
HAL Id: cea-04672564
https://cea.hal.science/cea-04672564v1

Submitted on 19 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

To Share or Not to Share: a case for MPI in
Shared-Memory

Julien Adam, Jean-Baptiste Besnard, Adrien Roussel, Julien Jaeger, Patrick
Carribault, Marc Pérache

To cite this version:
Julien Adam, Jean-Baptiste Besnard, Adrien Roussel, Julien Jaeger, Patrick Carribault, et al.. To
Share or Not to Share: a case for MPI in Shared-Memory. EuroMPI 2024, Sep 2024, Perth (Australia),
Australia. �cea-04672564�

https://cea.hal.science/cea-04672564v1
https://hal.archives-ouvertes.fr


To Share or Not to Share:
a case for MPI in Shared-Memory

Julien Adam1, Jean-Baptiste Besnard1, Adrien Roussel2,3, Julien Jaeger2,3,
Patrick Carribault2,3, and Marc Pérache2,3

1 ParaTools SAS, France
2 CEA, DAM, DIF, F91297 Arpajon, France

3 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance
pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France

Abstract. The evolution of parallel computing architectures presents
new challenges for developing efficient parallelized codes. The emergence
of heterogeneous systems has given rise to multiple programming models,
each requiring careful adaptation to maximize performance. In this con-
text, we propose reevaluating memory layout designs for computational
tasks within larger nodes by comparing various architectures. To gain
insight into the performance discrepancies between shared memory and
shared-address space settings, we systematically measure the bandwidth
between cores and sockets using different methodologies. Our findings
reveal significant differences in performance, suggesting that MPI run-
ning inside UNIX processes may not fully utilize its intranode bandwidth
potential. In light of our work in the MPC thread-based MPI runtime,
which can leverage shared memory to achieve higher performance due to
its optimized layout, we advocate for enabling the use of shared memory
within the MPI standard.

Keywords: MPI · NUMA · Memory · Thread · Programming Models.

1 Introduction

The parallel programming landscape has undergone significant changes in recent
decades, posing challenges for developers working on long-standing applications.
Initially relying solely on Message Passing Interface (MPI) for distributed mem-
ory parallelism, the evolution of hardware and increasing node complexity has
necessitated the adoption of hybrid MPI+X models such as OpenMP for shared
memory parallelism since the early 2000s. This trend is likely to persist through
the development of more powerful nodes while memory per core decreases.

Moreover, the emergence of converged or topologically-sensitive hardware,
characterized by Non-Uniform Memory Access (NUMA), has added another
layer of complexity to parallel programming. Writing efficient codes in such envi-
ronments is crucial for minimizing data movement across the memory hierarchy.
This requirement often necessitates the use of multiple programming models,



2 Adam J. et al.

including distributed and shared memory paradigms, as well as a thorough un-
derstanding of the hardware.

While these concepts are well-documented in literature, navigating this com-
plex landscape with existing code while preserving performance remains an open
research question. In this paper, we pose the question of the role of MPI in man-
aging data locality. It is clear that, in its default form, MPI is NUMA-aware,
as it creates separate processes with clear bindings. However, as we will further
elaborate in the rest of this paper, communication between Unix processes is
suboptimal in shared-memory configurations. After measuring this difference on
recent hardware, we argue that having shared-memory communication primi-
tives in MPI could be beneficial given the increasing size of nodes and their
heterogeneity — requiring careful computing spatialization.

2 Background and Motivation

In this paper, we focus specifically on shared memory programming with increas-
ingly large nodes that require hybridization. We first recall how programming
interfaces are evolving to accommodate multiple models in a single application.
Then, we discuss the contribution of our research; questioning the position of
MPI in this model nesting and suggesting it could also apply to shared-memory
systems. Furthermore, we touch upon existing methods for moving data inside
and between processes on a single node.

2.1 On the Evolution of Programming Interfaces

When examining legacy applications with respect to parallel computing using
shared memory, it has become increasingly specialized over time to reveal hi-
erarchical parallelism. With GPUs emerging as the preferred choice for energy-
efficient computing, an additional layer has been introduced to the hardware
stack. As a result, vendor-specific interfaces are commonly employed due to
their extensive support and efficiency compared to portable alternatives such as
OpenMP Targets. This inclination towards higher-level, vendor-supported inter-
faces supports the development of abstraction layers like Kokkos in C++ [28],
aiming to conceal the underlying differences to ease adoption and efficient par-
allelization.

