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A B S T R A C T

This work addresses the crucial challenges of simulating ultrasonic inspections in welded parts. We focus on
the simulation of radiated ultrasonic fields in welded materials, incorporating spatially varying anisotropy and
damping properties. Using macroscale descriptions to capture variations in weld properties as a function of
grain orientation, two simulation methods are evaluated: a ray method and a hybrid finite element solution
within the CIVA software. Simple simulations validate both models, but complexities emerge in real-world
scenarios, notably caustic phenomena and beam splitting due to specific grain orientations. The proposed
hybrid FE model can therefore provide reliable reference solutions, even for 3D configurations, allowing the
biases arising from radius approximations to be quantified.
1. Introduction and motivation

Combining mechanical strength and corrosion resistance, austenitic
steels are widely used, in particular for the assembly of components in
the nuclear industry. The ability to detect fault-related weaknesses near
the welding areas is a major issue for the safety of critical thick-walled
components in the primary and auxiliary circuits of nuclear power
plants, and remains a major industrial challenge in order to meet the
new safety and durability requirements of these structures. Ultrasonic
Testing (UT) is a common Non Destructive Testing (NDT) technique
to inspect their structural integrity, but conventional UT may suffer
from performance limitations into the weld due to the polycrystalline
grain texture inducing attenuation, deviation or splitting of the ultra-
sonic beam. UT simulation can help understanding the influence and
variability of these phenomena and therefore improving the inspection.
To meet this need, it is necessary to offer versatile simulation tools
dedicated to parametric studies, and to propose numerical models
adapted to the applications of representative industrial cases.

Whereas simulation of ultrasonic wave propagation in elastic solids
can be approached through various methods, available options become
significantly constrained when it comes to proposing practical NDT
solutions applied to complex industrial geometries. Two main families
of models can therefore be distinguished. The first concerns the set of
semi-analytical models based on a High Frequency (HF) approximation
using a modal decomposition of the solution of the wave equation
in elastodynamics, which will be referred to hereafter as the ‘‘ray-
based approaches’’ [1–11]. The second corresponds to the large group
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of Finite Element (FE) or finite difference numerical methods [12–
16]. Even if these methods are now widespread and widely used,
obtaining dedicated solutions adapted to the propagation of bulk waves
in 3D welded structures requires the implementation of well-adapted
strategies to reduce the memory footprint and the computational cost.

In addition to the particular geometries associated with the weld
bevel, the modelling of the propagation of ultrasonic waves in the poly-
crystalline medium associated with the welded zone requires particular
attention. The welding material properties are then generally modelled
either by a heterogeneous description at the grain scale (microscale
approach) or by a simplified description considering equivalent effec-
tive material properties at the wavelength scale (macroscale approach).
Inspection simulations based on a microscale approach are essentially
performed with the help of FE solution [17–20]. Although well suited
to the analysis of interactions between waves and grain microstruc-
ture on small Representative Elementary Volumes (REVs) [21,22], this
microscale approach applied to the simulation of weld inspection has
several limitations. First, a deterministic definition of the weld is impos-
sible since we can never have perfect knowledge of the characteristics
of each grain. The simulated microstructure can only be consistent with
observed statistics, primarily concerning grain size distributions and
crystallographic orientation distribution functions. Furthermore, simu-
lating wave propagation demands an extensive computational capacity,
coupled with a time frame that renders 3D parametric investigations
challenging, if not impossible, without simplifying the problem (such
as assuming geometric consistency along the weld deposit axis or
imposing dimensional restrictions [20,23,24]).
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Consequently, the macroscale approach is preferred in the majority
of inspection simulations conducted on industrial welded structures of
realistic dimensions [25–27]. The underlying assumption is that we
consider grain scattering regimes at frequency ranges where the con-
cept of coherent wavefronts remains relevant. This choice is justified
when the wavelengths involved are slightly larger than the character-
istic dimensions of the grains. In practice, this is the case for many
UT applications in welded parts, where the wavelengths involved are
several millimetres, while the grain size is less than one millimetre. In
the context of austenitic welds, the dendritic solidification processes of
austenite lead to columnar grain growth, which, upon solidification,
forms an elongated grain microstructure that is highly textured along
this growth axis [28]. The weld therefore has the characteristics of an
anisotropic viscoelastic medium with a spatially variable anisotropic
orientation according to the grain elongation axis also called fibre axis.
In particular, a continuous representation of fibre axis variations leads
to a smoothly inhomogeneous medium description.

Both FE and ray-based approaches are of well-suited to the
macroscale approach. In particular, the ray-based solution implemented
in the CIVA software [29] enables fast 3D simulations that are useful
for variability and performance analysis, and has made it possible to
improve the description and comprehension of various phenomena
observed in weld inspections [30]. However, such paraxial ray tracing
techniques suffer from certain limitations, particularly when it comes
to the quantitative modelling of surface wave phenomena and of poten-
tially observed intricate caustic occurrences [1,2,31]. As these artefacts
can be frequently observed in welding structures, and although ray
approaches significantly reduce computation times compared to FE
methods, especially in 3D scenarios, it remains essential to propose sim-
ulation tools capable of validating or rejecting the ray approximations
of the radiated field within the weld.

The initial motivation for this work was to provide a 3D FE reference
solution to identify and quantify these potential artefacts. Based on
the transient spectral FE code studied in [32–34], we propose an
hybrid procedure using a ray calculation of the source field radiated
by the probe at the surface of the component, while the rest of the
calculation is performed by FEs on deformed structured quad meshes
including viscoelastic anisotropic constitutive laws. This paper presents
and compares results of ultrasonic field simulations performed with
the two models available in CIVA. Our modelling considerations con-
cerning the smoothly inhomogeneous weld description and the two
different modelling tools are introduce in the first part of this paper.
In the second part, a benchmarking analysis of the two simulation
approaches is proposed. The analysis focuses on different cases of in-
creasing complexity, to quantitatively validate the effects of anisotropy
and attenuation and to identify situations where the limits of the ray
models can be observed on unrealistic academic cases and on realistic
weld descriptions.

2. Modelling approaches

The simulation of UT for industrial welding structures requires a
comprehensive knowledge of the main geometric and mechanical char-
acteristics associated with the weld, while the influence of uncertainties
in the weld description should be taken into account by parametric
studies. Fast, effective solutions are therefore needed for modelling
welds and UT, and the most common approach consists in simulating
the behaviour of the coherent wave used in ultrasonic inspection and
imaging techniques. This work focuses on a macroscale (or wavelength
scale) smoothly inhomogeneous description of the weld material, en-
abling fast ray-based simulations and optimized FE solutions. In this
section, we first explain the practical application of this macroscale
approach commonly used by the NDT community for simulation. We
then introduce the two simulation models used in this study, the CIVA
paraxial ray-tracing model and a new transient finite element solution,
and describe their adaptations to the proposed smoothly inhomoge-
neous weld. Hereafter, geometries are limited to V-shaped welds for
2

the sake of simplicity.
Table 1
Stiffness coefficients (Voigt form) used for effective material properties of austenitic
weld including damping properties inspired from [44] with grain orientation along the
first axis.

