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Introducing CEA-IMSOLD: an Industrial Multi-Scale Object Localization
Dataset

Boris Meden1,2, Pablo Vega1, Fabrice Mayran de Chamisso1 and Steve Bourgeois1

Abstract— We introduce the CEA Industrial Multi-Scale Ob-
ject Localization Dataset (CEA-IMSOLD), a new BOP format
dataset for 6-DoF object localization, crucial for robotics. This
dataset aims to evaluate the current localization methods with
respect to a new difficulty: large variations in observation dis-
tance and, consequently, large variations in image appearance.
Compared to the other publicly available datasets, our dataset
provides both images with objects small and completely visible
in the image, and images where objects are observed close
enough so they appear larger than the field of view of the cam-
era. We also propose to consider the observation distance in the
evaluation process and introduce new metrics to do so. Finally,
our dataset contains a large variety of industrial objects, from
small and simple objects such as bolts to sizable and complex
ones such as large car parts. We provide baseline results and
the dataset is made publicly available to support the community
at https://cea-list.github.io/CEA-IMSOLD/.

I. INTRODUCTION

Object 6D localization is a task required for several
applications, such as interactive robotics (e.g. object manipu-
lation), quality inspection, augmented reality, etc. Depending
on the application, observation conditions can vary drasti-
cally, from isolated objects observed in a controlled setting
by a robot-mounted camera to symmetrical objects subjected
to occlusions and observed with a hand-held camera with
uncontrolled trajectory. This variety of conditions makes
6D localization algorithms benchmarking complex, simply
due to the sheer difficulty of creating a dataset that covers
all possible situations/use cases. Consequently, datasets are
usually biased due to the setup used for their constitution
(sensors quality and type, objects nature, lighting set-up,
viewpoint variability, ground truth quality, etc.). It is then
crucial to evaluate methods on a collection of datasets cov-
ering different set-ups in order to get an overall assessment.
Indeed, a biased benchmark can lead to biased evaluations,
but ultimately it can also bias a research field since new
methods are more likely to be published if they perform well
on established benchmarks, hence the need for benchmarks
with variability.

The BOP Challenge [1] was created to reach this goal,
progressively including new and diverse datasets to cover
more conditions and to provide better algorithm performance
evaluations. Our work follows this approach since we provide
a new public dataset that covers aspects that were until now
underconsidered:

1) Camera to object distance variation: as illustrated in
Fig. 1, our dataset includes large observation distance
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Fig. 1: Varying the distance of observation implies image
scale variation, a challenge for object pose estimation.

variations while, as illustrated in Fig. 3, this variation is
limited in BOP challenge datasets. This dataset is then
more suitable for use cases inluding such varations
(inspection, augmented reality, mobile robotics, etc.).

2) Depth sensor quality variety: as [2] our dataset includes
depth images provided by both a high-end sensor and a
low-cost sensor, covering both industrial and consumer
applications.

3) Variation of complexity of objects: our dataset includes
both simple (e.g. bottle cap), and complex objects (e.g.
car engine), covering use cases such as pick- and-place
and quality inspection.

4) High accuracy ground-truth: the annotation process
based on robotic arm and high-end depth sensors
allows to reach high accuracy ground-truth.

5) A new metric taking into account distance to objects
in performance evaluation.

II. RELATED WORK

A. Datasets and Bias

LINEMOD [3], one the first publicly-available datasets
for object localization, is constituted of objects observed
from a collection of viewpoints that can be approximated
by a sphere. While the dataset includes cluttered objects to
distract the evaluated algorithms, said objects are daily-life
low complexity ones, mostly textureless, with uniform and
specific color, never occluded (or to a very limited extent),
observed in constant lighting conditions, with viewpoints
mostly located on a hemisphere, and with a single object
instance per scene. These specificities representing many
biases, additional datasets were developed to target them.
Objects occlusions have been added with LINEMOD Oc-
cluded [4] and IC-BIN [5]. To evaluate the ability to localize
objects based on their shape exclusively, and the robustness
to multiple instances of the same object, T-LESS [6] and
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Fig. 2: Distributions of objects distances to the camera (Dist)
expressed in mm (from 40cm to 1.5m) and objects scales
in the image (Diag), expressed as the diagonal of object
bounding box over the diagonal of the image, for BOP
datasets. We note that objects scales are mainly below 0.25.

