
HAL Id: cea-04662976
https://cea.hal.science/cea-04662976

Submitted on 26 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring Accelerator Integration with Core-V
eXtention InterFace (CV-X-IF) for Kyber
Alessandra Dolmeta, Stefano Di Matteo, Emanuele Valea

To cite this version:
Alessandra Dolmeta, Stefano Di Matteo, Emanuele Valea. Exploring Accelerator Integration with
Core-V eXtention InterFace (CV-X-IF) for Kyber. RISC-V Summit Europe, Jun 2024, Munich,
Germany. 2024. �cea-04662976�

https://cea.hal.science/cea-04662976
https://hal.archives-ouvertes.fr


Exploring Accelerator Integration with Core-V
eXtention InterFace (CV-X-IF) for Kyber

Alessandra Dolmeta1,2∗, Stefano Di Matteo2,3 and Emanuele Valea3

1DET, Politecnico di Torino, Torino, Italy, 2Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, 3Univ. Grenoble Alpes,
CEA, List, F-38000 Grenoble, France

Abstract

This paper presents the integration and optimization of an acceleration module for Number Theoretic Transform
(NTT) and Inverse NTT (INTT) algorithms within the CRYSTALS-Kyber cryptographic framework. The
accelerator is seamlessly integrated using the CV-X-IF interface, allowing for tight coupling without necessitating
modifications to the core. Various optimization strategies are explored, focusing on memory access patterns,
compilation flags, and code optimization techniques. The accelerator is rigorously tested to ensure compatibility
and performance gains across different optimization configurations. Results demonstrate that the CV-X-IF
interface facilitates the integration of cryptographic accelerators with a core, resulting in notable performance
enhancements. Moreover, this approach can be applied to any accelerator designed for generic tasks.

Introduction
In this era of advancing technology, the progression of
embedded systems has experienced a significant shift
towards incorporating specialized accelerators into mi-
crocontrollers, intending to boost performance and
efficiency. RISC-V, an open instruction set architec-
ture (ISA), fosters processor innovation and enables
open-source hardware development with the integra-
tion of domain-specific ISA extensions, accelerators,
and co-processors. A crucial aspect of this integra-
tion revolves around the degree of connectivity be-
tween the central processing unit (CPU) and these
accelerators, as well as the nature of the data be-
ing processed. Loosely-coupled accelerators, typically
memory-mapped and connected via system buses, han-
dle compute-heavy tasks with large data sets. On
the other hand, tightly coupled accelerators and co-
processors reside within the CPU’s microarchitecture,
necessitating core and toolchain modifications. The
emerging eXtension Interface (CV-X-IF) 1 allows a
seamless support of co-processors. In fact, the CV-X-
IF can enhance the CPU with custom or standardized
instructions for co-processor support, still without al-
tering the CPU’s decode unit. It ensures low-latency
and tightly-integrated read and write access to the
CPU register file from the co-processor. Unused op-
codes within the CPU can be utilized for extensions,
although it is advisable not to employ opcodes reserved
or used by RISC-V International. Recently, the CV-
X-IF has been successfully utilized and integrated into
the CV32E40P core, resulting in the labeled variant
known as CV32E40PX 2. In this study, we leverage

∗Corresponding author: alessandra.dolmeta@polito.it
1 https://github.com/openhwgroup/core-v-xif/tree/main
2 https://github.com/esl-epfl/cv32e40px

the CV-X-IF to show the integration of a co-processor
specialized in the acceleration of a cryptographic ap-
plication. Specifically, we target the Number Theoretic
Transform (NTT) computing kernel, that is present in
numerous lattice-based Post-Quantum Cryptography
(PQC) algorithms, such as CRYSTALS-Kyber. In fact,
implementing PQC algorithms on common microcon-
trollers is a challenge, since many of these algorithms
require extensive computational resources, which may
exceed the capabilities of embedded platforms [1].

The present work shows that the CV-X-IF is a
promising paradigm, that can potentially pave the way
to large-scale development of PQC-oriented RISC-V
ISA extensions supported by customized co-processors.

Proposed CV-X-IF Integration

Number Theoretic Transfor (NTT) is a mathematical
operation that allows to efficiently compute polyno-
mial multiplications and convolutions; it is commonly
used in lattice-based cryptographic algorithms such as
CRYSTALS-Kyber.

CV32E40PX

OBI bus

CV-X-IF

XI
F 

co
nt

ro
lle

r

bu
tte

rfl
y rs

funct3

rd

D
at

a
M

em
or

y

In
st

ru
ct

io
n

M
em

or
y

Figure 1: Architecture of the proposed RISC-V SoC.