Effective stiffnesses (GPa) 𝐶11 𝐶22 = 𝐶33 𝐶12 = 𝐶13 𝐶23 𝐶44 𝐶55 = 𝐶66

Real part 220 245 135 110 80 110
Imaginary part 1.6 12 2 2.5 2.7 4.3

2.1. Macroscale weld material description

When considering wave phenomena in the Rayleigh scattering
regime for polycrystalline materials, it is common to describe the prop-
erties of the weld as those of a homogenized material, with variable
properties that are spatially correlated with the local orientation of
grain elongation. Although each austenite grain is characterized by
a face-centred cubic (FCC) structure, the preferred texture associated
with the grain elongation axis imparts orthotropic or transversely
isotropic macroscopic properties to the material [18]. Therefore, the
equivalent material can be described using such anisotropic properties,
with the axis of symmetry normal to the (quasi-)isotropic plane aligned
with the grain elongation axis [35,36]. By means of this approach, weld
inspection simulations can be performed on representative geometries
of a weld component. In assigning to the effective medium the proper-
ties of an anisotropic and attenuating material, note that this strategy
only accounts for the behaviour of the coherent wave. In this case, the
structural noise is not directly modelled but can be added a posteriori
using a set of fictitious scatterers into the weld [37].

Effective material properties in the columnar grain frame
Let us consider a REV of the weld in which the columnar grains have

similar morphologies and orientations. Then, the analysis of the coher-
ent wavefronts in various directions shows wave velocity and attenua-
tion variations representative of an homogeneous quasi-hexagonal vis-
coelastic material where the elongation axis of the grains corresponds
to the normal direction of the quasi-isotropic plane. The viscoelastic
character or damping properties helps to account for the energy loss of
the coherent wavefront due to scattering at each grain interface. It is
often transcribed in the form of a complex-valued stiffness tensor at a
fixed frequency, and different rheological viscosity models are available
with the help of parametric relaxation functions [34,38,39]. As an
example, the Maxwell’s model provides a quasi-constant attenuation
around the frequency of interest whereas the Zener one is almost linear.

Such effective anisotropic and viscosity properties can be obtained
in different ways. Either by means of experimental measurements on
samples taken from representative blocks of the welded material [35,
36] or directly deduced from a model of the microstructure (statistics
on grain geometries and crystallographic textures) by using effective
wavenumbers estimations performed by scattering models [40–43]. In
what follows, the weld material is expressed in a reference coordinate
system denoted (𝐞𝑅1 , 𝐞

𝑅
2 , 𝐞

𝑅
3 ) with columnar grain orientation along the

irst axis. Its properties are given by the complex stiffness tensor in
able 1 [44] estimated at the central frequency of 2 MHz where the
lane of isotropic symmetry is perpendicular to the elongation axis.
ote that in the following we use 𝑐𝑖𝑗𝑘𝑙 to define the components of the

fourth order stiffness tensor and 𝐶𝑖𝑗 in upper case to express the same
values in the contracted Voigt form.

Grain orientation variation into the weld
The next step involves the ability to describe the variations in

columnar grains throughout the entire weld. These descriptions are
generally defined in 2D, the third dimension being deduced using
an extrusion according to the geometry of the component (axial or
revolution extrusion). The medium is considered homogeneous for most
industrial imaging purposes, but more advanced approaches involve
inhomogeneous descriptions as illustrated in Fig. 1. A first one roughly
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Fig. 1. Main types of representations of grain orientation variations in the weld from
the most simplistic homogeneous and piecewise homogeneous model to orientation
mapping descriptions (closed-form expression or MINA grid data).

Fig. 2. Example of a Gaussian blur filter applied to raw MINA data to regularize the
description inside the welded part (standard deviation 2 mm).

describes the weld as a set of homogeneous domains with different crys-
tallographic orientations (macrographic image analysis, see e.g. [45]).
Other approaches offer smooth, idealized variations based on obser-
vations and defined using closed-form expressions such as Ogilvy’s
laws [46]. Intermediate approaches provide grid representations in
which large pixels fix the dominant orientation locally (macrographic
image analysis or MINA-like model [47]). Excessively noisy (especially
in the case of macrographic analysis) or too coarse orientation data are
not uncommon when employing such grid descriptions, as illustrated
in Fig. 1. This motivates the application of a regularization procedure,
such as a spatial Gaussian blur whose aperture size is adjustable ac-
cording to the observed orientation variations, illustrated in Fig. 2.
In what follows, smoothly inhomogeneous variation in the orientation
of columnar grains is assumed, such as the Ogilvy or regularized grid
descriptions.

Defining a coordinate system (e1, e2, e3) at each position 𝑀 in the
weld material, where e1(𝑀) corresponds to the local orientation of the
grains, the local stiffness values are given by

𝑐𝑖𝑗𝑘𝑙(𝑀) = 𝐽𝑖𝑚(𝑀)𝐽𝑗𝑛(𝑀)𝐽𝑘𝑝(𝑀)𝐽𝑙𝑞(𝑀)𝑐𝑅𝑚𝑛𝑝𝑞 (1)

where 𝐽𝑖𝑚(𝑀) = 𝐞𝑖(𝑀) ⋅ 𝐞𝑅𝑚 and 𝑐𝑅𝑚𝑛𝑝𝑞 corresponds to the effective
properties of Table 1.

2.2. The CIVA ray-based model for smoothly inhomogeneous welds: RAY
BEAM

The aim is not to describe in detail the ray model calculation
procedures used in CIVA [48], but rather to outline them, as they
3

Fig. 3. Ray calculation principles and application in the case of welding specimen.

are largely inspired by techniques found in the geophysical literature
and summarized exhaustively in these reference works [1,2]. The ray-
based model implemented in CIVA was initially based on the so-called
‘‘pencil method’’ [4,6,49]. This technique actually uses the same prin-
ciple as the dynamic ray tracing model in a wave front orthonormal
coordinates system early developed in the geophysical literature. In
order to determine the ultrasonic field observed at an observation point
𝑀 radiated by the active surface of the transducer, we calculate a
set of ray paths linking 𝑀 and the active surface, discretizing it as
a set of source points (see Fig. 3). The calculation of these ray paths
can be summarized as a succession of propagation in an homogeneous
or smoothly inhomogeneous medium and refraction (or reflection) at
the interface between two distinct media. In an homogeneous fluid
or elastic isotropic media, the calculation principle for ray tracing is
well known, and is expressed in terms of wave propagation velocities
with a straight line trajectory. For the interface crossing (discontinuity
in material properties), Snell’s laws are used to determine the new
properties of the refracted or reflected wave according to the new mode
considered (with or without conversion). Solving the system is much
more complex in an inhomogeneous anisotropic material properties.
Concerning refraction, the calculation is more onerous in an anisotropic
medium but there is no additional complexity due to the inhomogeneity
of the medium under consideration. In the following, we focus on the
particularities of propagation management in smoothly inhomogeneous
parts.