ITODD [2] were introduced, the former considering texture-
less white plastic objects while the latter considering metallic
industrial ones. Finally, lighting conditions changes were
introduced in TUD-Light, Toyota Light [1] and HOPE [7].

Among the biases that are not yet tackled by the com-
munity, and at the origin of this new dataset, is the very
limited object observation distance, and consequently the
very limited object size variation in the image. As illustrated
in Fig. 2 and Fig. 3, we measured the distance of observation
and the ratio between the object 2D bounding box diagonal
length and the image diagonal length. These calculations
were performed for each object of each scene of each dataset
in the BOP Challenge. While the first one provides an
overview of the variation of observation distance, the second
one provides an overview of the object size variation in the
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Fig. 3: Distributions of objects distances to the camera (Dist)
expressed in mm (from 40cm to 1.5m) and objects scales
in the image (Diag), expressed as the diagonal of object
bounding box over the diagonal of the image, for IMSOLD.
We note that objects scales go up to 2.6, which means that
less than half of the object represents the whole image.

image. We notice that observation distance and object size
variations are limited in most datasets and that object size
in the image is always smaller than the field of view of
the sensor. Based on these observations, one can question
the correlation between this bias and the fact that most
recent RGB-only object 6D pose estimation approaches rely
almost always exclusively on deep learning methods with 2D
bounding box detection or 2D object segmentation as first
stage. While bounding box detection and 2D segmentation
are adapted for small objects in the image, their working
hypotheses might be challenged by larger-than-field-of-view
objects.

B. Datasets and Ground-truth Annotations

Ground-truth image annotations are essential since they
directly affect evaluation quality. Usually, annotations rely
on three steps:

1) 3D model object reconstruction.
2) Camera pose estimation w.r.t. world coordinate frame,

for each dataset image.
3) Object pose estimation w.r.t. world coordinate frame,

for each dataset scene.
Regarding 3D model quality, it can vary from one dataset

to another. Indeed, many datasets [3], [4] [6] rely on a
volumetric 3D reconstruction process [8], [9] with consumer-
grade RGB-D sensors, or manual modeling of CAD models
[6]. Such processes provide 3D reconstructions with very
limited accuracy. Therefore, more recent datasets decided to
use high-end 3D scanners [10], [7], [11] to provide high
quality 3D models.

Regarding camera pose estimation w.r.t. the world coor-
dinate frame, most datasets rely on visual pose estimation
based on markers [3], [4], [6], [5], [12]. While this method is
simple, pose accuracy remains limited. More recent datasets
suggest to use a robotic arm to provide an accurate trajectory
of the camera [11]. Such a method is more expensive and
complex since accurate robotic arms are expensive and hand-
eye calibration is needed.

With respect to 3D object registration in world coordi-
nates, a classic solution consists in using a consumer-grade
RGB-D camera and a volumetric reconstruction algorithm
[8], [9] to get a 3D model of the whole scene [3], [4],
[6], [10]. Each object is registered to the scene either
manually [6] or automatically [10] with the help of an object



localization method followed by ICP refinement. However,
due to the limited quality of the sensor used for the 3D scene
mapping, the resulting registration quality remains limted. To
go a step further in terms of accuracy, recent datasets such as
[11] use a robotic arm with a tip effector to measure scene
objects specific 3D points in order to recover their 3D pose.