NTT is tipycally executed through butterfly com-
putations which operates on pairs of input elements

RISC-V Summit Europe, Munich, 24-28th June 2024 1

mailto:alessandra.dolmeta@polito.it
https://github.com/openhwgroup/core-v-xif/tree/main
https://github.com/esl-epfl/cv32e40px


plus a fixed coefficient (typically a primitive root of
unity, named twiddle factor), and produces pairs of
output elements. A butterfly unit for Kyber typically
involves modular multiplications and modular addi-
tions/subtractions arranged in a specific pattern. In
this work, we propose the butterfly unit reported in
this work [2], and we connected it to the RISC-V core
through the CV-X-IF interface. Figure 1 shows the ar-
chitecture of the proposed System-on-Chip (SoC). Two
kinds of instructions were implemented to integrate
the butterfly unit into the NTT computation. The
RISC-V instruction formats that are used with the
“.insn” pseudo directive are: R-type (.insn r opcode6,
func3, func7,rd, rs1, rs2) and R4-type (.insn r4 op-
code6, func3, func2, rd, rs1, rs2, rs3). The additional
instructions are inserted using the “asm” keyword,
which provides precise low-level hardware control, aid-
ing performance optimization and interfacing with
hardware. The method initially tests various opti-
mization flags for pure software implementation (-Os,
-O2). Next, both R-type and R4-type instructions were
implemented and evaluated. Since each butterfly op-
eration requires three 16-bit input data (two input
coefficients, and the index of the twiddle factor), a
concatenation of the two input operands is necessary
when using the R-type instruction. Conversely, in the
R4-type instructions with three source registers, this
concatenation operation can be circumvented. The
method also involves the exploitation of software opti-
mization techniques like loop unrolling.

Results
Looking at the results in Figure 2, it can be observed
a progressive improvement in both clock cycles and
instructions moving from lower optimization levels to
higher ones, and then to the addition of specific in-
structions and loop unrolling. In the first two cases,
the accelerator is not used yet. Moving from Os to
O2, there is a significant improvement in both clock
cycles and instructions, since this optimization level fo-
cuses more on improving performance while balancing
code size compared to -Os. The next case introduces
R-type instructions, resulting in further reductions in
both clock cycles (13992) and instructions (12068).
This suggests that incorporating specific instructions
optimized for the target architecture enhances perfor-
mance by executing operations more efficiently. When
using R4-type instructions, there are further reductions
in clock cycles (12200) and instructions (10276), be-
cause the concatenation and packing of the two inputs
operand in one input registers is no longer required.
Finally, with the fifth case, where loop unrolling is
added, we achieve the lowest number of clock cycles
(10255) and instructions (9345). Loop unrolling helps
to further optimize the code by reducing loop overhead

and enhancing instruction-level parallelism, resulting
in the most efficient execution. With fewer loop control
instructions, instruction-level parallelism is enhanced,
optimizing code execution efficiently.

-Os[*] -O2[*] -O2
R-ins

-O2
R4-ins

-O2
R4-ins
 unroll

10000

20000

30000

40000

50000

Clock Cycles and Instructions for Different Cases
clock cycles
instructions
NTT
INVNTT

Figure 2: Integration Results: [*] without accelerator

It’s noteworthy to mention that while the CV-X-
IF version utilized in this work predates the latest
release as of February 2024, there’s a clear intention
to adapt and enhance it to align with the latest stan-
dards. This commitment ensures that the interface
remains up-to-date and coherent with evolving techno-
logical advancements, further enhancing its utility and
applicability in future cryptographic implementations.

Conclusion
Overall, these results demonstrate how different op-
timization techniques, including specific instructions
and loop unrolling, contribute to the progressive im-
provement of performance in terms of clock cycles and
instructions. CV-X-IF interface proves to be excep-
tionally valuable and immensely helpful in accelerat-
ing cryptographic operations, as demonstrated in this
study. The seamless integration of custom instructions,
along with the flexibility to optimize code at various
levels, showcases the versatility and efficiency of this
interface.

Acknowledgement
This work received funding from the France 2030
program, managed by the French National Research
Agency under grant agreement No. ANR-22-PETQ-
0008 PQ-TLS.

References
[1] Duc-Thuan Dam et al. “A Survey of Post-Quantum Cryp-

tography: Start of a New Race”. In: Cryptography 7.3
(2023).

[2] Pietro Nannipieri et al. “A RISC-V Post Quantum Cryp-
tography Instruction Set Extension for Number Theoretic
Transform to Speed-Up CRYSTALS Algorithms”. In: IEEE
Access 9 (2021), pp. 150798–150808.

2 RISC-V Summit Europe, Munich, 24-28th June 2024


	Introduction
	Proposed CV-X-IF Integration
	Results
	Conclusion

