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Abstract—In the Computing-In-Memory (CIM) approach,
computations are directly performed within the data storage
unit, which often results in energy reduction. This makes it
particularly well fitted for embedded systems, highly constrained
in energy efficiency. It is commonly admitted that this energy
reduction comes from less data transfers between the CPU
and the main memory. Nevertheless, preparing and sending
instructions to the computational memory also consumes energy
and time, hence limiting overall performance. In this paper, we
present a hardware instruction generation mechanism integrated
in computational memories and evaluate its benefit for Integer
General Matrix Multiplication (IGeMM) operations. The pro-
posed mechanism is implemented in the computational memory
controller and translates macro-instructions into corresponding
micro-instructions needed to execute the kernel on stored data.
We modified an existing near-memory computing architecture
and extracted corresponding energy consumption figures using
post-layout simulations for the complete SoC. Our proposed
architecture, NEar memory computing Macro-Instruction Kernel
Accelerator (NeMIKA), provides an 8.2x speed-up and a 4.6
energy consumption reduction compared to a state-of-the-art
CIM accelerator based on micro-instructions, while inducing an
area overhead of only 0.1%.

Index Terms—near-memory computing, macro-instruction,
matrix multiplication, GeMM, embedded systems.

I. INTRODUCTION

In embedded systems, reducing energy consumption is a
priority to increase battery lifetime. However, with the growing
importance of Internet of Things (IoT) and Artificial Intelli-
gence (Al), increasingly intensive calculations have been trans-
ferred to edge devices. Hardware accelerators were introduced
to reduce the workload of complex tasks, but they are often
specialized for a specific kernel. The Computing-In-Memory
(CIM) paradigm consists of moving parts of the computations
in or near memory instead of moving data to/from the Central
Processing Unit (CPU). This significantly reduces data move-
ment while keeping flexibility and is therefore considered as
a promising solution to the memory wall problem inherent in
Von-Neumann architectures. Reducing data movement has the
benefit of significantly lowering power consumption.

In the context of embedded systems, several CIM archi-
tectures have been proposed [1]-[3]. Although reducing data
transfers, CIM accelerators still need to transfer instructions
from the CPU to the memory to control the computations.
In this paper, we propose NEar memory computing Macro-
Instruction Kernel Accelerator (NeMIKA), a CIM architecture
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that also reduces the energy consumption of instructions
transfer by managing them close to the memory. An in-depth
analysis of the applications reveals repetitive patterns of micro-
instructions. Managing this repetitiveness with a dedicated
control logic located closer to computational memory would
reduce the number of instructions transiting on the intercon-
nect. In NeMIKA, in-memory instructions are constructed by
the CPU and sent to the computational memory. We propose to
handle the execution of repetitive patterns near to the memory
with a hardware instruction generation mechanism. This mech-
anism is managed by a set of sequencers triggered by ded-
icated CIM macro-instructions. This mechanism transforms
the computational memory into a kernel accelerator which
uses the same memory blocks and arithmetic/logic operators
to execute a predefined set of elementary micro-instructions
and thus achieve maximum performance while reducing the
associated energy cost. Our analysis is focused on the Integer
General Matrix Multiplication (IGeMM) kernel. We use 22nm
FD-SOI process technology from GlobalFoundries for imple-
mentation and to extract power consumption using post-layout
simulation.

This paper is organised as follows: Section II presents the
state of the art on CIM relevant to our work. Section III
explains our vision of a second level of macro-instructions.
Section IV presents our contribution, which is an instruction
generator for computational memories with the example of
IGeMM operations and the results we have extracted. Finally,
Section V concludes this paper.

II. RELATED WORK

CIM is a relevant solution for handling the memory wall
in Von Neumann architectures because it reduces data move-
ment on the memory interface while increasing computation
parallelism. Within this paradigm, operations are executed in
or near memory and often performed on entire memory lines
to mitigate their activation cost. We can classify CIM into two
main categories depending on whether the computation occurs:
inside the memory macro or outside of it. In the literature,
these two categories are often named differently [4], [5]. In
this paper, we will refer to In-Memory Computing (IMC) and
Near Memory Computing (NMC), and use CIM to describe all
these types of computing memories. IMC is based on analog
computing into the memory array by adding (or subtracting)



currents on columns when multiple physical memory lines
are activated during the reading [6]. NMC relies on digital
computational elements placed close to the memory macro
to reduce timing and energy consumption of data transfers
[7]1-[10]. In an NMC architecture, data is read from the
memory, computed into this specific unit, and stored back to
the memory. A strong advantage of the full NMC architecture
is that no modification is required on the memory macro.
NMC is thus different from IMC, where the macro needs to be
modified for a specific memory technology. NMC is also used
together with IMC to implement more complex operations,
such as carry propagation [11], Multiply And Accumulate
(MAC) operation [12], matrix-vector multiplication [13], or
other specific operations [14].