A ray is usually defined by both its position vector and its slow-
ness vector, where 𝑥𝑖 and 𝑝𝑖 denote the position and slowness com-
ponents respectively. Using the general elastodynamic equation (see
Cerveny [2] §3.6), the ray trajectory for a fixed wave mode 𝑚 (with
polarization components denoted 𝑔𝑖) can be estimated by solving two
coupled ordinary differential equations (ODEs), called axial ray system,
with respect to the travel time 𝑇 such as

⎧

⎪

⎨

⎪

⎩

d𝑥𝑖
d𝑇 = 𝑎𝑖𝑗𝑘𝑙 𝑝𝑙 𝑔𝑗 𝑔𝑘 = 𝑖,
d𝑝𝑖
d𝑇 = − 1

2𝑎𝑖𝑗𝑘𝑙,𝑖 𝑝𝑘 𝑝𝑛 𝑔𝑗 𝑔𝑙 = 𝜂𝑖.
(2)

where 𝑎𝑖𝑗𝑘𝑙 = 𝜌−1𝑐𝑖𝑗𝑘𝑙 with 𝜌 the constant density of the material
considered. 𝑖 stands for the components of the energy velocity vector.
In the second ODE, the perturbation of the slowness components along
the ray path is related to the gradient of the elasticity tensor and can be
interpreted as a continuous refraction along the trajectory of the wave-
front. This procedure is equivalent to the one proposed in [50,51]. Note
that in the case of an homogeneous medium, the components of 𝜂𝑖 are
null and the ray tracing solution corresponds to a straight line trajectory
in the energy direction estimated for the given initial value of the
wavefront direction (𝑝𝑖 components remaining constant). Hence, while
trajectory calculations for piecewise homogeneous descriptions are es-
timated using straight ray paths, smoothly inhomogeneous descriptions
lead to trajectories of curved ray paths (see Fig. 3).
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In order to estimate the amplitude variation due to geometrical
spreading of the wavefront, we have to use a second system, called
the paraxial ray system, describing the evolution of the ray tube (or
pencil) with respect to the axial ray defining by ray tube infinitesimal
parameters (𝛿𝑥𝑖 and 𝛿𝑝𝑖, i.e. 6 parameters in 3D with 𝑖 = 1, 2, 3). In
the case of the pencil method used in CIVA, the paraxial ray quanti-
ties are managed in a wavefront orthonormal coordinate system (see
Cerveny [2] §4.2.2 and §4.14.2) reducing the infinitesimal ray tube
properties to projected pencil quantities in the wavefront plane denoted
here (𝛿𝑥𝐼 , 𝛿𝑝𝐼 ) with 𝐼 = 1, 2 in 3D, i.e. 4 parameters in all. The evolution
of paraxial quantities from a source point 𝑆 to an observation point
𝑀 can be expressed in the form of a 2 × 2 block matrix, called the
propagator matrix 𝛱 , such as
{

𝛿𝑥𝐼 (𝑀) = 𝛱𝑥𝑥
𝐼𝐽 (𝑀∕𝑆) 𝛿𝑥𝐽 (𝑆) +𝛱

𝑥𝑝
𝐼𝐽 (𝑀∕𝑆) 𝛿𝑝𝐽 (𝑆),

𝛿𝑝𝐼 (𝑀) = 𝛱𝑝𝑥
𝐼𝐽 (𝑀∕𝑆) 𝛿𝑥𝐽 (𝑆) +𝛱

𝑝𝑝
𝐼𝐽 (𝑀∕𝑆) 𝛿𝑝𝐽 (𝑆).

(3)

Contrary to homogeneous media where the solution is estimated an-
alytically with respect to the rectilinear trajectory of the axial ray
(see e.g. [4]), the calculation of the propagator matrices along a ray
path in inhomogeneous material (see Cerveny [2], §4.3.1) is done by
solving another ODEs along the curved ray path using a adaptive step
size procedure [52] according to local material properties (stiffness
values and gradients). In practice, the schemes used to solve these
ODEs depend on the application. To determine the set of rays linking
our extended source (transducer) to the zone of interest (defect or
ultrasonic field zone), we use the fast Cash–Karp method combining
Runge–Kutta schemes of order 4–5. On the other hand, to determine
the evolution of the paraxial quantities and easily increment the KMAH
index (following procedure given in [53]), we retain a low-order Euler-
type scheme, essentially to ensure the stability of the calculations.
Assuming the conservation of energy flux across a ray tube section, the
geometrical spreading can also be estimated, even in inhomogeneous
anisotropic media. Then, the geometrical spreading (𝑀∕𝑆) of the ray
tube is evaluated thanks to the matrix 𝛱𝑥𝑝(𝑀∕𝑆) with (𝑀∕𝑆) =
| det𝛱𝑥𝑝(𝑀∕𝑆)|

1
2 .

In the case of a viscoelastic medium, considered later, this ap-
proach remains valid and leads us to manipulate complex quantities
implying a specific ray tracing procedure as presented in the papers of
Vavryčuk [54,55]. This procedure can be approximated by a simpler
approach neglecting dispersion effects for materials presenting suffi-
ciently high quality factors. For a given real phase direction, only the
real part of the energy velocity vector is then considered to define
the associated real ray direction. However, the slowness deduced from
the Christoffel equation using a complex stiffness tensor remains a
complex-valued solution. The associated attenuation is then related to
the imaginary part of a complex travel time. In the case of an inho-
mogeneous medium, the complex time of flight 𝜏(𝑀∕𝑆) is estimated
by the integration along the ray path 𝓁(𝑀∕𝑆) of the real travel time
quantity such as

𝜏(𝑀∕𝑆) = ∫𝓁(𝑀∕𝑆)
1 + 𝑖

ℑ(𝑝𝑖)𝑖
ℜ(𝑝𝑖)𝑖

𝑑𝑇 . (4)

Finally, at each interface between two distinct materials, in addition to
estimating the evolution of the axial and paraxial quantities applying
the Fermat’s principle, it is also necessary to calculate the transmission
or reflection coefficients of the mode conversion. The product of all
these coefficients calculated along the path 𝓁(𝑀∕𝑆) is cumulated in a
global factor denoted 𝐴𝑖𝑛𝑡𝑒𝑟(𝑀∕𝑆).