MPI has long been the go-to choice for high-performance computing applica-
tions due to its widespread adoption. However, in the realm of machine learning,
vendors have adopted smaller subsets of MPI into their vendor-specific libraries
such as NCCL, RCCL, and oneCCL [32]. This shift can be attributed to several
reasons. Firstly, the complexity of MPI and its lack of native support for GPUs–
essential components in ML–could be a significant factor. The expectations of
end-users for drop-in implementations may have further motivated vendors to
develop customized solutions better suited to their hardware and topologies [5].
Abstracting these optimizations into standard interfaces is challenging in the
face of industry competition.



To Share or Not to Share: a case for MPI in Shared-Memory 3

Back to the context of HPC, MPI remains the de facto standard for distribut-
ing computations. Its stability and rigorous standardization make MPI reliable
for long-running production applications historically used in high-performance
computing landscapes. However, we argue that MPI requires significant evo-
lutions to maintain its position as the preferred embedding model for modern
HPC workloads. We refer to MPI as the embedding model because when a paral-
lel program is initiated, it begins with UNIX processes operating under the batch
manager, which are subsequently assigned ranks to establish a logical mapping
of processes (a specific rank within MPI COMM WORLD). MPI plays a pivotal role
in defining how jobs are structured and executed, while applications are con-
structed around its abstraction. Moreover, programs can further subdivide each
logical unit using in-memory parallel programming models like OpenMP. In cases
where necessary, they can even incorporate GPU code through the utilization
of optimized BLAS libraries or by transferring part of the code to GPUs using
frameworks such as CUDA, ROCm, or oneAPI.

2.2 Means of Moving and Sharing Memory in Linux

The long history of MPI has been instrumental in driving the development and
exploration of not just data movement over high-performance networks, but
also within nodes, i.e., between Unix processes. As such, at the node level, the
MPI runtime provides a means to move small messages using shared memory
segments (SHM) [4]. These segments are structured as message queues between
MPI processes, with the same pages projected into the address space of multiple
processes. When an MPI process sends or receives a message, it first copies
the data into the shared-memory segment before copying from the segment and
placing it in the final buffer. This necessarily leads to two separate copies of the
same data: one in the segment, another from the segment. It should be noted
that MPI’s main messaging interface, designed for distributed memory, always
involves copying message data from one buffer to another, leading to duplication
of information.

Despite shared memory being the preferred approach for small messages due
to its efficiency, larger messages require a different method. The projected mem-
ory region has a fixed size, thus fragmentation is necessary if SHM is used, leading
to unnecessary copies and extra overhead. Alternative approaches include using
DMA-capable network cards to perform local DMA for copy operations. If these
methods are not feasible, the Linux kernel can be used as a trusted third-party
to carry out memory copies across process address spaces. These interfaces, such
as Cross-Memory Attach (CMA) [31], which is standard in Linux and performs
cross-address space copies, take an IOVEC and a process ID to perform the
copy. Similar interfaces, including KNEM [10], LiMIC [16], or more recently
XPMEM [30], with improved performance or support for DMA engines such as
I/O AT were also developed as kernel modules due to their need to securely
bridge process address spaces.



4 Adam J. et al.

2.3 Contribution

In the face of escalating demands for parallel programming models and divergent
development approaches, it is imperative to recognize the necessity of advanced
abstraction layers to ensure feasible and manageable program development. By
abstracting away complexity, we can maintain productive development processes
despite intricate underlying architectures. However, existing methods employing
nested abstractions present significant challenges in both programming and per-
formance optimization.

To substantiate this argument, we conduct a series of experiments using
openly available codes4 to evaluate the performance disparities between shared-
memory and shared-address spaces on contemporary hardware platforms such as
the Nvidia Grace Superchip and Intel Sapphire Rapids. Following earlier research
by Hori et al. [13], we also conclude that for communication-intensive and/or
memory-bound applications, MPI executed within UNIX processes is unable to
fully tap into its potential on these devices – requiring a single process per node
to take advantage of full bandwidth capabilities.

Our intention is not to propose a definitive solution to this predicament.
Instead, we draw attention to various remedies that have been proposed in the
literature (including our past work) and discuss potential enhancements to MPI,
such as enhanced awareness of shared-memory execution, which could better
exploit its capabilities.