To obtain an accurate ground-truth annotation, as detailed
in section III-A, we followed an approach similar to [11],
using a high-end scanner or native CAD for object model
creation, a robotic arm for camera localization, and a high-
end depth sensor for automatic and accurate object registra-
tion in the scene.

C. Datasets and Evaluation Metrics

Currently, the most commonly used metrics to qualify pose
estimation are:

1) Average Distance metric or ADD, and its variations for
symmetrical objects (ADD-S [13], ADD-H [7]). These
metrics target to measure the mean euclidean error
between the surface points of the object transformed
with the estimated pose and the ground truth pose.

2) Maximum Symmetry-Aware Surface Distance or
MSSD [14] which is similar to ADD but considers the
maximal error instead of the mean error and symmetry
management.

3) Visual Surface Discrepancy or VSD [1]. This metric
measures the ratio of pixels for which the discrepency
between their value in the distance map computed with
the ground truth pose and their values in the distance
map computed with the pose to evaluate.

4) Mean Projection Distance or MPD [4], which measures
the mean reprojection error between the projection of
the visible points with the ground-truth pose and their
corresponding projection with the pose to evaluate.

5) Maximum Symmetry-Aware Projection Distance or
MSPD [14]. This metric similar to MPD but uses
maximal distance instead of the mean and manages
symmetries.

Since MPD and MSPD are based on reprojection error, they
do not take into account the discrepancy along the optical
axis. This property makes these metrics adapted to RGB-
only setups since such sensors do not observe the position
along the optical axis. On the other hand, the ADDs and
MSSD metrics consider euclidean distance in 3D space
while VSD rely exclusively on the discrepancy along the
Z axis. In both cases, these metrics do not take into account
observation distance even though depth sensor accuracy is
usually affected by this distance. Finally, all these metrics are
computationally expensive since they iterate on all 3D points
of the model. In section IV), we suggest a new method to
efficiently compute an approximation of MPD metric.

III. DATASET ACQUISITION PIPELINE

The following section details the hardware setup and the
process to create our dataset.

A. Objects and their 3D Models

The dataset is composed of 25 objects (cf. fig 4) with
different characteristics in terms of surface (reflecting vs.
lambertian), symmetries (with vs. without full rotational sym-
metry), complexity (primitive shapes vs. complex objects),
flatness (flat vs. voluminous), details (with vs. without very
fine details on their surface), compactness (long vs. compact),
and size (diameters from 23 mm to 1278 mm).

Reagrding object 3D models, native CAD models were
used for the small objects. Said CAD models were provided
by manufacturers or distributors on their websites. For big
and complex objects, such as the car door or car engine, an
industrial- grade scanner (HandyScan 3D from Creaform)
was used to reconstruct the 3D meshes with high precision
and accuracy.

B. Scene acquisitions

Each scene was acquired with a calibrated setup consist-
ing of an industrial grade structured light RGB-D sensor
(Zivid 2, with spatial resolution of 0.39mm at 700mm),
a consumer- grade active stereo RGB-D sensor (Realsense
D415) and an industrial RGB camera (FLIR camera with
resolution 2048x1536), all three rigidly mounted on a 6
DOF robotic manipulator (UR10e from Universal Robots,
with a position repeatability of 0.05 mm). Each scene was
acquired from multiple viewpoints and with large observation
distance variations as illustrated in Fig. 5. The robotic arm is
first manually operated in gravity compensation mode, and
the joints positions are recorded at a given time step. The
trajectory is then replayed by the robot, making a pause
at each recorded location to capture the sensors data in
static position, avoiding any risk of motion blur or sensor
synchronization problems. At each location, sensor data
such as the location and orientation of the robot effector is
recorded. Each sensor was first calibrated intrinsically. The
extrinsic calibrations with respect to the robotic manipulator
were then achieved with a hand-eye calibration process using
MoveIt and ChAruCo markers.