In practice for NDT applications, the probe is not considered as a
point source but as an extended surface. The emitting surface of the
ultrasonic probe is discretized using a backward ray strategy starting
from the observation point (as illustrated Fig. 3), imposing as initial
conditions a phase direction 𝑝𝑖0 (𝑀) and an aperture cone 𝛿𝑝𝑖0 (𝑀) for
each paraxial ray. Once the set of trajectories 𝓁(𝑀∕𝑆𝑛) linking the
probe surface to the observation point 𝑀 has been determined, the
4

Fig. 4. Typical 2D description used to model ultrasonic testing of a welded joint
component.

displacement field in the positive frequency domain, with 𝜔 standing
for the circular frequency, is given by

𝑢𝑖(𝑀,𝜔) = 𝐾 𝑉0(𝜔)
∑

𝑆𝑛∈𝛤𝑝

𝐴𝑖𝑛𝑡𝑒𝑟(𝑀∕𝑆𝑛)
(𝑀∕𝑆𝑛)

𝑔𝑖(𝑀∕𝑆𝑛)

× 𝑒𝑖[𝜔𝜏(𝑀∕𝑆𝑛)−
𝜋
2 𝜎(𝑀∕𝑆𝑛)]𝛥𝑆𝑛, (5)

𝛥𝑆𝑛 being the estimated effective surface area of the probe determined
using the paraxial ray parameters and 𝐾 a common constant deter-
mined by the material properties of the source and the observation
point 𝑀 . In order to introduce potential phase shift due to caustics,
the KMAH index 𝜎 counts, as mentioned in [1,2], the caustics along the
ray path 𝓁(𝑀∕𝑆) incrementing by different integer values with respect
to local properties of the matrix 𝛱𝑥𝑝 checked for each step of the
iterative procedure concerning propagation in inhomogeneous media
(see [2] §4.14.13). The limitations of these high-frequency approaches
are numerous: caustics and localized over-intensities, geometric shad-
owing and incorrect representation of frequency-dependent diffraction
phenomena, surface phenomena at the interfaces between two different
media. If most of the time these approximations have a negligible
effect on the ultrasonic response of a localized defect, it is nevertheless
difficult to affirm that the approximations of the ray model are with-
out influence, especially when dealing with complex geometrical and
material properties such as those encountered for welding parts.

2.3. Proposed ray-FE hybrid solution: FE BEAM

An alternative model has been developed to overcome the limita-
tions of the previous RAY BEAM model. It combines the efficiency of a
ray model to simulate the field radiated by a sensor in its surround-
ing environment with the robustness of a FE model to describe the
propagation phenomena within the welded part.

Model problem
The addressed problem is now defined as illustrated Fig. 4 with:

a coupling medium denoted 𝛺𝑓 , here considered homogeneous and
fluid; the two domains on either side of the weld denoted 𝛺𝑙 and 𝛺𝑟,
made of the same base metal considered as a homogeneous isotropic
steel; the welded part, denoted 𝛺𝑤, with anisotropic and potentially
smoothly inhomogeneous material properties. The complete domain of
propagation in the solid is denoted by 𝛺𝑠 = 𝛺𝑙∪𝛺𝑤∪𝛺𝑟. The continuity
of the normal velocity and traction forces is assumed at the fluid/solid
interface denoted 𝛤𝑓𝑠 while a free surface condition is assumed at the
backwall 𝛤𝑏. The probe surface included in𝛺𝑓 is denoted 𝛤𝑝 =

⋃𝑁
𝑛=1 𝛤𝑝,𝑛,

𝑁 being the number of elements of a phased-array probe. The surface
source is considered to be spatially uniform for a given element 𝑛, with
a common time dependence 𝑉𝑝(𝑡) corresponding to the particle velocity
normal to the element probe surface 𝛤 .
𝑝
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Thus, formally, the model problem can be summarized using scalar
potentials 𝜙 in acoustics and displacement vector 𝑢 = (𝑢1,… , 𝑢𝑑 )⊺ (with
= 2 in 2D, or 𝑑 = 3 in 3D) in solids such as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕2𝑡𝑡𝜙 − 𝑐𝑓 𝜕2𝑖𝑖𝜙 = 0 in the fluid part 𝛺𝑓 , 𝑐𝑓
being the pressure wave velocity,

𝜌𝜕2𝑡𝑡𝑢𝑖 − 𝜕𝑗𝜎𝑖𝑗 = 0 with 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙 𝜕𝑙𝑢𝑘 in the solid part 𝛺𝑠,
𝑐𝑓 𝜕𝑖𝜙𝑛𝑖 = 𝑉𝑝 on 𝛤𝑝,
𝜕𝑖𝜙𝑛𝑖 = 𝜕𝑡𝑢𝑖 𝑛𝑖 and 𝜎𝑖𝑗𝑛𝑗 = 𝜕𝑡𝜙𝑛𝑖 on 𝛤𝑓𝑠,
𝜎𝑖𝑗𝑛𝑗 = 0 on 𝛤𝑏, the backwall surface of the part.

(6)

FE problem
For a computational domain 𝛺, we denote by ℎ(𝛺) a tessellation of

𝛺 made of non-overlapping quadrangles (in 2D) or hexahedra (in 3D).
The associated finite element approximation space reads

𝑉ℎ(𝛺) = {𝑣ℎ ∈ 0(𝛺) ∣ ∀𝐾 ∈ ℎ(𝛺), 𝑣ℎ|𝐾 ∈ 𝑄𝑝(𝐾)}, (7)

where 0(𝛺) is the space of continuous function over the complete
domain (boundary included), and 𝑄𝑝(𝐾) is the space of polynomial
of order 𝑝 in a mesh element 𝐾. FE formulations are based on the
weak form of (6) – also referred to as the principle of virtual works
– built upon discrete approximation spaces. Namely, for any time 𝑡 ≥ 0
we seek the discrete scalar potential 𝜙ℎ(𝑡) ∈ 𝑉ℎ(𝛺𝑓 ) and the discrete
displacement vector 𝑢ℎ ∈ [𝑉ℎ(𝛺𝑠)]𝑑 such that for any test functions
𝜓ℎ ∈ 𝑉ℎ(𝛺𝑓 ) and 𝑣ℎ ∈ [𝑉ℎ(𝛺𝑠)]𝑑
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∫𝛺𝑓

(

𝜕2𝑡𝑡𝜙ℎ 𝜓ℎ + 𝑐𝑓 𝜕𝑖𝜙ℎ 𝜕𝑖𝜓ℎ
)

d𝛺 = ∫𝛤𝑝
𝑉𝑝𝜓ℎ d𝛤

+∫𝛤𝑓𝑠
𝑐𝑓 (𝜕𝑖𝜙ℎ𝑛𝑖)𝜓ℎ d𝛤 ,

∫𝛺𝑠

(

𝜌𝜕2𝑡𝑡𝑢ℎ,𝑖𝑣ℎ,𝑖 + 𝑐𝑖𝑗𝑘𝑙 𝜕𝑙𝑢ℎ,𝑘 𝜕𝑗𝑣ℎ,𝑖
)

d𝛺 = ∫𝛤𝑓𝑠
(𝜎ℎ,𝑖𝑗𝑛𝑗 )𝑣ℎ,𝑖 d𝛤 ,

𝜕𝑖𝜙ℎ𝑛𝑖 = 𝜕𝑡𝑢ℎ,𝑖 𝑛𝑖 and 𝜎ℎ,𝑖𝑗𝑛𝑗 = 𝜕𝑡𝜙𝑛𝑖 on 𝛤𝑓𝑠.