3 Performance Measurement Approach

In this section, we outline our approach for evaluating memory transfer per-
formance, focusing on empirical methods. Our tests aim to explore the band-
width between different locations. Measuring latency typically involves exchang-
ing small messages and calculating the round-trip time. Alternatively, bandwidth
can be estimated by determining the duration required for a message of known
size to transfer. However, in practice, gauging bandwidth proves simpler than
assessing latency due to its role as a bandwidth penalty during transfer initia-
tion. To bypass these costs, we opt for large data transfers (exceeding 1 MB) in
our experiments. The bandwidth results are then averaged from N transfer trials
to eliminate the impact of initialization. Based on the proposed practical data
transfer model, our study aims to investigate the effectiveness of various data
transfer methods across several representative architectures, such as NVIDIA
Grace Superchips and Intel Sapphire Rapids. This allows us to evaluate the per-
formance of inter-core connectivity and the quality of cross-chip interconnects.
To achieve this goal, we ask the question: how can a program optimally uti-
lize this interconnect and bandwidth using standard system interfaces, including
MPI? To answer this question, we conducted measurements to determine both
sequential and parallel core-to-core bandwidth within and between sockets.

4 https://github.com/besnardjb/memmapper

https://github.com/besnardjb/memmapper


To Share or Not to Share: a case for MPI in Shared-Memory 5

The measurements we conducted enable us to assess the cost difference be-
tween a shared-memory approach (using memcpy) and a shared-address space
method utilizing the Cross-Memory Attach interface on our selected architec-
tures. Although interfaces such as XPMEM [30,13] may offer better performance,
they were not available in our test environment. However, these interfaces still
require a kernel mitigation to project the remote address space into the local one,
which comes with its own cost and necessitates caching by MPI for optimal effi-
ciency. Once implemented, this can be viewed as an on-demand shared memory
segment, ensuring high performance. During this process, we also examine the
data-movement performance of MPI, which is the de facto standard for moving
data between processes in HPC. Hybrid approaches such as MPI+OpenMP still
leverage the same fundamental data transfer technologies relying on methods
like memcpies for exchanging information and the reason we chose to focus on
pure MPI.

The idea behind these measures is to contextualize how well data can be
moved across various architectures. Of course, there are other performance pa-
rameters, such as latency and operations per cycle. We do not purport to cover
all aspects of the performance spectrum. In fact, some applications may not be
sensitive to bandwidth and might instead be more computing-bound. However,
in the case of MPI, which is focused on moving data around, our goal is to iden-
tify a measurable parameter (in this case, bandwidth), project it onto multiple
architectures, outline overall performance improvements, and demonstrate the
ability of interfaces to harvest maximum performance.

3.1 Sequential Shared-Memory Core-to-Core Bandwidth

When considering two cores exchanging data in point-to-point communication,
what is the achievable bandwidth? To measure this, we set up a system where
data segments are mapped to specific cores with proper affinity. We then copy
that data to a buffer local to another processing unit while repeating these steps
for the entire system. This measures the sequential bandwidth (as only one trans-
fer occurs at a time) between cores, which is a common and basic measurement
in many computer systems used as a baseline to evaluate the performance of the
memory subsystems. We have developed a simple memmapper5 tool, which can
carry out this procedure with configurable sizes.

Looking at Figure 1, it is noticeable that NUMA effects have a significant im-
pact on memory bandwidths between cores. As nodes become larger, the mem-
ory hierarchy also becomes more complex. For example, looking at the figure
depicting 1MB transfers on the Grace Superchip (top left), one can see how
the performance differs without considering cache effects when the data size
increases to 100MB (bottom left). As expected, this analysis reveals that spa-
tializing processing correctly can significantly enhance data transfer rates and
reduce bottlenecks when performing concurrent transfers between cores. How-
ever, the question that arises from these measurements is whether this behavior

5 https://github.com/besnardjb/memmapper

https://github.com/besnardjb/memmapper


6 Adam J. et al.

Fig. 1: Outline of NUMA effects on various architectures and transfer sizes. Co-
ordinates (x, y) denotes data transfers from core x to core y. Color represents
averaged bandwidth over 1000 transfers.

remains consistent when conducting several parallel transfers, or if there are any
bottlenecks. To this purpose, in the next section, we will compare both CMA and
memcpy when performing parallel data-transfers, which are more representative
of HPC payloads.