In the context of embedded systems, CIM coprocessors are
relevant architectures to meet energy consumption constraints.
Energy saved by these approaches will increase system’s
lifetime and/or help reducing battery size. In [9] and [10],
the CPU manages the control flow by generating and sending
CIM instructions to be executed by the computing memory.
Generating instructions on the CPU has a cost in terms of
energy or timing, but it makes the CIM module easier to
connect to any CPU.

To increase the Instruction Set Architecture (ISA) without
developing a specific design, microprocessors such as the Mi-
croVAX 78032, [15] or the Fairchild CLIPPER [16] implement
macro-instructions. They use Read-Only Memory (ROM) to
store the sequences of micro-instructions required to execute
macro-instructions. In this way, on the MicroVAX 78032,
floating-point operations could be accelerated with the 78132
floating point external chip connected to the microprocessor
or executed by multiple micro-instructions generated from a
macro-instruction without this external chip.

The CIM architecture we modified to evaluate our proposal
relies on CIM instruction generation by the processor, which
comes at the cost of CPU time and system energy. In this
paper, we propose a solution that uses macro-instructions to
mitigate this problem.

III. NMC ISA EXTENDED WITH HARDWARE
INSTRUCTION GENERATION

NeMIKA, presented in Fig. 1, is an NMC architecture for
embedded systems based on computational SRAM memories.
It includes a Vector Processing Unit (VPU) located near to
an SRAM memory macro, which allows computations to be
performed on data vectors occupying entire lines of memory.
NeMIKA is accessed by the CPU through an interconnect.
When acting as a coprocessor, NeMIKA is controlled by CIM
instructions generated and sent by the processor. Our contri-
bution consists in having incorporated a hardware instruction
generation mechanism to improve energy efficiency of the
CIM architecture.

The proposed specific ISA includes two levels of instruc-
tions: micro and macro-instructions. Micro-instructions are
classical arithmetic and logical operations. They are performed
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Fig. 1. Overview of NeMIKA architecture connected to a host CPU

on each data of an entire memory line. The ISA of Ne-
MIKA implements micro-instructions on integers of size 8§,
16 and 32 bits, which can be specified in the arithmetic
operations. The level of parallelization depends on the data
size. For example, if the memory width is 128 bits and the
data size is 8 bits, NeMIKA can execute 16 operations in
parallel. Whereas, for the same memory, if the data size is 16
bits, NeMIKA will execute 8 operations in parallel. Results
are stored in a memory line. On the other hand, macro-
instructions leverage the repetitiveness of instruction kernels
in applications. They implement more complex computations
by generating a sequence of micro-instructions directly inside
NeMIKA, as shown in Fig. 1. Macro-instructions transform
CIM elements of NeMIKA into a kernel accelerator, which
allows the processor to work on another task during the
processing of the macro-instruction since NeMIKA controls
the flow of micro-instructions.

Given that the inclusion of macro-instructions adheres to
the NMC guidelines, the SRAM component is therefore not
affected. This facilitates its seamless integration into an exist-
ing CIM architecture, with the aim of minimizing instruction
transfers between CPU and memory.

Today, NeMIKA embeds only one sequencer (IGeMM), but
the architecture allows the implementation of several more
sequencers adapted to the targeted application.

IV. IGEMM OPERATIONS IN NEMIKA

In this section, we first describe how NeMIKA is able to
execute IGeMM with only micro-instructions, and then with
the help of macro-instructions. We finally provide some results
of the IGeMM sequencer.

