	... and in the light evaluate them
	Going beyond accuracy
	Stop wasting time retraining state-of-the-art models

	Conclusion and future works