3.2 Parallel Shared-Memory Core-to-Core Bandwidth

We repeated these measurements by creating data-transfer pairs between cores
located in the same socket and across different sockets. To achieve this, we pre-
pared buffers and synchronously initiated the transfers. The measured band-
width is the average of the bandwidths over the entire duration of each transfer,
not an average of individual bandwidths. This approach accounts for tempo-
ral scattering of data transfers, as it is virtually impossible to ensure that all
transfers start simultaneously and complete at the same time.

In Figure 2, we present results for N concurrent data transfers within a
given socket and between sockets of a particular architecture for both 1MB and
200 MB message sizes. These measurements were obtained using memory reuse,
which involves averaging the bandwidth of 100 transfers of the same buffer after
it has been bound to local affinity with a memset operation. Consequently, these
measurements are susceptible to cache effects since the same data is copied
multiple times. For instance, in Figure 2 bottom left, when transferring between
sockets, the total bandwidth reaches up to 1300MB/sec on Grace Superchip,
which surpasses the theoretical peak of NVLink interconnect (900GB/sec) due
to caching effects. However, this effect diminishes at larger sizes because cache
effects decrease.



To Share or Not to Share: a case for MPI in Shared-Memory 7

Fig. 2: Total bandwidth for concurrent transfers both inside and between sockets
on various architectures using either Cross-Memory Attach or regular memcpy

(shmem). All measurements are averaged 100 times.

To clarify, until now, we have discussed how shared memory bandwidth has
evolved within a single node in the context of a single address space. However, it
is essential to note that MPI is designed to run on distributed memory systems,
which means multiple processes need to exchange data efficiently both within a
node and between nodes. While high-speed interconnects can be used for com-
munication between nodes, intranode communications require different methods.
For smaller messages, most MPI implementations employ shared memory seg-
ments, where data is copied into the segment and subsequently transferred to the
destination buffer. However, this approach may not be efficient for larger mes-
sages due to potential fragmentation. As a result, for larger messages MPI pri-
marily uses Cross-Memory Attach or its more advanced implementation KNEM
for interprocess communication across different address spaces.

Looking at Figure 2, a comparison between shared-memory and CMA band-
width reveals that the performance difference increases with the number of in-
volved cores. This leads to significant performance differences, as shown in Table
1. We observe that Intel Sapphire and Nvidia Grace Superchip exhibit different
responses. Overall, shared-memory improves performance by a factor of 2.63 on
average compared to CMA. However, with larger copies, the transfer perfor-
mance of Grace is significantly decreased when compared to messages fitting in



8 Adam J. et al.

Nvidia GRACE Intel SAPPHIRE

Size Intra Inter Intra Inter

1MB 2.64 4.81 1.77 1.94
200MB 1.41 0.76 4.28 3.43

Table 1: Performance ratio between Shared-Memory and CMA for the largest
number of concurrent copies, considering configurations of Figure 2.

caches, making CMA faster than memcpy in such cases. This is a singular result
that we consider linked to saturation on the NVLINK, leading to performance
improvements due to the extra overhead of CMAs alleviating contention. This
hypothesis is supported by the noisier response of the system (despite the 100
averages), as evident from Figure 2 bottom right.

Note that this performance difference can be mitigated with more advanced
shared-address space mechanisms, such as XPMEM. However, we did not have
access to systems of the given architecture with this module installed. Nonethe-
less, despite the ability to bypass the kernel in the copies once the pages are
projected, there is still a need to set up segments (and thus implement a ren-
dezvous protocol and necessary caching). This necessarily creates overhead for
teardown and setup. As such, even though the bandwidth penalty would be re-
duced on a projected segment, the projection cost would remain, particularly for
applications that frequently change buffers over time.

4 Adapting MPI to Shared-Memory

Given the observed performance difference between CMA and a shared-memory
copy, we must consider the implications for MPI. MPI is designed for distributed
memory systems, which run on multiple nodes; however, its support for shared
memory might be limited due to its design. In this section, we will discuss po-
tential solutions to address this situation. We start by recalling current shared-
memory support in MPI. Then, we discuss how the standard may progressively
incorporate support for shared-memory. Lastly, we recall alternative methods
for porting MPI in shared-memory including process virtualization.

4.1 Current and Past Support for MPI in Shared-Memory

Although MPI has made significant strides forward with the introduction of
version 4.0, support for shared-memory has remained relatively stagnant since
MPI 3.0. One notable exception to this trend is the addition of MPI 3.0 shared-
memory windows, which have enabled a shared address space to be projected
between MPI processes running on the same node. This window mechanism rep-
resents an important step towards harnessing the performance benefits of shared
memory within the context of the MPI paradigm. By enabling in-memory com-
munication and collaboration between processes, these shared-memory windows



To Share or Not to Share: a case for MPI in Shared-Memory 9

can lead to improved efficiency and reduced latency in parallel computing appli-
cations that utilize both message passing and shared memory [12].