C. Ground truth annotation

Regarding sensor pose, the ground truth was simply com-
puted using the robotic effector pose (recorded during sensor
acquisitions) and the corresponding hand-eye calibration.
The resulting calculation gives the camera pose estimation
in the robotic manipulator coordinate frame. For object
ground-truth pose determination, the process relied first on an
accurate 3D reconstruction of the whole scene in the robotic
manipulator coordinate frame. This was achieved by fusing
multiple viewpoint acquisitions made with the Zivid2 sensor.
Each object was then automatically detected and localized
in the robotic manipulator coordinate frame with [15]. The
pose was then refined with an ICP refinement on the scene
reconstruction and the registration quality was validated by
a human operator.

2D object masks for each view were obtained by con-
figuring a virtual camera with the corresponding intrinsic
and extrinsic parameters, and rendering the 3D model of the
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Fig. 4: Images of the 25 objects used in the dataset.

(a) Manual trajectory recording in gravity
compensated mode with timestep sam-
pling.

(b) Trajectory generated in RViz environ-
ment.

(c) Replay of the trajectory with data
acquisition at each step.

Fig. 5: Pipeline for scene acquisition.

target object at its location. To get occlusion-aware masks, all
the other objects of the scene were rendered to the z-buffer
the considered object. As [6], [10], Table I evaluates the
quality of pose annotations by comparing real and rendered
object depth maps.

Dataset µδ σδ µ|δ | med|δ |

T-LESS [6] 0.6300 0.8224 0.87197 0.9191
HomebrewedDB [10] 0.61593 0.8089 0.8564 0.9070
Ours Zivid 0.5678 0.7476 0.8258 0.8762

TABLE I: Statistics of differences between the depth of
object models at the ground truth poses and the captured
depth (in mm). µδ and σδ is the mean and the standard
deviation of the differences, µ|δ | and med|δ | is the mean and
the median of the absolute differences.

IV. EVALUATION METRICS

A. Metric approximation for fast evaluation

Performance assessment of a 3D pose estimation algorithm
is usually obtained with the recall of the localization, mean-
ing the ratio of localizations with an error below a specific
threshold. Therefore, if the evaluation is performed with a
small threshold on the metric error, which is usually the
case considering the current performances of the algorithm,
the metric used only needs to be accurate for a pose located
in the neighborhood of the ground truth to provide a fair
evaluation. However, current metrics are currently computed
accurately even for poses far from the ground truth, implying
long and useless computation time. To reduce this compu-
tation time while keeping a fair evaluation, we suggest to
approximate the metric around the ground truth pose with
its second order approximation.

We want to back-propagate the uncertainty of the observa-



tion (the measures) to the pose. We follow the formulation of
[16]: let pi = g(qi,x) be the function that transforms 3D CAD
points qi into measurement points pi (either image pixels
or 3D points) at pose x, assuming independence between
measure points and a noise distribution given by covariance
matrix CP.

pi+∆pi = g(qi,xest +∆x)≈ g(qi,xest)+

[
∂g
∂x

]⊤
qi,xest

·∆x (1)

This simplifies to:

pi ≈ g(qi,xest) =⇒ ∆pi =

[
∂g
∂x

]⊤
qi,xest

·∆x = Ji∆x (2)

where Ji is the Jacobian of g, evaluated at (qi,xest). Com-
bining all measurement points, we obtain:∆P1

...
∆Pn

=

J1
...

Jn

∆x =⇒ ∆P = J∆x (3)

∆x = (J⊤J)−1J⊤∆P (4)

The covariance matrix of x is given by the outer product :

Cx = (J⊤J)−1J⊤E(∆P∆P⊤)((J⊤J)−1J⊤)⊤ (5)

Cx = J−1

CP . . . 0
...

. . .
...