(8)

Following the previous work of [56], the fluid–solid transmission condi-
tions are taken into account using the mortar element method [57–59].
This amounts to introducing two auxiliary scalar unknowns 𝜆ℎ,𝑓 and
𝜆ℎ,𝑠 both in 𝑉ℎ(𝛤𝑓𝑠) and such that

𝜕𝑡𝜆ℎ,𝑓 = 𝜕𝑖𝜙ℎ𝑛𝑖, 𝜕𝑡𝜆ℎ,𝑠 = 𝜎ℎ,𝑖𝑗𝑛𝑗𝑛𝑖. (9)

The complete weak form of the discrete problem reads, for any tests
functions 𝜇ℎ and 𝜈ℎ in 𝑉ℎ(𝛤𝑓𝑠)
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⎪

⎪

⎩

∫𝛺𝑓

(

𝜕2𝑡𝑡𝜙ℎ 𝜓ℎ + 𝑐𝑓 𝜕𝑖𝜙ℎ 𝜕𝑖𝜓ℎ
)

d𝛺 − ∫𝛤𝑓𝑠
𝑐𝑓 𝜕𝑡𝜆ℎ,𝑓 𝜓ℎ d𝛤 = ∫𝛤𝑝

𝑉𝑝𝜓ℎd𝛤 ,

∫𝛺𝑠

(

𝜌𝜕2𝑡𝑡𝑢ℎ,𝑖𝑣ℎ,𝑖 + 𝑐𝑖𝑗𝑘𝑙 𝜕𝑙𝑢ℎ,𝑘 𝜕𝑗𝑣ℎ,𝑖
)

d𝛺 − ∫𝛤𝑓𝑠
𝜕𝑡𝜆ℎ,𝑠𝑣ℎ,𝑖𝑛𝑖 d𝛤 = 0,

∫𝛤𝑓𝑠
(𝜆ℎ,𝑓 − 𝑢ℎ,𝑖 𝑛𝑖)𝜇ℎ d𝛤 = 0,

∫𝛤𝑓𝑠
(𝜆ℎ,𝑠 − 𝜙ℎ)𝜈ℎ d𝛤 = 0.

(10)

In practice, the FE approximation spaces 𝑉ℎ are built using Spectral
Element Method (SEM). The SEM is a specific high-order mass-lumped
FE method that provides after time discretization a fully explicit time-
transient solver as the mass matrix is diagonal by construction. This
technique has been initially used in computational fluid [60] dynamics
then extended to 3D elastodynamics for seismic wave applications [14].
Thanks to its compact memory footprint, the SEM can manage 3D
calculation configurations in domains covering dozens of wavelengths
5

in all three dimensions. m
Hybridization with a ray model
The distance between the emitting boundary 𝛤𝑝 and the solid parts

is usually large, which implies from a FE computation perspective a
great number of degrees of freedom to be added for the sole purpose of
propagating the acoustic field within an homogeneous fluid medium.
To overcome this computational bottleneck we resort to an hybrid
ray/FE solution based on the principle of separation of the incident field
generated by the source and the total field, which encompasses every
contributions of the solid part. The incident field is obtained using a
ray model described in the previous section, and is denote by 𝜙inc

𝜔 . Note
that the subscript 𝜔 is used to refer to the fact that ray-based approach
are in essence built upon a high-frequency asymptotic approach. The
incident field satisfies the following problem

𝜕2𝑡𝑡𝜙
inc
𝜔 − 𝑐𝑓 𝜕2𝑖𝑖𝜙

inc
𝜔 = 0 in R𝑑 , 𝑐𝑓 𝜕𝑖𝜙

inc
𝜔 𝑛𝑖 = 𝑉𝑝 on 𝛤𝑝. (11)

For the total field computation in the solid parts we use the previous FE
discrete weak form. To inject the incident field in this formulation, we
follow the strategy proposed in [33], Appendix B. It consists in solving
in the fluid domain the difference between the incident and total field,
referred to as the diffracted field, while the boundary conditions at
the fluid–solid coupling are modify using the incident field. Hence,
the fluid–solid coupling interface also becomes the coupling inter-
face, as depicted in Fig. 5. More precisely, we consider the following
decomposition

𝜙tot
ℎ = 𝜙dif f

ℎ + 𝜙inc
𝜔 , 𝜕𝑡𝜆ℎ,𝑓 = 𝜕𝑖𝜙

dif f
ℎ 𝑛𝑖 + 𝜕𝑖𝜙inc

𝜔 𝑛𝑖, (12)

so that the final hybrid discrete formulation corresponds to finding the
discrete diffracted scalar potential 𝜙dif f

ℎ ∈ 𝑉ℎ(𝛺𝑓 ), the discrete total
displacement vector 𝑢totℎ ∈ [𝑉ℎ(𝛺𝑠)]𝑑 , and the auxiliary unknowns 𝜆ℎ,𝑓
and 𝜆ℎ,𝑠 in 𝑉ℎ(𝛤𝑓𝑠) such that
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⎩

∫𝛺𝑓

(

𝜕2𝑡𝑡𝜙
dif f
ℎ 𝜓ℎ + 𝑐𝑓 𝜕𝑖𝜙dif f

ℎ 𝜕𝑖𝜓ℎ
)

d𝛺 − ∫𝛤𝑓𝑠
𝑐𝑓 𝜕𝑡𝜆ℎ,𝑓 𝜓ℎ d𝛤

= −∫𝛤𝑓𝑠
𝑐𝑓 𝜕𝑖𝜙

inc
𝜔 𝑛𝑖𝜓ℎd𝛤 ,

∫𝛺𝑠

(

𝜌𝜕2𝑡𝑡𝑢
tot
ℎ,𝑖𝑣ℎ,𝑖 + 𝑐𝑖𝑗𝑘𝑙 𝜕𝑙𝑢

tot
ℎ,𝑘 𝜕𝑗𝑣ℎ,𝑖

)

d𝛺 − ∫𝛤𝑓𝑠
𝜕𝑡𝜆ℎ,𝑠𝑣ℎ,𝑖𝑛𝑖 d𝛤 = 0,

∫𝛤𝑓𝑠
(𝜆ℎ,𝑓 − 𝑢totℎ,𝑖 𝑛𝑖)𝜇ℎ d𝛤 = 0,

∫𝛤𝑓𝑠
(𝜆ℎ,𝑠 − 𝜙dif f

ℎ )𝜈ℎ d𝛤 = ∫𝛤𝑓𝑠
𝜙inc
𝜔 𝜈ℎ d𝛤 .