Moving forward, several mitigation strategies were introduced. The most no-
table advancement was in MPI 4.0’s Partitioned Communications [7,9], which
allowed multiple contributors to one communication. As matching is done at
the initialization of the partitioned communication, the matching step can be
removed and buffers can directly be moved to the destination.

FinePoints [11] were also considered, allowing for shared memory ranks to
be added to a given rank in MPI, thus enabling MPI partitioned to work with
shared-memory in a thread-aware manner. However, the Allocating Receive and
Freeing Send operations [21] were initially considered but ultimately rejected by
the MPI forum due to issues with implementing derived datatypes on such in-
place transfers. Eventually, the proposal for an endpoint feature (the ability to
add shared-memory ranks to a given rank), also known as MPI Endpoints [20],
remained unfinished due to lack of consensus from the broader MPI community.

Overall, the most commonly used MPI interfaces are still copy-oriented and
do not take advantage of a shared-memory setup, impeding memory duplica-
tion between the source and destination buffer. Furthermore, ways of numbering
ranks within a shared-address space are not part of the standard, preventing
the exploration of alternative copy-avoiding messaging mechanisms that might
benefit from the performance gains we have exposed in previous sections. Conse-
quently, MPI is bound to be avoided at the node level and limited to inter-node
exchanges unless it can expose dedicated interfaces to efficiently address node-
level topology. As an embedding programming model, being able to “name”
threads bound to various localities within a given process may allow for finer-
grain usage of nested programming models while facilitating software differentia-
tion (workflows [19], MPMD [27], service oriented [25], invasive computing [17]).

4.2 Shared Memory Extensions to MPI

It is not because MPI did not address shared-memory issues in recent years
that MPI cannot propose solutions for such scenarios. Indeed, MPI is primarily
designed to share data between multiple MPI processes and even nodes, ensuring
high performance and portability over many decades. However, as mentioned
earlier, we have shown that it is no longer capable of delivering peak performance
for node-local operations. In order to deal with this state of affairs, we identify
two major axes of evolution for MPI: process addressing and buffer-sharing.

MPI is the programming model for spatializing computation. It acts as the
embedding model, as most HPC simulations are initially structured around the
linear ranking of MPI. However, we have seen that such addressing was not pos-
sible at the node level with full performance, encouraging nested programming
models instead. In recent evolutions of MPI regarding topology support, it would
be desirable to allow MPI to expose shared memory in its numbering scheme
– manifesting as endpoints. Shared memory structuring becomes increasingly
significant when observing converged architectures that feature differentiated
computing units bound to the same memory. Similarly, this would facilitate the



10 Adam J. et al.

use of a single process per node by enabling precise addressing of remote end-
points, which may exhibit differing behavior due to node-level NUMA effects.

Another way of improvement is the support for thread-aware communication
primitives. This aligns with the ownership passing proposal, enabling data ex-
changes between ranks without doing any copy, effectively swapping pointers [2].
Additionally, this can serve as a foundation for coordination operations between
collocated ranks, implementing shared memory queues [18,6,24] for inter-thread
communication or Remote Procedure Calls (RPCs) [25,29]. In fact, there is a
wide range of communication operations in a shared-memory environment that
MPI has overlooked and which seems relevant to us. Therefore, enabling their
use at the interface level, if possible as transparently as possible, appears crucial
given the performance difference we have measured. Future work on MPI ses-
sions exposing multiple MPI contexts in the same process could be a potential
avenue for this support.

4.3 Thread-Based and Shared-Address Space Approaches

One potential strategy for transforming MPI into a more favorable execution
environment is translating it into alternative models. In this context, several
methods have emerged to bridge the gap between MPI processes. Two notable
examples are Process in Process (PiP) [14,22], which employs the dlmopen call,
and running MPI within threads [8,15,23]. However, the applicability of these
methods raises concerns about compatibility with existing codes that might not
be suitable for execution in threads due to their reliance on unique global vari-
ables. To overcome these challenges, it is essential to convert global variables into
thread-local storage (TLS). For instance, MPC introduces a modified compiler
that offers extended TLS levels for this purpose [1]. The concept of converting
processes into a shared-address space represents an indirect approach to com-
pensate the lack of shared-memory primitives in MPI. This method provides the
advantage of enabling the porting of existing codes with minimal modifications,
although it requires more effort at compile time to ensure correct compilation
and privatization of the programs. Other approaches, such as SMARTMAP [3]
and PVAS [26], consider exposing process images that can run in shared-memory
by leveraging the operating system. One advantage of this indirect approach is
its native support for legacy codes that do not require evolution to leverage
shared-memory approaches. However, having such support in MPI would allow
for a simpler implementation, without relying on either a modified compiler or
operating system.