0 . . . CP

(J−1)⊤ (6)

where E(∆P∆P⊤) is the covariance matrix on the measure
points. We consider the g function that maps the CAD model
and the image.

g(qi,x) = Π(KPworld2camQ) (7)

where Π : (x,y,z)→ ( x
z ,

y
z ) is the perspective projection, K is

the intrinsic camera matrix, Pworld2cam transforms points from
the world to points in the camera coordinate frame and Q is a
3D point in the world coordinate frame. The CP, expressing
noise level on data points becomes a 2×2 matrix, expressed
in pixels.

The inverse of the Covariance Matrix (also named Infor-
mation Matrix) corresponds to the second order approxima-
tion of the mean squared of the reprojection error. We can
then approximate the Mean SPD from the pose deviation
deltapose from the ground truth with our new pose metric
ecov, defined as the Mahalanobis distance between the pose
estimate and the ground truth pose, ponderated by the inverse
of the Covariance Matrix of the ground truth pose.

ecov(Xest ,Xgt) =

√
(Xest −Xgt)⊤Cx

−1(Xest −Xgt) (8)

where Xi are the SE(3) poses, and Cx is the covariance
matrix computed with equation 6 around the ground truth
pose Xgt .

Assuming the Covariance Matrices computed, based on
the ground truth pose, this new metric is far more efficient
than the different BOP metrics, which need either to iterate
over all object 3D points or to render it to qualify the quality
of Xest .

B. Comparison to BOP Metrics
To assess the quality of the ecov metric, we plot its

evolution for a constant 3D error on the pose, with the object
being at different distances. We compare the evolution of the
error with the other projection errors MSPD (MaxSPD) and
MPD (MeanSPD) in Fig. 6.

Fig. 6: Projection errors for a constant 3D error on the pose,
as a function of different observation distances from 20cm
to 1.2m. We note that ecov (cov) is a good approximation of
MPD.

V. BENCHMARK

A. Evaluation of the Metric on LMO
First, we chose the LMO dataset to test the new ecov met-

ric. Table II presents the processing of top BOP contenders
results, evaluated with ecov.

Methods ARVSD ARMSSD ARMSPD ARCov

GDRNPP [17], [18] 0.6300 0.8224 0.87197 0.9191
Surfemb [19] 0.61593 0.8089 0.8564 0.9070
Cosypose [20] 0.5678 0.7476 0.8258 0.8762

TABLE II: Some of the top BOP contenders (2022 edition)
evaluated through the BOP metrics and the new covariance
metric on the LMO dataset.

As discussed in previous section, we note that ARMSPD
and ARCov are close, yet eMSPD complexity is O(n) and ecov
is O(1) as it can be precomputed, with n the number of
points of the CAD model. Thus, ARCov is much quicker to
compute.

B. Baseline Evaluations of IMSOLD
To provide first baseline results on our new dataset, we

chose the simplicity with Depth-based registration methods,
less affected by scale changes, evaluated on the Zivid2 data.
Average Recalls of Table III leave room for new registration
methods to address the challenge of scale variation for 6D
object pose estimation.

Finally, Fig. 7 provides some examples of the challenges
proposed by IMSOLD.



Fig. 7: Examples of ground truth annotations for a variety of objects constituting IMSOLD. Challenges lie in objects
geometry, material and appearance, and mainly scale variation in the image.

Methods ARVSD ARMSSD ARMSPD ARCov

HSPA[15] 0.4111 0.3039 0.3145 0.4283
Halcon23[21] 0.3494 0.2852 0.3052 0.4036

TABLE III: Average recall of the BOP metrics and ARCov
for the IMSOLD test set of the Zivid2 data.

VI. CONCLUSION

We have introduced the CEA Industrial Multi-Scale Object
Localization Dataset (CEA-IMSOLD) for 3D object detec-
tion and localization. We focused on industrial challenging
objects, with a specific attention to variation of objects scales.
The dataset provides both industrial grade 3D sensing and
kinect-like quality. We hope that this dataset will successfully
complement existing ones, and will encourage the commu-
nity to consider industrial challenges during the design and
development of new methods.
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