A. IGeMM Implemented with Micro-Instructions

NeMIKA does not implement scalar to vector multiplica-
tion. Matrix multiplication therefore needs a specific organi-
zation of the operands to take advantage of its vectorization
support. For matrices AeZ™*"™, BeZ"*P, CeZ™*P and the
computation of A x B = (, the storage of matrices is
illustrated in Fig. 2 and performed as follows:

o Each element of A is repeated on a whole memory line.
e Matrix B is placed row by row in the memory. If the size
of a matrix row is larger than the width of the memory, we
use several memory lines. The alignment of each matrix
row is kept by using a new memory line for each row.
e Once calculated, C' is stored in the same format as B.
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Fig. 2. Specific matrix storage in the memory of NeMIKA

Algorithm 1 micro-instructions flow of IGeMM
for (i = 1; i < m; i++) do
for [ =0;1<q;l++) do
MUL (reg, @A[O,O] +1- n, @B[070] + l)
for (j =0;j < (n—1); j++) do
MAC (reg, @A 0] + - n+j, @Bpoo) +5-q+1)
end for
MAC (@Cj,0) +i-q+I, @Ay o) +i-n+3j, @Bo,0)+5-g+1)
end for
end for

Due to the possibility of adding a Direct Memory Access
(DMA) module to move data and reshape them from a
memory to the computational memory, the movement and
reorganization of data is not considered in this work. In the
following, we assume that data are already well positioned in
memory.

The computation of C' mainly relies on MAC instructions.
The sequence of instructions generated by the processor to
be executed by NeMIKA is shown in Algorithm 1, with m,
n, p representing the matrix sizes, D the number of data
in a memory line, and ¢ = [p/D] the number of memory
lines needed to store a row of the B or C matrices. The
accumulation is done in an internal register (reg) present
in the VPU. The first MAC is replaced by a multiplication
and stored in the internal register to avoid useless write
and read preliminary data into the SRAM, while preventing
from resetting the register before. The last MAC is stored in
the memory. With only micro-instructions, NeMIKA requires
m X n x ¢ NMC instructions generated by the CPU and sent
through the interconnect to execute IGeMM, which is further
optimized in the next section using macro-instructions.

B. IGeMM Implemented with Macro-Instructions

The main advantage of NeMIKA relies the definition of
an IGeMM macro-instruction, which executes the matrix
multiplication in computing memories by receiving a fix
number of macro-instructions, independent of the matrix sizes.
These instructions allow to set some internal registers with
the size of m, n, p and the addresses of the memory line
containing the first element of each matrix A, B, and C. A
hardware sequencer generates all the NMC micro-instructions
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Fig. 3. Physical view of NeMIKA in a 22nm development platform

needed to execute the IGeMM. It generates the same flow of
micro-instructions as the one described in Algorithm 1. The
sequencer contains three registers: ¢, j and [ to iterate in ranges
from O to m, n and q respectively.

The IGeMM macro-instruction reduces the number of in-
structions sent by the CPU to NeMIKA from m X n X ¢ to
only 2 instructions. The generation of one micro-instruction
by the sequencer is done in one cycle and allows the CPU to
feed our computing memory to his maximum rate and reach
the best performance.

C. Experimental Results

To study the proposed architecture and evaluate the energy
consumption reduction, we have integrated NeMIKA with a
cv32e40p RISC-V core [17]. During the matrix multiplication
with our instruction generation mechanism, the host CPU is
idled and waits for the end of the computation. Thus, no
instructions are fetched to the CPU which excludes the energy
that is not linked to the IGeMM computation.

Fig. 3 represents the physical view of the SoC designed
in GF 22-FDX (22nm FD-SOI). We ran post-layout energy
analysis to evaluate the consumption of the architecture on
real executed algorithms. Our contribution increases the size
of the VPU by 610um?, which corresponds to an increase of
3.7%, and represents only 0.1% of the total size of the entire
computational memory (256 KB).