5 Evaluating Shared-Memory Gains for MPI

To better illustrate the performance improvements obtained with shared mem-
ory in MPI, let’s examine a common benchmark: the OSU bibw, which measures
bidirectional bandwidth between two MPI processes. We ran this benchmark on
MPC with process-based (CMA enabled), thread-based, OpenMPI with CMA



To Share or Not to Share: a case for MPI in Shared-Memory 11

Fig. 3: Comparison of OSU Bi-Bandwidth benchmark performance between
MPC other MPIs on the Intel Sapphire Rapids 4410T.

support6, and MPICH compiled with UCX while forcing CMA 7. Figure 3 shows
a performance improvement of 59% between MPC and OpenMPI, aligning with
the expected gain of 67% for small messages inside a socket indicated in Table
1. This improvement may be put into perspective because of the added over-
head of locking and MPI semantics management. For smaller sizes, MPC incurs
higher overheads due to its always-on thread-based nature, but it still manages
to utilize shared memory bandwidth for larger messages unlike other MPI im-
plementations. It is important to note that XMPEM would have alleviated this
observation, allowing for improved bandwidth, but it is less portable and requires
a modified kernel. In contrast, shared memory is a more common solution.

Overall, through a set of relatively simple measurements utilizing common
and widely accessible interfaces, we have shown that extensions to MPI enabling
shared memory present an appealing approach for maintaining the advantages of
both thread-based and process-based MPI approaches. In general, standard MPI
(both SHM and CMA) is incapable of fully exploiting the bandwidth in a shared-
memory system. On the other hand, blending models introduces complexity to
programs and may restrict them to either proprietary or non-portable shared-
memory runtimes. Therefore, permitting MPI to address shared-memory locality
would allow a more precise division of labor between shared-memory models
while leveraging the widespread and portable nature of MPI.

6 Conclusion

In this study, we examined the limitations of data transfer performance between
shared memory and accross processes, particularly within the context of MPI.
Our investigation revealed that MPI’s current model of mapping processes to

6 spack install openmpi fabrics=cma
7 spack install mpich netmod=ucx ^ucx +cma and export UCX TLS=sm



12 Adam J. et al.

UNIX ones creates a barrier that hampers efficient data transfers within nodes.
This prompted us to explore alternative approaches for adapting MPI to shared-
memory environments.

Three potential solutions were investigated: the existing model with one pro-
cess per node, thread-based MPI with its associated complexities and possi-
ble locking overheads, and rethinking the nature of MPI processes to expose a
node-level communication layer in shared memory contexts. We concluded that
the latter approach offers the most promising extension to MPI, enhancing pro-
grammability in converged architectures by allowing locality and communication
within processes to be expressed transitively with respect to existing codebases.

This conclusion is supported by our findings that demonstrate integrating
shared memory support into MPI can significantly enhance performance, ad-
dress locality issues, and enable a more accurate division of labor between
shared-memory models. These benefits include the full utilization of bandwidth
in shared-memory systems, ensuring compatibility with existing codes, and pro-
viding significant performance improvements while maintaining wide system and
application compatibility.

7 Future Work

In this study, our objective is to delve into shared-memory extensions for MPI.
Specifically, we believe that the Session model has the potential to allow us to
expose endpoints in a transparent manner within MPI. The context nesting fa-
cilitated by sessions enables us to generate endpoints by dynamically assigning
ranks to all local threads participating in the MPI Comm create from group col-
lective call. With a dedicated pset, MPI could operate in shared-memory without
requiring any modifications. However, it is likely that runtimes and associated
MPI calls would need tuning to fully leverage this new configuration. Under such
circumstances, all RDMAs would become memcpys, message transfers would also
be handled as memcpys, and both the source and destination could initiate the
copy. Ultimately, on these shared-memory communicators, pointers to data could
be exchanged directly rather than systematically copying.