(13)

Note that in the hybrid formulation (13), both the incident acoustic
otential and its normal space derivative appear as right-hand sides,
hich is typical of transmission conditions. Finally, the fluid domain

s bounded using Perfectly Matched Layers (PMLs) [61], see Fig. 5, en-
ailing a significant gain of performances, especially when the distance
etween 𝛤𝑝 and 𝛺𝑠 is large.

mplementation strategy within the CIVA platform
Emphasis has been placed on two critical aspects essential for NDT

tudies within the CIVA platform: enabling 2D and 3D calculations on
tandard workstations and efficiently handling parametric variations
n configurations of interest. In order to meet these objectives with
he SEM model, the geometry associated with the UT configuration is
ecomposed into parametric subdomains composed of macro-elements
MEs). Each ME is meshed and defined as a deformation of a reference
ube using a predefined hexahedral mesh and is considered as a phys-
cal domain or a perfectly matched absorbing layers for which specific
haracteristics are defined according to the properties of the material
fluid, solid). Two neighbour MEs communicate with each other using
he mortar element method defined at their interface. Building the final

esh through a structured refinement of each ME allows unassembled
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Fig. 5. Typical domain decomposition of a UT scene defined in CIVA for weld sample and identification of MEs with their specific features according to material properties.
FE operations that improve the performance of standard FE procedures
in terms of memory footprint and computational load with an optimal
data structure for multi-threaded computations [32–34].

Three main stages allow an automated calculation procedure with-
out requiring expertise on the meshing procedure and other constraints
of the FE model. Initially, the process entails constructing the mesh
based on the UT scene properties, which include geometry, materials,
and central frequency. In the specific case of welded parts, a dedicated
graphical user interface (GUI) is proposed in CIVA to parametrically
describe a selection of weld geometries decomposed into MEs. Ad-
ditionally, determining the optimal time step for FE computation,
ensuring stability conditions, is crucial at this stage. Subsequently,
the calculation of the incident field at the coupling points is con-
ducted through the ray model. Finally, the FE calculation is performed
across the entire sample, with the total field (displacement or velocity)
recorded at specified observation points.

The calculation of the radiated field by the ray method is simple
and we can benefit from all the possibilities offered by CIVA on the
management of the various forms of probes encountered with phased
array transducers. Apart from the near-field effects close to the emitting
source, the solution of the asymptotic ray model provides an accurate
approximation of the radiated field without including issues related to
ray artifacts previously described. In addition, the smoothly inhomo-
geneous effective description of the weld material suits the high-order
structured (easy) automatic meshing of the weld bevel. The hybrid solu-
tion thus implemented avoids certain approximations and singularities
of the ray model by providing a solution serving as a reference while
allowing the execution of 3D calculations on component sizes of several
tens of wavelengths with optimal performance.

3. Benchmarking of models

For a given defect, the simulated echo amplitude error is propor-
tional to the square of the incident field intensity error (factor 2 in dB)
in a pulse echo acquisition mode. The accuracy of the simulated field
therefore has a direct impact on the simulated prediction. This section
6

focuses on a comparative analysis of the ultrasonic field radiated by a
transducer between the ray-based model (RAY BEAM) and the proposed
hybrid FE solution (FE BEAM). The complexity of the reference cases
studied is gradually increased: first on simple and homogeneous blocks
to validate the incorporation of anisotropy and attenuation phenomena,
then on heterogeneous blocks before studying 2D and 3D welded
assemblies configurations.

3.1. Viscoelastic and anisotropic effects on a simple geometry

Homogeneous parts
The impact of anisotropy and attenuation on the coherent wave

is first studied on a homogeneous parallelepiped block under normal
incidence (L0). This approach eliminates any supercritical phenomena
and reduces the influence of shear waves, which facilitates the modal
analysis of the main longitudinal wave while preserving energy devia-
tion phenomena. Different orientations of the same hexagonal medium
were obtained by rotating the axis of symmetry normal to the plane of
transverse isotropy (here the axis 1 for the material given in Table 1).
Applied to a uniform microstructure of elongated grains, this amounts
to varying the orientation of the principal axis of grain elongation
with respect to the principal wavefront, as illustrated in Fig. 6. The
shape of the simulated probe is circular with a diameter of 12.7mm and
the centre frequency is 2MHz with a 6 dB bandwidth of 75%. Shear
modes (qS) and reflections/conversions at the bottom of the part are
not taken into account within RAY BEAM so that only the contribution
of the direct quasi-longitudinal (qL) wave is calculated, while simulated
propagation time is limited to 23 μs within FE BEAM in order to avoid
the reflection on the backwall of the part, which is 40mm thick.

As the wavefront remains mainly parallel to the surface, the beam
energy shifts to the right or left depending on the orientation of the
axis considered. This phenomenon, as well as beam attenuation due to
viscosity (imaginary part of the stiffness tensor), are clearly observed
on the modulus of the displacement field simulated with RAY BEAM
(Fig. 7) and FE BEAM (Fig. 8). The results are in good accordance,
with increasing attenuation as a function of the orientation angle
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Fig. 6. Illustration of the different scenarios proposed for an effective homogeneous anisotropic medium. The grain structure is shown to illustrate the correspondence between
the direction of grain elongation and the 1 axis of hexagonal symmetry (red arrows).
Fig. 7. Maximum displacement modulus in time for the different cases simulated with RAY BEAM: top without attenuation (elastic model), below with attenuation (viscoelastic
model).
of the grains with respect to the wavefront. Minor differences are
observed, especially when the material is considered inviscid, and when
grain orientations are such that the wave propagates away from the
symmetry axis, as in the cases of the 30◦ and 60◦ orientations. What
may appear to be artefacts are in fact traces of slower shear waves
generated with FE that have not had time to propagate completely in
the region of interest. This is confirmed by the ray paths illustrated in
Fig. 8 (green line for qL and red lines for qS), which show the positions
of the wavefronts at the final simulation time considered. This is no
longer observed when material viscosity is considered, as the qS modes
are much more attenuated than the qL one.

A quantitative assessment of beam deflection and energy attenua-
tion with respect to variations in orientation in increments of 5 degrees
is given Fig. 9. The two models are compared with theoretical values
obtained with a plane wave (PW) model using the probe’s focal axis
as the main direction of the wavefront, always normal to the sample
surface (L0). These results are obtained by solving the Christoffel
equation in the viscoelastic case [38], which allows us to determine the
complex wave numbers associated with the complex elasticity tensor
defined in Table 1. We consider this to be an excellent agreement
that validates the models. The slight deviations observed are mainly
located in the presence of strong attenuations with grain orientation
close to 90◦, essentially on the RAY BEAM field whose attenuation is
7

underestimated. These differences are attributed to a shift to lower
frequencies of the ray model whose propagator has a linear frequency
dependence of its viscosity. FE BEAM is less sensitive to this frequency
shift as the Maxwell rheological viscosity law selected provides a quasi-
constant attenuation around the frequency of interest [34,39]. Note
that the estimation of the attenuation was not done by a frequency
spectral analysis procedure of the displacement field according to z,
as it would require a tedious process to distinguish the effects of losses
related to material viscosity from those related to the divergence of
the beam. Instead, a ratio between the measurement of the maximum
amplitude of the displacement modulus with and without taking into
account the material viscosity was applied to remove the loss effects
related to the beam divergence.