We evaluate IGeMM in NeMIKA with and without macro-
instructions. In this study, the RISC-V core sends the necessary
instructions to compute all the matrix multiplication. Matrices
are already stored in the memory of NeMIKA following
the organization described in Section IV-A. Data are 8-bit
integers and have been generated randomly. To compare with
a Harvard architecture we also implemented IGeMM on the
RISC-V core. This experiment is composed of three simple
nested loops, and matrix elements are stored contiguously in
the data SRAM. There are therefore three different software
implementations which run on the same hardware, but they
use different functionalities of the design. In the following,
these implementations will be called cpu, micro and macro.
To simplify the analysis, we focus only on square matrices of
size n=m=p from 2 to 48. Energy consumption is extracted
using Synopsys PrimePower tool. Clock frequency is 100Mhz.
The analysis does not include the clock network energy.
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Fig. 4. Simulation results and comparison of the three IGeMM implementations proposed in this paper: cpu, micro and macro

Fig. 4a and Fig. 4b report execution time and energy
consumption, respectively, for the three different software im-
plementations, for varying square matrix sizes. These figures
show that both the macro and the micro implementations
are relevant starting from n=3. Indeed, from n=16, the
micro implementation already accelerates more than a 7.7x
factor with respect to the cpu implementation, while the
macro reaches more than 95.9x. From n=16, our contribu-
tion reaches 0.765 x 10° 8-bit MAC operations per second
(GMACSS), which is really close to the maximum throughput
achievable by our computational memory (0.8 GMACSS).
The energy consumption reported in Fig. 4b shows that from
n=13 the reduction factor of energy consumption of macro
implementation is around 30x with respect to the cpu and
around 4.5x with respect to the micro. These factors are
independent of the size n of the matrices. The reduction of
the number of generated instructions from m x n X g to only 2
decreases the energy consumption associated to the generation
and the transfer of CIM instructions (energy consumed by
the CPU, by the instruction memory and by the interconnect
to fetch the RISC-V instructions to the core and to transfer
the CIM instructions to NeMIKA). Steps at n=17 and n=33
(dashed vertical lines) in the curves of Fig. 4 are due to the
necessity to use a new line of memory to store a matrix row.

Fig. 4c shows the energy contribution of each system
component in the different implementations when n=48.
Both CIM architectures show a high energy reduction when
compared to the cpu implementation. Energy of core and
data/instruction memories are particularly reduced, mainly due
to much fewer CPU instructions and the shift of matrix data to
the CIM. When comparing the two CIM architectures (see the
zoom on Fig. 4c), our approach based on macro-instructions
leads to a reduction in all architecture components. As already
mentioned, energy of core and data/instruction memories is
reduced thanks to less instructions generated by the CPU
and transferred to the CIM. Only the VPU energy remains
the same, as it executes the same micro-instructions. More
generally, the overall energy to perform IGeMM operations
is also reduced since the total execution time is significantly

lower. This also explains why the SRAM macro of NeMIKA
consumes less energy, since it remains less time in an idle
mode. Finally, the interconnect energy is reduced by a factor
of 17x, from 95n] in the micro implementation to 5.5nJ for
the macro. Although the interconnect energy consumption is
only 2.3% of the overall SoC energy for the micro case, its re-
duction in NeMIKA macro could become significant for other
systems. In particular, for systems without on-chip computing
memories (e.g., chiplets or boards) where interconnect could
dominate the total energy, our hardware instruction generation
mechanism represents an exciting opportunity.

V. CONCLUSION

In this paper, we present NeMIKA, a computational memory
architecture dedicated to embedded systems that achieves a
trade-off between efficiency and versatility, based on a two-
level ISA: micro and macro-instructions. NeMIKA uses a
hardware mechanism to generate micro-instructions for com-
putational memories, which reduces drastically the number
of instructions generated and sent from the host CPU to the
CIM accelerator. This macro/micro-instruction approach can
be easily adapted to fine-tune a computational memory to
application needs. We provide results on an 8-bit IGeMM to
show the benefits of our proposal. Without our IGeMM macro-
instructions, the number of instructions transferred depends
on the matrix sizes, whereas it is constant and much lower
with our approach. We implemented NeMIKA in an SoC
with a RISC-V core and executed post-layout simulations to
extract energy consumption. We show that our contribution
significantly reduces the energy consumption and the execu-
tion time for square matrix multiplication, even for very small
matrices (3x3). The reduction in execution time and energy
consumption reaches 97x and 31X, respectively, when com-
pared to a CPU-only solution, with n=48. When compared to
a state-of-the-art CIM accelerator based on micro-instructions,
NeMIKA still provides significant gains with 8.2x and 4.6x
reduction in time and energy, respectively. These gains are
almost constant and independent of n from n=13. The area
overhead associated represents only 3.7% of the VPU, or 0.1%
of the entire computing memory.
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