References

1. Besnard, J.B., Adam, J., Shende, S., Pérache, M., Carribault, P., Jaeger, J., Mal-
ony, A.D.: Introducing task-containers as an alternative to runtime-stacking. In:
Proceedings of the 23rd European MPI Users’ Group Meeting. pp. 51–63 (2016)

2. Besnard, J., Malony, A.D., Shende, S., Pérache, M., Carribault, P., Jaeger, J.: An
MPI halo-cell implementation for zero-copy abstraction. In: Dongarra, J.J., Denis,
A., Goglin, B., Jeannot, E., Mercier, G. (eds.) Proceedings of the 22nd European
MPI Users’ Group Meeting, EuroMPI 2015, Bordeaux, France, September 21-23,
2015. pp. 3:1–3:9. ACM (2015). https://doi.org/10.1145/2802658.2802669, https:
//doi.org/10.1145/2802658.2802669

https://doi.org/10.1145/2802658.2802669
https://doi.org/10.1145/2802658.2802669
https://doi.org/10.1145/2802658.2802669


To Share or Not to Share: a case for MPI in Shared-Memory 13

3. Brightwell, R., Pedretti, K., Hudson, T.: Smartmap: Operating system support
for efficient data sharing among processes on a multi-core processor. In: SC’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE (2008)

4. Buntinas, D., Mercier, G., Gropp, W.: Implementation and evaluation of shared-
memory communication and synchronization operations in MPIch2 using the neme-
sis communication subsystem. Parallel Computing 33(9), 634–644 (2007)

5. Chen, C.C., Shafie Khorassani, K., Kousha, P., Zhou, Q., Yao, J., Subramoni,
H., Panda, D.K.: MPI-xccl: A portable MPI library over collective communication
libraries for various accelerators. In: Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network, Storage, and
Analysis. pp. 847–854 (2023)

6. Dilley, N., Lange, J.: An eMPIrical study of messaging passing concurrency in
go projects. In: 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 377–387. IEEE (2019)

7. Dosanjh, M.G., Worley, A., Schafer, D., Soundararajan, P., Ghafoor, S., Skjel-
lum, A., Bangalore, P.V., Grant, R.E.: Implementation and evaluation of MPI 4.0
partitioned communication libraries. Parallel Computing 108, 102827 (2021)

8. Friedley, A., Bronevetsky, G., Hoefler, T., Lumsdaine, A.: Hybrid MPI: efficient
message passing for multi-core systems. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis. pp.
1–11 (2013)

9. Gillis, T., Raffenetti, K., Zhou, H., Guo, Y., Thakur, R.: Quantifying the perfor-
mance benefits of partitioned communication in MPI. In: Proceedings of the 52nd
International Conference on Parallel Processing. pp. 285–294 (2023)

10. Goglin, B., Moreaud, S.: Knem: A generic and scalable kernel-assisted intra-node
MPI communication framework. Journal of Parallel and Distributed Computing
73(2), 176–188 (2013)

11. Grant, R.E., Dosanjh, M.G., Levenhagen, M.J., Brightwell, R., Skjellum, A.:
Finepoints: Partitioned multithreaded MPI communication. In: High Performance
Computing: 34th International Conference, ISC High Performance 2019, Frank-
furt/Main, Germany, June 16–20, 2019, Proceedings 34. Springer (2019)

12. Hoefler, T., Dinan, J., Buntinas, D., Balaji, P., Barrett, B., Brightwell, R., Gropp,
W., Kale, V., Thakur, R.: MPI+ MPI: a new hybrid approach to parallel program-
ming with MPI plus shared memory. Computing 95, 1121–1136 (2013)

13. Hori, A., Ouyang, K., Gerofi, B., Ishikawa, Y.: On the difference between shared
memory and shared address space in hpc communication. In: Asian Conference on
Supercomputing Frontiers. Springer International Publishing Cham (2022)

14. Hori, A., Si, M., Gerofi, B., Takagi, M., Dayal, J., Balaji, P., Ishikawa, Y.: Process-
in-process: techniques for practical address-space sharing. In: Proceedings of the
27th International Symposium on High-Performance Parallel and Distributed Com-
puting. pp. 131–143 (2018)

15. Huang, C., Lawlor, O., Kale, L.V.: Adaptive MPI. In: Languages and CoMPIlers
for Parallel Computing: 16th International Workshop, LCPC 2003, College Station,
TX, USA, October 2-4, 2003. Revised Papers 16. pp. 306–322. Springer (2004)