Smoothly inhomogeneous parts
Similar blocks whose grain orientations varies with depth, similar

to a continuously variable stratification according to the z direction,
are now considered. This assumption has the merit of highlighting
the effects of local variations while allowing easy interpretation of
variations in energy direction by applying Snell’s laws in the case of
a stratified plane medium. Two descriptions are proposed Fig. 10. The
first exhibits a linear variation in grain orientation from 90◦ to 0◦. The
second maintains a global grain orientation of 90◦ with a local Gaussian
variation for a 60◦ grain orientation centred at a depth of 12.7mm.
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Fig. 8. Maximum displacement modulus in time for the different cases simulated with FE BEAM: top without attenuation (elastic model), below with attenuation (viscoelastic
model). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Measurements at 30mm depth on simulated results (RAY BEAM and FE BEAM) of beam energy deflection and apparent attenuation, comparison with the theoretical
solution using a plane wave assumption at 2 MHz.

Fig. 10. Global linear (top, red) and local Gaussian (bottom, green) grain orientations within the smoothly inhomogeneous blocks, L0 (left) and L60 (right ray path.
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Fig. 11. Simulation results on smoothly inhomogeneous blocks: global linear (1st row) vs. local Gaussian (2nd row) variations, normal incidence L0 (1st column) vs. oblique
incidence L60 (2nd column).
Simulations were performed for a normal incidence (L0) and an
oblique incidence where the beam is refracted at 60◦ of the nor-
mal (L60). The energy direction is deviated by about 60◦ in oblique
incidence (12.5◦ in a coupling medium made of water) for a grain ori-
entation of 90◦ with respect to the z-normal at z = 0mm. Getting closer
to the grain orientation of 60◦, the energy directions become tangent
to the surface corresponding to a set of ‘‘critical layers’’, highlighting
phenomena that penalize the ray approach. The norm of the projected
slowness in the z-normal plane is conserved according to Snell’s laws. In
the oblique case this norm is of the order of 0.175 μsmm−1 and implies
an over-critical incidence for a range of grain orientations between 16◦

and 62◦ with respect to the z axis. On Fig. 10, for an oblique incidence,
one can anticipate with the help of the ray tracings that the linear
description leads to a diffuse grazing wave phenomenon whereas the
local Gaussian variation reveals a turning point with potential shadow
zones (phenomena well described e.g. in [62] chapter 9 for acoustic
applications).

Simulated radiated field are grouped in Fig. 11. While the RAY
BEAM and FE BEAM results are similar regardless of the layer variation
considered at normal incidence (L0), this is not necessarily the case
at oblique incidence (L60). Indeed, for the linear grain orientation
variation, the beam energy distribution patterns remain similar and the
amplitudes are very close. However, for the Gaussian grain orientation
variation, the amplitudes are less similar, particularly to the right of
the region of interest, where a splitting of the beam is observed. This
is confirmed by the quantitative comparisons of the amplitude profiles
given Fig. 12. While the magnitudes of the field are quite consistent
between the two models under a linear variation description, this
consistency breaks down under the local Gaussian variation, leading
to an observed over-intensity at 9mm depth and a too strong decay at
13mm of the ray model with respect to FE results. These two zones
correspond to distinct areas in the ray model on each side of a fold
caustic curve: a wavefront folding zone above and a penumbra on
the other side. An analysis of ray tracing indeed reveals the high
sensitivity to incidence and thus the orientation of the wavefront for
this particular case. As shown in Fig. 13, a variation of a few tenths
of a degree drastically changes the behaviour of the rays, with rays
transmitted through the Gaussian layer, a fold caustic, and a folding
of the wavefront. Due to the bounded nature of the beam, the field
is nothing but a combination of these phenomena, which explains the
observed beam splitting. If such deviations can be observed in the
presence of variations in layered anisotropy orientation, there is a high
probability that these RAY BEAM biases will be reproduced in weld
descriptions and for certain wavefront orientations.
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3.2. Application to representative welded part configurations

2D configuration
Configurations closer to industrial cases with a V-shaped weld bevel

are now considered. The ability of the CIVA ray model to provide con-
sistent results with the 2D FE calculation performed with the ATHENA
code has already been demonstrated in previous studies [30] for a
symmetrical Ogilvy’s description of the weld material. Hereafter, the
same symmetrical description of the grain orientation is considered and
an asymmetrical description is introduced Fig. 14. The latter is derived
from the grain orientations shown in [63], which is characteristic of
a welding process performed in a horizontal position. A linear phased
array probe was chosen considering the same delay law for both grain
descriptions. This law is estimated in an isotropic steel part in order
to impose a refraction of the beam with a 45◦ L-wavefront (L45) and
a focusing at the depth of the backwall (here 40mm). Comparisons of
the normalized (in space) maximum (in time) simulated displacement
modulus are shown in Figs. 15 and 16 for symmetrical and asymmet-
rical weld descriptions, respectively. FE BEAM simulated propagation
time is 19 μs and the rheological viscosity model used is Maxwell’s.

Fig. 15 shows an excellent agreement for both beam deflection and
energy loss between the two models on the symmetrical weld. At a
depth of 30mm in the weld part, the maximum relative difference is less
than 8% and its average is 3%. Moving on the asymmetric description,
Fig. 16 shows an anomalous concentration of the energy simulated by
RAY BEAM in comparison with FE BEAM with a maximum deviation
of about 30% at −8mm and an average deviation of 7% at a depth
of 30mm. These disparities correspond well to the location of strong
gradients in the orientation properties of the anisotropy into the welded
part. This observation of caustic area is similar to the phenomena
observed in the previous test cases with Gaussian variation of the grain
orientation along the z-axis.