16. Jin, H.W., Sur, S., Chai, L., Panda, D.K.: Limic: Support for high-performance
MPI intra-node communication on linux cluster. In: 2005 International Conference
on Parallel Processing (ICPP’05). pp. 184–191. IEEE (2005)

17. John, J., Narvaez, S., Gerndt, M.: Invasive computing for power corridor manage-
ment. Parallel Computing: Technology Trends 36, 386 (2020)

18. Malony, A.D., Reed, D.A., McGuire, P.J.: Mpf: A portable message passing facility
for shared memory multiprocessors. Tech. rep. (1987)



14 Adam J. et al.

19. Martinelli, A.R., Torquati, M., Aldinucci, M., Colonnelli, I., Cantalupo, B.: Capio:
a middleware for transparent i/o streaming in data-intensive workflows. In: 2023
IEEE 30th International Conference on High Performance Computing, Data, and
Analytics (HiPC). pp. 153–163. IEEE (2023)

20. MPI Forum: MPI Endpoints Proposal. https://github.com/MPI-forum/

MPI-issues/issues/56 (2015), accessed: 2024
21. MPI Forum: Arecv/Fsend Proposal. https://github.com/MPI-forum/

MPI-issues/issues/32 (2016), accessed: 2024
22. Ouyang, K., Si, M., Hori, A., Chen, Z., Balaji, P.: Cab-MPI: exploring interpro-

cess work-stealing towards balanced MPI communication. In: SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE (2020)

23. Pérache, M., Jourdren, H., Namyst, R.: Mpc: A unified parallel runtime for clus-
ters of numa machines. In: Euro-Par 2008–Parallel Processing: 14th International
Euro-Par Conference, Las Palmas de Gran Canaria, Spain, August 26-29, 2008.
Proceedings 14. pp. 78–88. Springer (2008)

24. Pieper, R., Löff, J., Hoffmann, R.B., Griebler, D., Fernandes, L.G.: High-level and
efficient structured stream parallelism for rust on multi-cores. Journal of Computer
Languages 65, 101054 (2021)

25. Ross, R.B., Amvrosiadis, G., Carns, P., Cranor, C.D., Dorier, M., Harms, K.,
Ganger, G., Gibson, G., Gutierrez, S.K., Latham, R., et al.: Mochi: Composing
data services for high-performance computing environments. Journal of Computer
Science and Technology 35, 121–144 (2020)

26. Shimada, A., Gerofi, B., Hori, A., Ishikawa, Y.: Proposing a new task model to-
wards many-core architecture. In: Proceedings of the First International Workshop
on Many-core Embedded Systems. pp. 45–48 (2013)

27. Shimosaka, T., Murai, H., Sato, M.: A design of a communication library between
multiple sets of mpi processes for mpmd. In: 2014 IEEE 17th International Con-
ference on Computational Science and Engineering. pp. 1886–1893. IEEE (2014)

28. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N.,
Gayatri, R., Harvey, E., Hollman, D.S., Ibanez, D., et al.: Kokkos 3: Program-
ming model extensions for the exascale era. IEEE Transactions on Parallel and
Distributed Systems 33(4), 805–817 (2021)

29. Vef, M.A., Moti, N., Süß, T., Tocci, T., Nou, R., Miranda, A., Cortes, T.,
Brinkmann, A.: Gekkofs-a temporary distributed file system for hpc applications.
In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). pp.
319–324. IEEE (2018)

30. Venkata, M.G., Graham, R.L., Hjelm, N.T., Gutierrez, S.K.: Open MPI for cray
xe/xk systems. Proceedings of the 2012 Cray User Group, Greengineering the
Future. Stuttgart, Germany (2012)

31. Vienne, J.: Benefits of cross memory attach for MPI libraries on hpc clusters. In:
Proceedings of the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. pp. 1–6 (2014)

32. Weingram, A., Li, Y., Qi, H., Ng, D., Dai, L., Lu, X.: xccl: A survey of industry-led
collective communication libraries for deep learning. Journal of Computer Science
and Technology 38(1), 166–195 (2023)

https://github.com/MPI-forum/MPI-issues/issues/56
https://github.com/MPI-forum/MPI-issues/issues/56
https://github.com/MPI-forum/MPI-issues/issues/32
https://github.com/MPI-forum/MPI-issues/issues/32

	To Share or Not to Share: a case for MPI in Shared-Memory