It is worth noting that most of the discrepancies observed are mainly
on the left-hand side of the asymmetrical weld. Hence, comparable
results for the incident field estimation would be obtained if one
attempts to determine the response of a defect located on the right side
of the weld. By contrast, a significant bias is likely to occur with RAY
BEAM if the crack is located on the left side. Assessing these biases of
RAY BEAM with FE BEAM is a major asset in these particular testing
configurations. It should be mentioned that CPU calculation times of
the two modelling approaches are of the same order of magnitude
in 2D, i.e. of the order of a second or a minute depending on the
frequencies considered. These computational performances open the
possibility of using FE BEAM to perform the full NDT study when the
hypothesis of a 2D model is relevant.
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Fig. 12. Maximum displacement modulus in time at the right side of the region of interest with respect to depth for the two simulations models in oblique incidence: at left the
linear variation and at right the local Gaussian variation.
Fig. 13. Analysis of ray tracing according to the incidence of the wavefront for the proposed Gaussian orientation variation highlighting folding phenomena when the grains are
oriented at 60◦.
Fig. 14. Symmetrical (left) and asymmetrical (right) Ogilvy’s descriptions considered. Delay laws applied to the linear phased-array probe are illustrated by red bars above the
probe. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3D configuration
A welded component defined as a cylindrical extrusion of a 2D CAD

profile, inspected with a TRL (Transmit–Receive-Longitudinal) probe, is
10
finally considered (see Fig. 17). The inclination of the probe elements
and the curvature of the part induce 3D effects that must be taken
into account by the simulation. The roof angle of 5◦ for the TRL probe
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Fig. 15. Normalized maximum displacement modulus in time for RAY BEAM and FE BEAM simulations on the symmetrical weld description (left), extraction at depth z = 30mm
into the welded part (right).
Fig. 16. Normalized maximum displacement modulus in time for RAY BEAM and FE BEAM simulations on the asymmetrical weld description (left), extraction at depth z = 30mm
into the welded part (right).
is designed to naturally focus on the inspection plane at a depth of
approximately 40mm. Delay laws corresponding to an L45 deviation
in a homogeneous specimen are applied to focus on the backwall in
this plane approximately 5mm to the right of the centre of the weld
in the lateral position. An equivalent immersion configuration was
assumed with density 𝜌 = 1.18 g cm−3 and longitudinal wave velocity
𝑣𝐿 = 2.34mmμs−1 in the coupling fluid (the same as for a Rexolite
wedge). Both symmetrical and asymmetrical variations of Ogilvy’s
descriptions of the weld material are studied. The simulated ultrasonic
field is extracted on a rectangular area at a depth of 30mm inside the
weld, with dimensions of 30mm in the cylinder axis (lateral positions)
and 40mm in the extrusion axis perpendicular to the inspection plane
(extension positions). Note that for this cylindrical 3D case, the lateral
axis is now along y and the extension along x. Propagation simulation
time is limited to 18 μs in FE BEAM to avoid contributions related
to the reflection on the backwall, while only the direct wavefront
contributions of the compression wave are considered in RAY BEAM.

Again, the description of the weld material has a strong influence
on the deflection of the beam energy. As shown in Figs. 18 and 19,
the lateral position of the maximum amplitude is located at −2mm
from the central position of the weld for the symmetrical case, whereas
a significant concentration of energy is observed at −7.5mm from
this axis for the asymmetrical case. The beam deflection with out-of-
plane divergence remains well represented for both models, but the
quantitative estimates of the amplitude differ significantly. Considering
11
FE BEAM as a reference, the error is again mainly located on the
left side of the weld (see Fig. 20). Concerning the symmetric config-
uration, the deviations of approximately 13% observed near the left
bevel interface are mainly due to two reasons: mode conversions at
the internal interface between the weld and the base metal are not
taken into account in this simulation, and surface wave phenomena are
not properly modelled by ray approaches. Concerning the asymmetric
configuration, the difference of almost 40% can only be explained by
the presence of caustics already observed in the previous test cases.

4. Conclusion

The aim of this work is to study and compare the fast ray-based
solver available in CIVA to a new, more robust hybrid FE solution
for simulating ultrasonic fields radiated into welds for the purposes
of NDT. The weld material is modelled by an anisotropic viscoelastic
medium with a spatially variable anisotropic orientation according to
the grain elongation axis. This type of representation aims to reproduce
an average description of the variations in weld properties in order
to model the coherent wavefront behaviour commonly used for UT
imaging techniques. The introduction of a non-zero imaginary part
for the components of the stiffness tensor allows to account for the
effects of energy loss of the coherent wavefront due to scattering at
grain boundaries. Then, the two modelling solutions are introduced.
Both solutions can deal with wave propagation and interactions in
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Fig. 17. 3D weld configuration with a TRL probe and the simulated Region Of Interest (ROI).

Fig. 18. Normalized maximum displacement modulus in time at depth z = 30mm for the 3D configurations.

Fig. 19. Normalized maximum displacement modulus in time at depth z = 30mm w.r.t. lateral position x (top) and extension position y (bottom) for symmetric (left) and
asymmetric (right) Ogilvy’s descriptions.
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Fig. 20. Errors between RAY BEAM and FE BEAM in the weld area with symmetric
(right) and asymmetric (left) Ogilvy’s descriptions. The grey-scale is normalized w.r.t.
the maximum error observed in the asymmetric (resp. symmetric) case on top (resp.
bottom).

these smoothly inhomogeneous anisotropic media, including damping
behaviours to describe the coherent wavefront. The proposed hybrid FE
solution combines a source field calculation using a ray solution and
a transient FE calculation for estimating the wave propagation in the
weld component.

We then carried out validations and comparisons of the two models,
gradually increasing their complexity. In the first simple simulations
involving a homogeneous anisotropic medium, we demonstrated the
consistency of these models by comparing them with the solutions
expected in a plane-wave framework. We have shown how variations
in grain orientation affect both the energy deviation and the estimated
attenuation with specific effects due to anisotropy. In these simple
scenarios, we obtained strong agreement between the two models, both
consistent with the expected plane-wave behaviour. However, in a
subsequent phase, we sought to highlight the limitations of HF approxi-
mations, which can introduce unpredictable errors, particularly around
caustics. To do this, we established domains keeping a simple geometric
shape (planar half-space), but we introduced variations in the orienta-
tion properties of the grains only along a direction perpendicular to the
plane surface. Depending on the wavefront direction, the orientation
variations led to more or less significant deviations. The discrepancies
between the two solutions were attributed to both property gradients
and the orientation of the main wavefront. Notably, when encountering
‘‘critical layers’’ in oblique incidence cases, the ray method struggled
to accurately handle the observed caustic phenomena, resulting in
pronounced deviations.

Similar, yet more challenging to predict, phenomena arise in weld
inspection configurations closer to real-world applications. Anisotropy
variations within the weld, influenced by welding positions, have been
observed to cause significant deviations in the ray model, especially in
regions where both specific wavefront directions and abrupt changes
in grain orientation coincide. These discrepancies can result in the
erroneous simulation of ultrasound indications for defects located in
13
these regions of the weld. To address such issues and ensure the accu-
racy of fast ray solutions in both 2D and 3D cases, reference solutions
established with the assistance of the hybrid FE model can be em-
ployed, providing interpretation and dispelling uncertainties regarding
the reliability of the results.

The current mesh strategy for the FE scene results in a high-order
structured mesh with excellent performance on straight or V-shaped
bevels. Special attention is now given to expanding the range of weld
geometries that can be simulated. Our primary focus is to strike a bal-
ance between maintaining high performance and increasing flexibility
to handle a wider range of realistic, complex bevel shapes (such as
backwall caps or complex weld roots). In addition, while the currently
implemented hybrid solution addresses the biases associated with the
HF approximation of the radiated field solution, there is no current
equivalent for simulating the ultrasound echographic response. We are
actively working on this task and will provide updates in a future paper.
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